CHARACTERIZATION OF AN ALGEBRAIC STRUCTURE AND ITS FUZZIFICATIONS

MUHAMMAD AKRAM

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy in Science

Faculty of Science, Technology and Human Development
Universiti Tun Hussein Onn Malaysia

JANUARY 2017
To my mother: the signs of love, support and encouragement
ACKNOWLEDGEMENT

In the name of Allah, the Beneficent, the Merciful.

First and above all, I praise Allah SWT, the Almighty for providing me this opportunity and granting me the ability to proceed successfully. In completing this study, I met many people who have contributed a lot towards my understanding. I am extremely grateful to my Supervisor Associate Professor Dr. Kavikumar Jacob, Co-Supervisor Associate Professor Dr. Azme Bin Khamis and Dr. Nor Shamsidah for supporting me throughout the years and for providing technical guidance, supervision, encouragement and showing a great deal of patience. May Allah SWT keep all of them happy forever! I am also deeply grateful to my co-supervisor Assistant Professor Dr. Zaffar Iqbal, University of Gujrat, Pakistan, a real friend and adviser throughout the course of study. Also, I would like to express my special thanks to Universiti Tun Hussein Onn Malaysia and Office for Research, Innovation, Commercialization, Consultancy, and Management (ORICCC), Center for Graduate Studies (CGS) and Faculty of Science, Technology and Human Development (FSTPi), for providing such a wonderful and research-friendly environment at the University. Furthermore, I would like to express my sincere gratitude other UTHM staff including all postgraduate students for providing a healthy research atmosphere.

I am also thankful to my family for believing in me and supporting me in all my endeavors. In the end, I would like to thank my wife "Alia" my daughters "Amna, Hira" and my son "Abdullah" who have brought a lot of joy and colors to my life.

Muhammad Akram
Semigroups are very important in many areas of mathematics and play a very significant role in the development of mathematics. The concept of \(\Gamma \)-semigroup was given as a generalization of semigroup and ternary semigroup. Fuzzy set and its extensions are equally important and have a lot of applications in every field of life. Some very important extensions of algebraic structures are their fuzzifications and intuitionistic fuzzifications. In this research, some work on different aspects of an algebraic structure and its fuzzifications are given. Here the concept of bi\(\Gamma \)-ternary semigroup is given as a generalization of ternary semigroup and \(\Gamma \)-semigroup. The notions of bi\(\Gamma \)-ternary subsemigroup, bi\(\Gamma \)-ternary left (right, lateral, bi and quasi) ideals of bi\(\Gamma \)-ternary semigroup are defined and characterized. Some properties of these ideals and relationships between them are discussed. Moreover, the regular bi\(\Gamma \)-ternary semigroup is defined and characterized in terms of its ideals. Furthermore, the concept of intuitionistic N-fuzzy set as a new extension of fuzzy set and intuitionistic fuzzy set is defined by considering the negative meanings of information. The notions of level set and characteristic functions of intuitionistic N-fuzzy set is also defined here. As the applications of intuitionistic N-fuzzy set, the notion of this set is applied to the ideal theory of some algebraic structures such as semigroup, \(\Gamma \)-semigroup and the bi\(\Gamma \)-ternary semigroup to get the corresponding intuitionistic N-fuzzy structures and substructures and characterized them. Finally, the concept of fuzzy soft set and bipolar fuzzy soft set is applied to the ideals of \(\Gamma \)-semigroups and bi\(\Gamma \)-ternary semigroups. Some special operations, OR, AND, extended union, extended intersection, restricted union and restricted intersection between the fuzzy soft and bipolar fuzzy soft ideals of \(\Gamma \)-semigroup and bi\(\Gamma \)-ternary semigroup are discussed. It is also proved that these operations also induced same type fuzzy soft and bipolar fuzzy soft ideals of \(\Gamma \)-semigroup and bi\(\Gamma \)-ternary semigroup.
ABSTRAK

yang operasioperasi ini juga didorong oleh set kabur dan bipolar kabur lembut ideal \(\Gamma \)-semikumpulan dan \(\text{bi}\Gamma \)-semikumpulan pertigaan yang sama jenis.
CONTENTS

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF SYMBOLS AND ABBREVIATIONS xii
LIST OF APPENDICES xiv

CHAPTER 1 INTRODUCTION 1

1.1 Research Background 1
1.2 Motivation 2
1.3 Problem Statement 2
1.4 Aim of the Research 3
1.5 Research Objective 4
1.6 Scope and Limitation 4
1.7 Research Contributions 5
1.8 Thesis Organization 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7
2.2 Preliminaries 9
 2.2.1 Semigroup 10
 2.2.2 Ternary semigroup 10
 2.2.3 Γ-semigroup 11
2.2.4 Fuzzy set and intuitionistic fuzzy set 12

CHAPTER 3 BI Γ-TERNARY SEMIGROUP AND ITS BI Γ-IDEALS 14

3.1 Bi Γ-ternary semigroup 14
3.1.1 Basic definitions and examples 14
3.1.2 BiΓ-ideals of biΓ-ternary semigroup 17
3.1.3 BiΓ-quasi and biΓ-bi-ideals of biΓ-ternary semigroup 22
3.1.4 Regular biΓ-ternary semigroups 28
3.2 Chapter summary 34

CHAPTER 4 FUZZY AND N-FUZZY BIΓ-TERNARY SEMIGROUPS 35

4.1 Fuzzy biΓ-ternary semigroup 35
4.1.1 Fuzzy biΓ-ideals of biΓ-ternary semigroup 35
4.1.2 Fuzzy biΓ-quasi and fuzzy biΓ-bi ideals of biΓ-ternary semigroup 42
4.2 N-fuzzy biΓ-ternary semigroups 54
4.2.1 N-fuzzy set 54
4.2.2 N-fuzzy biΓ-ideals of biΓ-ternary semigroup 56
4.2.3 N-fuzzy biΓ-quasi and biΓ-bi-ideals of biΓ-ternary semigroup 63
4.3 Chapter summary 75

CHAPTER 5 INTUITIONISTIC N-FUZZY SET AND ITS APPLICATIONS 76

5.1 Intuitionistic N-fuzzy set 76
5.1.1 Basic definitions and examples 77
5.2 Intuitionistic N-fuzzy semigroup 79
5.2.1 Intuitionistic N-fuzzy ideals of semigroup 79
5.2.2 Intuitionistic N-fuzzy quasi and bi-ideals of semigroup 86
5.3 Intuitionistic N-fuzzy Γ-semigroups 97
5.3.1 Intuitionistic N-fuzzy Γ-ideals of Γ-semigroup 97
5.3.2 Intuitionistic N-fuzzy Γ-quasi and Γ-bi-ideals of Γ-semigroups 105
5.4 Intuitionistic N-fuzzy biΓ-ternary semigroups 115
5.4.1 Product of three INFSs 116
5.4.2 Intuitionistic N-fuzzy biΓ-ideals of biΓ-ternary semigroups 116
5.4.3 Intuitionistic N-fuzzy biΓ-quasi and biΓ-bi-ideals of biΓ-ternary semigroups 125

5.5 Chapter summary 140

CHAPTER 6 FUZZY SOFT AND BIPOLAR FUZZY SOFT BI Γ-TERNARY SEMIGROUP 142

6.1 Fuzzy soft Γ-semigroup and biΓ-ternary semigroup 142
6.1.1 Fuzzy soft set 142
6.1.2 Fuzzy soft Γ-ideals over Γ-semigroup 144
6.1.3 Fuzzy soft biΓ-ideals over biΓ-ternary semigroup 151

6.2 Bipolar fuzzy soft Γ-semigroup and biΓ-ternary semigroup 164
6.2.1 Bipolar fuzzy soft set 164
6.2.2 Bipolar fuzzy soft Γ-ideals over Γ-semigroup 168
6.2.3 Bipolar fuzzy soft biΓ-ideals over biΓ-ternary semigroup 182

6.3 Chapter summary 194

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 195

7.1 Conclusions 195
7.2 Future Work 196

REFERENCES 198

APPENDIX A 207
LIST OF FIGURES

6.1 Fuzzy Soft Set 143
6.2 Bipolar Fuzzy Set 165
6.3 Bipolar Fuzzy Soft Set 166
LIST OF SYMBOLS AND ABBREVIATIONS

A – Ideal
B – Bi-ideal
BF_U – Set of all bipolar fuzzy subsets of U
E – Set of parameters
$F(U)$ – Set of all fuzzy subsets of U
I – Indexing set
i – Element of I
L – Left ideal
M – Lateral ideal
N – Set of natural numbers
Q – Quasi ideal
R – Right ideal
S – Semigroup or Γ-semigroup as stated
T – BiΓ-ternary semigroup
U – Initial universe set
Z – Set of integers
Z^- – Set of negative integers
Z_0^- – Set of non-positive integers
μ – Fuzzy set
ν – Fuzzy set
\bigvee – Join operation
\wedge – Meet operation
$*$ – Special product
\cap – Intersection of intuitionistic N-fuzzy sets
μ^t – Level set of μ
$\bar{\mu}$ – N-fuzzy set
\cup – Union of intuitionistic N-fuzzy sets
\overline{X}_C – N-fuzzy characteristic function of C
χ_C – Characteristic function of C
\cup_E – Extended union
\cap_E – Extended intersection
$(t)_{m}$ – Principal biΓ-lateral ideal
$(t)_{l}$ – Principal biΓ-left ideal
$(t)_{r}$ – Principal biΓ-right ideal
\cap_R – Restricted intersection
\cup_R – Restricted union
\circ_{Γ} – Special product of Γ-structures
\[\langle \mu^+_A, \mu^-_A \rangle \quad \text{Bipolar fuzzy set} \]
\[(\mu_A, A) \quad \text{Fuzzy soft set} \]
\[(\mu_A, \gamma_A) \quad \text{Intuitionistic fuzzy set} \]
\[(\vec{\mu}_A, \vec{\gamma}_A) \quad \text{Intuitionistic N-fuzzy set} \]
\[(\vec{\mu}_A, \vec{\gamma}_A) \quad \text{Intuitionistic N-fuzzy characteristic function of } C \]
\[N_A(t, s) \quad \text{Level set of intuitionistic N-fuzzy set } A \]
\[N(\vec{\mu}, t) \quad \text{Level set of N-fuzzy set } \vec{\mu} \]

BCK algebra \quad \text{Algebra of combinators of } B, C \text{ and } K

BCI algebra \quad \text{Algebra of combinators of } B, C \text{ and } I

B\Gamma BI(s) \quad \text{B}\Gamma\text{-bi-ideal(s)}

B\Gamma I(s) \quad \text{B}\Gamma\text{-ideal(s)}

B\Gamma LI(s) \quad \text{B}\Gamma\text{-left ideals(s)}

B\Gamma MI(s) \quad \text{B}\Gamma\text{-lateral ideal(s)}

B\Gamma QI(s) \quad \text{B}\Gamma\text{-quasi-ideal(s)}

B\Gamma RI(s) \quad \text{B}\Gamma\text{-right ideals(s)}

B\Gamma TS(s) \quad \text{B}\Gamma\text{-ternary semigroup(s)}

B\Gamma TSS(s) \quad \text{B}\Gamma\text{-ternary subsemigroup(s)}

INFS \quad \text{Intuitionistic N-fuzzy set}

INFS(s) \quad \text{Intuitionistic N-fuzzy set(s)}

INFSS \quad \text{Intuitionistic N-fuzzy subset}
LIST OF APPENDICES

A LIST OF PUBLICATIONS 207
CHAPTER 1

INTRODUCTION

The theory of semigroups is similar to group theory and ring theory. The earliest major contributions to the theory of semigroups are strongly motivated by comparisons with groups and rings. Semigroup theory can be considered as one of the most successful off-springs of ring theory in the sense that the ring theory gives a clue how to develop the ideal theory of semigroups. There are several algebraic structures introduced by many authors as algebraic extensions of the semigroup such as, ternary semigroup, LA-semigroup, Γ-semigroup and so on. A semigroup \(S \) is a nonempty set along with a closed and associative binary operation whereas a ternary semigroup is a nonempty set \(T \) along with a closed ternary operation satisfying a special associative law, \(((abc)de) = (a(bcd)e) = (ab(cde)) \). It is clear that any ordinary semigroup \((S; *) \) induces a ternary semigroup \((S; []) \) by putting \([abc] = a*b*c \) but a ternary semigroup may not be a semigroup e.g. \(T = \{-i, 0, i\} \) is a ternary semigroup which is not a semigroup under the multiplication of complex numbers. Also \(Z^- = \{-1, -2, -3, ...\} \), is a ternary semigroup but not a semigroup under the integers multiplication. The fuzzy algebraic structures and their extensions are very important. Nowadays, a lot of extensions of fuzzy algebraic structures have been introduced by many authors and have been applied to real life problems in different fields of science.

1.1 Research Background

In 1981, Sen [1] introduced the concept of Γ-semigroup as a generalization of semigroup and ternary semigroup. He combined a nonempty set \(Γ \) with another nonempty set \(S \) to form this structure. He defined an operation from \(S \times Γ \times S \rightarrow S \) with extended associative law for Γ-semigroup. Another very important
extension of algebraic structures is their fuzzifications and intuitionistic fuzzifications. Many classical notions of algebraic structures have been extended to the fuzzy and intuitionistic fuzzy structures. The concept of fuzzy set was given by Zadeh [2] in 1965. The study of fuzzy algebraic structures was started by Rosenfeld [3], when he introduced the concepts of fuzzy subgroup in 1971. Kuroki [4, 5, 6, 7, 8] applied the concept of fuzziness to the semigroups and introduced the notion of fuzzy ideals of semigroups. The concept of intuitionistic fuzzy set was introduced by Atanassov [9] as a generalization of fuzzy set in 1986. Biswas [10] introduced the concept of intuitionistic fuzzy subgroupoids. Kim and Jun [11] applied the concept of intuitionistic fuzzification to the ideal of semigroups.

1.2 Motivation

The idea of construction of Γ-algebraic structures like Γ-semigroup, Γ-semiring, Γ-ring, Γ-near ring, motivated us to extend this work to form some further extensions of Γ-algebraic structure so we constructed biΓ-ternary semigroup. We also inspired from the different extensions of fuzzy set particularly L-fuzzy set, N-fuzzy set, intuitionistic fuzzy set and we constructed intuitionistic N-fuzzy set as an extensions of fuzzy set. The concept of fuzzy and intuitionistic fuzzy algebraic structures gives us the idea about the fuzzifications of this constructed structure. Finally the notions of fuzzy soft set and bipolar fuzzy soft set takes our attention towards the application of these notions on the Γ-algebraic structure which we have constructed.

1.3 Problem Statement

Construction of some new algebraic structure and its fuzzifications is not a straightforward work. It needs the understanding and application of several theories but when a new structure is formed it opens a new chapter for the researchers to write about it and soon a new theory is created. In the literature, there are many Γ-extensions of algebraic structure such as, Γ-groupoid, Γ-AG-groupoid, Γ-semigroup, Γ-semiring, Γ-ring, Γ-near-ring and so on. In all these structures researchers combined the nonempty set Γ with some other nonempty set S (say) with some binary operations to form these structures. Till now, no any further generalizations of Γ-structures have been given, so
in the first part of this research we are planning to extend the concept of Γ-extensions to $\Gamma\Gamma$-extensions or biΓ-extensions of some algebraic structure. After the construction of this algebraic structure, the notions of substructures are defined and their different properties are investigated. Zadeh [2] introduced the concept of fuzzy set in 1965, after that many extensions of fuzzy set such as rough set, fuzzy rough set, bipolar fuzzy set and intuitionistic fuzzy set etc. have been introduced so far. In all fuzzy set and its generalizations only positive meanings of information have been used. Jun et al.[12] used the negative meanings of information for fuzzy set and introduced the notion of N-fuzzy set. Still there is a need of some generalization of intuitionistic fuzzy set by considering the negative meanings of information to handle the real life problems using uncertainty and negativity. This gives the idea for the constructions of intuitionistic N-fuzzy set. In the second part of this research, the concept of fuzzy, N-fuzzy (negative fuzzy) and intuitionistic N-fuzzy set is applied to the algebraic structure which we have defined in first part of this research to get the corresponding fuzzy, N-fuzzy and intuitionistic N-fuzzy algebraic structures. At the end, some works on the fuzzy soft and bipolar fuzzy soft ideals of Γ-semigroup biΓ-ternary semigroup are done and some characterizations of these ideals in terms of some special operations defined between them are given.

1.4 Aim of the Research

The aim of this research is to construct an algebraic structure biΓ-ternary semigroup, its fuzzifications and the characterizations of this algebraic structure as well as the characterization of its fuzzifications. To achieve this aim, first of all an algebraic structure biΓ-ternary semigroup and its substructures (ideals) are defined and characterized. After the construction of ideal theory of biΓ-ternary semigroup, the concepts of fuzzy set and N-fuzzy set are applied to form the corresponding fuzzy and N-fuzzy structures. In the second step, intuitionistic N-fuzzy set is defined by considering the negative meanings of information and the basic operations between the intuitionistic N-fuzzy sets are discussed. Then the concept of intuitionistic N-fuzzy set is applied to some already existing algebraic structures like, semigroup, Γ-semigroup, ternary semigroup to check the validity of intuitionistic N-fuzzy set and finally it is applied to algebraic structure biΓ-ternary semigroup to obtain the final
structure intuitionistic N-fuzzy biΓ-ternary semigroup. Moreover the concept of fuzzy soft set and bipolar fuzzy soft set is applied to characterize Γ-semigroups and biΓ-termary semigroup in terms of its fuzzy soft and bipolar fuzzy soft ideals.

1.5 Research Objective

This research has some specific objectives which are outlined below:
1. To develop a new algebraic structure biΓ-ternary semigroup and its examples.
2. To define the notions of ideals for this structure and characterized it by these ideals.
3. To develop the fuzzifications and N-fuzzifications of the algebraic structure.
4. To develop the theory of intuitionistic N-fuzzy set and intuitionistic N-fuzzifications of this structure.
5. To develop the theory of fuzzy soft and bipolar fuzzy soft ideals of biΓ-ternary semigroup.

1.6 Scope and Limitation

The scope and limitations of this work are given as under:
1. A new algebraic structure biΓ-ternary semigroup is defined and explained by constructing some examples and counter examples.
2. Some substructures and different ideals of biΓ-ternary semigroup are defined and characterized in this study.
3. The fuzzifications and N-fuzzifications of biΓ-ternary semigroup are defined and characterized by their ideals.
4. The intuitionistic N-fuzzy set and its basic operations along with examples are defined.
5. The applications of intuitionistic N-fuzzy set on some algebraic structures, particularly on biΓ-ternary semigroup are studied.
6. The scope of this study also covers some characterizations of fuzzy soft and bipolar fuzzy soft ideals of biΓ-ternary semigroup.
1.7 Research Contributions

This research provides the following contributions to the knowledge in the fields of semigroup theory and its generalizations, fuzzy set and its generalizations, fuzzy algebraic structures, intuitionistic and bipolar fuzzy algebraic structures and their generalizations:

1. A new algebraic structure biΓ-ternary semigroup and its ideals are defined and characterized.

2. A new generalization "intuitionistic N-fuzzy set" of fuzzy set and intuitionistic fuzzy set is given. The basic operations between these intuitionistic N-fuzzy sets along with suitable examples are discussed.

3. The fuzzifications and N-fuzzifications of ideals of biΓ-ternary semigroup are defined and characterized.

4. Intuitionistic N-fuzzy biΓ-ternary semigroup and its intuitionistic N-fuzzy biΓ-ideals are defined. Furthermore, the relationships between these intuitionistic N-fuzzy biΓ-ideals of biΓ-ternary semigroup are discussed and characterized using their properties.

5. Some special operations between the fuzzy soft and bipolar fuzzy soft ideals of biΓ-ternary semigroup are discussed.

1.8 Thesis Organization

This thesis is organized and divided into seven chapters including the introduction and conclusion.

In Chapter 1, an overview on the background of the research as well as the problem statement, research objectives, scope of the research and the research contributions are outlined.

In Chapter 2, a detailed survey of the works done previously in the related fields with references as literature review is given. The preliminary concepts required to read the subsequent chapters are also given.

In Chapter 3, an algebraic structure "BiΓ-Ternary Semigroup" as a new generalization of ternary semigroup and Γ-semigroup is proposed. Some ideals such as biΓ-ideals (left, right, lateral, quasi and bi) for this structure are defined and different
properties of these ideals are investigated. The regular biΓ-ternary semigroup and its ideal are also defined and characterized.

Chapter 4 is divided into two sections. In Section 4.1, the concept of fuzzy set is applied to the propose structure and its ideals to get their fuzzifications and characterize them by using different properties of these fuzzy ideals. In Section 4.2, the concept of \(N\)-fuzzy set is applied to the algebraic structure "BiΓ-Ternary Semigroups" and its ideals to get the corresponding \(N\)-fuzzifications and characterize them by using these ideals.

There are four sections in Chapter 5. In Section 5.1, intuitionistic \(N\)-fuzzy set is defined as a new generalization of fuzzy set and intuitionistic fuzzy set. Some basic operations between these intuitionistic \(N\)-fuzzy sets along with some examples are also defined. In Section 5.2 and Section 5.3, the concept of intuitionistic \(N\)-fuzzy set is applied to the ideal theory of semigroups and \(\Gamma\)-semigroups to produce the corresponding intuitionistic \(N\)-fuzzy ideals of these structures and characterize them by these intuitionistic \(N\)-fuzzy ideals. In Section 5.4, both of the proposed concepts i.e., "Intuitionistic \(N\)-Fuzzy Set" and "BiΓ-Ternary semigroup" are combined to proposed "Intuitionistic \(N\)-fuzzy biΓ-ternary semigroup". We define intuitionistic \(N\)-fuzzy biΓ-ideals (left, right, lateral, quasi and bi) of intuitionistic \(N\)-fuzzy biΓ-ternary semigroup and characterize it by these ideals.

In Chapter 6, there are two sections. In Section 6.1, fuzzy soft sets over \(\Gamma\)-semigroup and biΓ-ternary semigroup are discussed. We define different fuzzy soft \(\Gamma\)-ideals (left, right, quasi and bi) of \(\Gamma\)-semigroup and biΓ-ternary semigroup. We also define and characterize the special operations "AND", "OR", extended union, extended intersection, restricted union and restricted intersection between these ideals. In Section 6.2, the bipolar fuzzy soft set over \(\Gamma\)-semigroup and biΓ-ternary semigroup are discussed. The bipolar fuzzy soft ideals of \(\Gamma\)-semigroup and biΓ-ternary semigroup are defined and the special operations, which we discussed in Section 6.1 for fuzzy soft \(\Gamma\)-ideals are also discussed for bipolar fuzzy soft ideals.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is a description of literature survey of the previously done research work in the directions of our research. In this research, a latest generalization of some algebraic structure and its fuzzy extensions has been proposed. For our proposed research, it need to discuss the ideal theory of "semigroup", "ternary semigroup", \(\Gamma \)-semigroup and the corresponding fuzzy and intuitionistic fuzzy algebraic structures.

The algebraic theory of semigroups was widely studied by Clifford and Preston [13, 14], Petrich [15, 16, 17] and Ljapin [18]. They all studied the notion of the ideal in semigroups. Good and Hughes [19] and Lajos [20] introduced the notion of bi-ideals in semigroup. Lajos [21] and Szasz [22, 23] gave the notion of interior ideals in semigroup. Steinfeld [24] introduced the notion of quasi-ideals in semigroups. Prime ideals in semigroup were presented by Grimble [25]. The ideal theory in general semigroups was developed by Hoehnke [26], Schwarz [27], Anjaneyulu [28, 29], Giri and Wazalwar [30].

In 1932 Lehmer [31] gave the formal definition of a ternary semigroup but earlier such structures were studied by Kasner [32] and Pruer [33]. Sioson [34] worked on the ideal theory in ternary semigroups. He introduced the notion of prime ideal, semiprime ideal, quasi-ideal and study regular ternary semigroup by using these ideals. Dixit and Dewan [35] studied the notions of quasi-ideal and bi-ideal in ternary semigroups. Santiago [36] developed the theory of ternary semigroups and semiheaps. Dutta et al. [37] characterized regular ternary semigroups by their ideals.

As a generalization of semigroup and ternary semigroup, Sen [1] introduced the notion of \(\Gamma \)-semigroup in 1981 and developed some theory on \(\Gamma \)-semigroups [38].
Many classical notions of semigroups have been extended to Γ-semigroups by Saha [39, 40]. The notion of quasi ideal and bi-ideals in Γ-semigroups were introduced by Chinram [41], Chinram and Jirojkul [42], Moin and Khan [43].

In 1965 Zadeh [2] gave the concept of fuzzy set. The fuzzy set developed by Zadeh and its extensions by others have many applications in the domain of mathematics. The study of fuzzy algebraic structures started with the introduction of the concepts of fuzzy subgroup (subgroupoid) and fuzzy (left, right) ideal in the pioneering paper by Rosenfeld [3] in 1971. The detailed study of fuzzy semigroup was done by Kuroki [4, 5, 6, 7, 8]. Many authors have worked on fuzzy semigroups, some detailed work can be found in [44] and [45, 46, 47, 48, 49, 50].

Petchkhaew and Chinram [51] proposed fuzzy rough and rough fuzzy ideals of ternary semigroups. Kar and Sarkar [52, 53] worked on fuzzy ideals, fuzzy quasi and fuzzy bi-ideals of ternary semigroups. Rehman and Shabir [54, 55, 56] worked on some special type of fuzzy ideals of ternary semigroups. Williams et al. [57] introduced the concept of fuzzy bi-Γ-ideals of Γ-semigroups. Dutta et. al. [58, 59] and Sardar et al. [60, 61] introduced several notions of fuzzy ideals of Γ-semigroups. In literature, we can find a lot of work done by many authors on fuzzy ideals of ternary semigroups and Γ-semigroups [see, [62], [63], [64], [65], [66], [67], [68], [69]].

The concept of intuitionistic fuzzy set was introduced by Atanassov [9] as a generalization of fuzzy set in 1983 (see also [70, 71]). Biswas [10] introduced the concept of intuitionistic fuzzy subgroupoids. Kim and Jun [11, 72] applied the concept of intuitionistic fuzzy sets to the ideal theory of semigroup and defined several ideals of semigroup. Hur et al. [73], Hong and Jiang [74], Kim and Lee [75], Ozturk et al. [76], Shabir et al. [77] and many other authors have applied the concept of intuitionistic fuzzy set to the ideal theory of semigroups. Lekkoksung [78] worked on intuitionistic fuzzy bi-ideals of ternary semigroups. Akram [79] discussed ternary semigroups in terms of intuitionistic fuzzy points and intuitionistic fuzzy ideals. Yaqoob et al. [80], Akram and Tyagi [81] discussed different intuitionistic fuzzy ideals of ternary semigroups.

Mustafa et al. [82] applied the concept of intuitionistic fuzzy set to Γ-semigroup and characterized several ideals of Γ-semigroup in terms of intuitionistic fuzzy sets. Sardar et al. [83], Davvaz and Majumder [84], Palaniappan and Lalithamani
[85], Akram [86] and many other authors have applied intuitionistic fuzzy sets to the ideal theory of \(\Gamma\)-semigroups [see, [87], [88], [89]]. The concept of N-fuzzy set was given by Jun et al. [12]. They applied this concept to BCK/BCI-algebras which was extended to other structures by Khan et al. [90, 91], Jun et al. [92], and Akram et al. [93], Williams and Saeid [94].

The concept of soft set was initiated by Molodtsov [95] in 1999. He used this concept for the modeling of uncertainty. Maji et al. [96], defined some binary operations on soft sets, which were later corrected by Ali et al. [97]. Shabir and Ali [98], introduced the notion of soft semigroups. The soft ternary semigroups were studied by Shabir and Ahmad [99]. Changphas and Thongkam [100], gave the notion of soft \(\Gamma\)-semigroups. In 2001 Maji et al. [101], introduced the notion of fuzzy soft set as a combination of fuzzy set and soft set. They studied the union, intersection, compliment and De Morgan Law etc. for fuzzy soft sets. Ahmad and Kharal [102], improved the results of [101]. Aygunoglu and Aygun [103] extended Aktas and Cagman [104], soft groups concept for fuzzy soft groups. Irfan and Shabir [105] redefined the basic operations between the fuzzy soft sets defined by Maji et al. in [101]. Yang [106], introduced the notion of fuzzy soft semigroups and fuzzy soft ideals. Recently, Bora et al. [107], defined some operations of fuzzy soft sets and explained them with examples.

Zhang [108, 109], introduced the notion of bipolar fuzzy sets and used it for modeling and decision analysis. Lee [110, 111], used the term bipolar valued fuzzy sets and applied to algebraic structures. The notion of fuzzy bipolar soft sets and bipolar fuzzy soft was introduced by Naz and Shabir [112]. They defined their special union and special intersection and also showed that the both notions are equivalent. Earlier Yang and Li [106], used the term bipolar-value fuzzy soft set for this notion and defined their operations. Abdullah et al. [113], also worked on bipolar fuzzy soft sets and their special union and intersection.

2.2 Preliminaries

In this section some preliminary concepts related to this work are outlined.
2.2.1 Semigroup

The formal study of semigroup was started during the second quarter of 20th century, which became an important subject for the researcher in very short time. Most of the mathematicians worked on semigroups and proposed a lot of notions in this structure. The following definitions about semigroups can be found in [114].

A nonempty set \(S \) together with a closed and associative binary operation is called a semigroup and a nonempty subset \(A \) of a semigroup \(S \) is called a subsemigroup of \(S \), if it is itself a semigroup under the same binary operation defined in \(S \). Ordinarily, we take the binary operation in \(S \) as the usual multiplication of elements. The product \(AB \) of two nonempty subsets of a semigroup \(S \) is defined as the set of all elements \(ab \), for \(a \in A \) and \(b \in B \). Since the associativity hold in \(S \) so it holds in \(A \), then the condition that a subset \(A \) of \(S \) is a subsemigroup of \(S \) becomes that when, \(AA \subseteq A \).

A nonempty subset \(A \) of \(S \) is called a left ideal of \(S \) if \(SA \subseteq A \) and a right ideal of \(S \) if \(AS \subseteq A \). An ideal or a two sided ideal of \(S \) is a nonempty subset of \(S \), which is both a left and a right ideal of \(S \). A nonempty subset \(Q \) of \(S \) is called quasi-ideal of \(S \) if \(QS \cap SQ \subseteq Q \). A subsemigroup \(B \) of \(S \) is called a bi-ideal of \(S \) if \(BSB \subseteq B \).

2.2.1.1. Proposition. [114] Let \(S \) be a semigroup and \(X \) be a nonempty subset of \(S \) then

(i) \(SX \) is a left ideal of \(S \).

(ii) \(XS \) is a right ideal of \(S \).

(iii) \(SXS \) is an ideal of \(S \).

(iv) \(SX \cap XS \) is a quasi ideal of \(S \).

2.2.2 Ternary semigroup

Although the study of ternary structures started earlier in the 20th century but the formal definition of ternary semigroup was given by Lehmer [31] in 1932 as:

2.2.2.1. Definition. [31] A ternary semigroup \(T \) is a nonempty set whose elements are closed under the ternary operation (usually multiplication) and satisfies the associative law defined as \([abc]de = [a]bcd[e] = [ab]cde\), for all \(a, b, c, d, e \in T \). For simplicity we shall write \([abc]\) as \(abc \).
2.2.2.2. Definition. [34] A nonempty subset A of a ternary semigroup T is called a ternary subsemigroup of T if $AAA \subseteq A$ and is called an idempotent if $AAA = A^3 = A$. A left ideal of a ternary semigroup T is a nonempty subset A of T such that $TTA \subseteq A$ and a right ideal of T if $ATT \subseteq A$ and a lateral ideal of T if $TAT \subseteq A$.

A nonempty subset A of T is called an ideal of T if it is a left, a right and a lateral ideal of T.

2.2.2.3. Definition. [34] A nonempty subset Q of T is called a quasi ideal of T if it satisfies $QTT \cap TQT \cap TTQ \subseteq Q$ and $QTT \cap TTQTT \cap TTQ \subseteq Q$.

2.2.2.4. Definition. [35] A subsemigroup B of a ternary semigroup T is called a b-i-ideal of T if $BTB \subseteq B$.

2.2.3 Γ-semigroup

Compared to semigroup and ternary semigroup the concept of Γ-semigroup is very new. It was studied by Sen [1], in 1981 but later in 1986, Sen and Saha [38] redefined Γ-semigroup. Sen and Saha [38], Saha [39, 40], developed the ideal theory of Γ-semigroups, which became a popular area of research. They defined Γ-semigroup and its substructures as:

2.2.3.1. Definition. [38] Let $S = \{x, y, z, \ldots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \ldots\}$ be two nonempty sets. Then S is called a Γ-semigroup if it satisfies,

(i) $x\alpha y \in S$

(ii) $(x\alpha y)\beta z = x\alpha(y\beta z)$, for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

2.2.3.2. Definition. [38] A nonempty subset A of a Γ-semigroup S is called a Γ-subsemigroup of S if $A \Gamma A \subseteq A$. By a left (right) Γ-ideal of a Γ-semigroup S we mean a nonempty subset A of S such that $S \Gamma A \subseteq A$ ($A \Gamma S \subseteq A$). A Γ-ideal or a two sided Γ-ideal of S is that which is both a left and a right Γ-ideal of S.

2.2.3.3. Definition. [41] A nonempty subset Q of T is called a quasi ideal of T if $Q \Gamma S \cap S \Gamma Q \subseteq Q$.

2.2.3.4. Definition. [42] A Γ-subsemigroup B of a Γ-semigroup S is called a Γ-bi-ideal of S if $B \Gamma S \subseteq B$.
2.2.3.5. Proposition. [115] Let S be a Γ-semigroup and X be a nonempty subset of S then

(i) STX is a Γ-left ideal of S.
(ii) XTS is a Γ-right ideal of S.
(iii) $S\Gamma XT$ is a Γ-ideal of S.
(iv) $STX \cap XTS$ is a Γ-quasi ideal of S.

2.2.4 Fuzzy set and intuitionistic fuzzy set

2.2.4.1. Definition. [2] A fuzzy set in a nonempty set X is a function $\mu : X \to [0, 1]$, where $\mu(x)$ denotes the degree of membership of $x \in X$ in $[0, 1]$.

2.2.4.2. Definition. [2] Let μ, ν be two fuzzy sets in X then μ is called a fuzzy subset of ν, written as $\mu \leq \nu$ if, $\mu(x) \leq \nu(x)$, for all $x \in X$.

2.2.4.3. Definition. [2] Let μ and ν be two fuzzy sets in X then their union and intersection is also a fuzzy set defined as

$$(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\}, \text{ for all } x \in X$$

and

$$(\mu \cap \nu)(x) = \min\{\mu(x), \nu(x)\}, \text{ for all } x \in X.$$

Denote the maximum by \vee and the minimum by \wedge. Then $(\mu \cup \nu)(x) = \mu(x) \vee \nu(x)$ and $(\mu \cap \nu)(x) = \mu(x) \wedge \nu(x)$.

2.2.4.4. Definition. [70] An intuitionistic fuzzy set (briefly, IFS), A in a nonempty set X is an object having the form $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$, where the functions, $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denotes the degree of membership (namely, $\mu_A(x)$) and the degree of non-membership (namely, $\gamma_A(x)$), for each $x \in X$ to the set A respectively, and $0 \leq \mu_A(x) + \gamma_A(x) \leq 1$.

For simplicity, we shall use the notation $A = (\mu_A, \gamma_A)$ for an intuitionistic fuzzy set $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$ in X.

2.2.4.5. Definition. [70] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be two intuitionistic fuzzy sets in X then A is called an intuitionistic fuzzy subset of B, written as $A \subseteq B$ if, $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$, for all $x \in X$.

2.2.4.6. Definition. [70] Let \(A = (\mu_A, \gamma_A) \) and \(B = (\mu_B, \gamma_B) \) be two intuitionistic fuzzy sets in \(X \) then their union and intersections is defined as

\[
A \cup B = \{ (x, \max(\mu_A(x), \mu_B(x)), \min(\gamma_A(x), \gamma_B(x))) \mid x \in X \}
\]

\[
A \cap B = \{ (x, \min(\mu_A(x), \mu_B(x)), \max(\gamma_A(x), \gamma_B(x))) \mid x \in X \}.
\]
CHAPTER 3

BI Γ-TERNARY SEMIGROUP AND ITS BI Γ-IDEALS

In this chapter the concept of biΓ-ternary semigroup is given. The notions of biΓ-ternary subsemigroup, biΓ-left (right, lateral) ideals, biΓ-quasi and biΓ-bi-ideals of this structure are defined and characterized. Moreover, the regular biΓ-ternary semigroups and their properties are studied in terms of biΓ-ideals.

3.1 Bi Γ-ternary semigroup

As a generalization of semigroup and ternary semigroup, Sen [1], introduced the notion of Γ-semigroup and developed a theory on Γ-semigroups. Many classical notions of semigroups and ternary semigroups have been extended to Γ-semigroups.

We have inspired from the concept of ternary semigroup and Γ-semigroup and obtained a new algebraic structure called biΓ-ternary semigroup. The word biΓ is used due to the double appearance of the nonempty set Γ in the structure. Here, the notions of biΓ-ternary subsemigroup, biΓ-left (right, lateral) ideal, biΓ-quasi ideal and biΓ-bi-ideal are presented with the characterization of regular biΓ-ternary semigroup by these ideals.

3.1.1 Basic definitions and examples

Some basic definitions of biΓ-ternary semigroup and its substructures are defined in this section.
3.1.1.1. Definition. Let \(T = \{ x, y, z, u, \ldots \} \) and \(\Gamma = \{ \alpha, \beta, \gamma, \delta, \ldots \} \) be two nonempty sets and \((\cdot) : T \times \Gamma \times T \times \Gamma \times T \to T \) be a mapping. Then we call \(T \) as a bi\(\Gamma \)-ternary semigroup if it satisfies,

(i) \((x\alpha y\beta z) \in T\)

(ii) \((x\alpha y\beta z)\gamma u \delta v = x\alpha (y\beta z\gamma u)\delta v = x\alpha y\beta (z\gamma u \delta v)\),

for all \(x, y, z, u, v \in T \) and \(\alpha, \beta, \gamma, \delta \in \Gamma \).

The following examples shows the existence of above defined structures.

3.1.1.2. Example. Let \(T = \{ 4n + 3, n \in \mathbb{N} \} \) and \(\Gamma = \{ 4n + 1, n \in \mathbb{N} \} \). Define the mapping \((\cdot) : T \times \Gamma \times T \times \Gamma \times T \to T \) as \((x\alpha y\beta z) = x + \gamma + y + \delta + z\), for \(x, y, z \in T \) and \(\gamma, \delta \in \Gamma \). Then

\[
(x\alpha y\beta z) &= x + \alpha + y + \beta + z \\
&= 4n_1 + 3 + 4n' + 1 + 4n_2 + 3 + 4n'' + 1 + 4n_3 + 3 \\
&= 4(n_1 + n' + n_2 + n'' + n_3 + 2) + 3 \\
&= 4n + 3,
\]

(where, \(n = n_1 + n' + n_2 + n'' + n_3 + 2 \in \mathbb{N} \), for \(n_1, n', n_2, n'', n_3 \in \mathbb{N} \))

Also it is clear that \((x\alpha y\beta z)\gamma u \delta v = x\alpha (y\beta z\gamma u)\delta v = x\alpha y\beta (z\gamma u \delta v)\), for all \(x, y, z, u, v \in S \) and \(\alpha, \beta, \gamma, \delta \in \Gamma \). Hence \(T \) is a bi\(\Gamma \)-ternary semigroup.

3.1.1.3. Example. Let \(T = \{ 2n, n \in \mathbb{N} \}, \Gamma = \{ \alpha, \beta, \gamma, \ldots \} \). Define \((x\alpha y\beta z) = x + y + z\) for all \(x, y, z \in T \) and \(\alpha, \beta \in \Gamma \). Then \(T \) is a bi\(\Gamma \)-ternary semigroup.

3.1.1.4. Remark. Every \(\Gamma \)-semigroup is a bi\(\Gamma \)-ternary semigroup.

The following example shows that the converse of above Remark is not true.

3.1.1.5. Example. Let \(T = \mathbb{Z}^- \) and \(\Gamma \subseteq \mathbb{Z}^+ \). Define \((x\alpha y\beta z)\), for \(x, y, z \in T \) and \(\alpha, \beta \in \Gamma \) as the usual multiplication of integers. Then for \(x, y, z \in T \) and \(\alpha, \beta \in \Gamma \), \((x\alpha y\beta z) \in T \) and \((x\alpha y\beta z)\gamma u \delta v = x\alpha (y\beta z\gamma u)\delta v = x\alpha y\beta (z\gamma u \delta v)\), for all \(x, y, z, u, v \in T \) and \(\alpha, \beta, \gamma, \delta \in \Gamma \). Hence \(T \) is a bi\(\Gamma \)-ternary semigroup. Now for \(x, y \in T \) and \(\alpha \in \Gamma \), \(x\alpha y \notin T \). Which shows that \(T \) is not a \(\Gamma \)-semigroup.

3.1.1.6. Example. Let \(T = i\mathbb{R} \) where, \(i = \sqrt{-1} \) and \(\mathbb{R} \) is the set of real numbers. If \(\Gamma \subseteq \mathbb{R} \) and \((x\alpha y\beta z)\) is defined as the usual multiplication of complex numbers. Then,
for \(x, y, z \in T\) there exist \(a, b, c \in \mathbb{R}\) so that \(x = ai, y = bi\) and \(z = ci\). For, \(\alpha, \beta \in \Gamma\),

\[
(x \alpha y \beta z) = a_i \alpha b_i \beta c_i = ab \alpha \beta \gamma \delta = -abc \alpha \beta \in R,
\]

where \(r = -abc \alpha \beta \in R\).

Also, \((x \alpha y \beta z) \gamma \delta \varepsilon = x \alpha (y \beta z \gamma \delta) \varepsilon = x \alpha y \beta (z \gamma \delta \varepsilon)\),

for all \(x, y, z, \gamma, \delta, \varepsilon \in T\) and \(\alpha, \beta, \gamma, \delta \in \Gamma\). Hence \(T\) is a bi\(\Gamma\)-ternary semigroup. But, for \(x = ai, y = bi \in T = i \mathbb{R}\) and \(\alpha \in \Gamma\), \(x \alpha y = a_i \alpha b_i = ab \alpha^2 = -abc \in T = i \mathbb{R}\).

This shows that \(T\) is not a \(\Gamma\)-semigroup.

3.1.1.7. Definition. Let \(T\) be a bi\(\Gamma\)-ternary semigroup and \(A\) be a nonempty subset of \(T\). Then \(A\) is called a bi\(\Gamma\)-ternary subsemigroup of \(T\) if \(A \Gamma A \Gamma A \subseteq A\).

3.1.1.8. Example. Let \(T = \mathbb{N} = \{1, 2, 3, \ldots \}\) and \(\Gamma = \{4n + 2, n \in \mathbb{N}\}\).

Define \((x \alpha y \beta z) = x + \alpha + y + \beta + z\). Under this operation \(T\) is a bi\(\Gamma\)-ternary semigroup.

Let \(A = \{4n, n \in \mathbb{N}\}\) be a nonempty subset of \(T\). For \(a, b, c \in A\) and \(\alpha, \beta \in \Gamma\),

\[
(a \alpha b \beta c) = a + \alpha + b + \beta + c
\]

\[
= 4n_1 + 4n_1' + 2 + 4n_2 + 4n_2'' + 2 + 4n_3
\]

\[
= 4(n_1 + n_1' + n_2 + n_2'' + n_3 + 1) = 4n \in A
\]

Where, \(n = n_1 + n_1' + n_2 + n_2'' + n_3 + 1 \in \mathbb{N}\), for \(n_1, n_1', n_2, n_2'', n_3 \in \mathbb{N}\).

This implies that \(A \Gamma A \Gamma A \subseteq A\). Hence \(A\) is a bi\(\Gamma\)-ternary subsemigroup.

3.1.1.9. Definition. Let \(T\) be a bi\(\Gamma\)-ternary semigroup and \(A\) be a nonempty subset of \(T\). Then \(A\) is called a bi\(\Gamma\)-left ideal of \(T\) if \(T T T T A \subseteq A\).

3.1.1.10. Definition. Let \(T\) be a bi\(\Gamma\)-ternary semigroup and \(A\) be a nonempty subset of \(T\). Then \(A\) is called a bi\(\Gamma\)-right ideal of \(T\) if \(A \Gamma \Gamma \Gamma T \subseteq A\).

3.1.1.11. Definition. Let \(T\) be a bi\(\Gamma\)-ternary semigroup and \(A\) be a nonempty subset of \(T\). Then \(A\) is called a bi\(\Gamma\)-lateral ideal of \(T\) if \(T \Gamma A \Gamma T \subseteq A\).

3.1.1.12. Definition. Let \(T\) be a bi\(\Gamma\)-ternary semigroup and \(A\) be a nonempty subset of \(T\). Then \(A\) is called a bi\(\Gamma\)-ideal of \(T\) if it is a bi\(\Gamma\)-left, a bi\(\Gamma\)-right and a bi\(\Gamma\)-lateral ideal of \(T\).

3.1.1.13. Example. Let \(T = \{2n, n \in \mathbb{N}\}, \Gamma = \{\alpha, \beta, \gamma, \ldots\}\) and \(A = \{4n, n \in \mathbb{N}\}\).
Define, \((x\alpha y\beta z) = 2x + 2y + z\), for, \(x, y, z \in T\) and \(\alpha, \beta \in \Gamma\). Then \(T\) is a bi\(\Gamma\)-ternary semigroup. Let \(x, y \in T, a \in A\) and \(\alpha, \beta \in \Gamma\), then \(x = 2n_1, y = 2n_2\) and \(a = 4n'\) for \(n_1, n_2, n' \in \mathbb{N}\), we have

\[
(x\alpha y\beta a) = 2x + 2y + a = 2(2n_1 + 2n_2) + 4n' = 4(n_1 + n_2 + n') = 4n \in A,
\]

where, \(n = n_1 + n_2 + n' \in \mathbb{N}\). This implies that \(TTTTA \subseteq A\). Hence \(A\) is a bi\(\Gamma\)-left ideal of \(T\). Now, consider

\[
(a\alpha x\beta y) = 2a + 2x + y = 8n' + 4n_1 + 2n_2 = 4(2n' + n_1) + 2n_2.
\]

Taking \(n' = n_1 = n_2 = 1\), \(\Rightarrow (a\alpha x\beta y) = 4(2.1 + 1) + 2.1 = 14 \notin A\).

This implies that \(\Gamma TTTT \notin A\). Similarly we can show that \(TT\Gamma T \notin A\). Hence \(A\) is neither a bi\(\Gamma\)-right nor a bi\(\Gamma\)-lateral ideal of \(T\).

3.1.1.14. Remark. If we define, \((x\alpha y\beta z) = x + 2y + 2z\) and \((x\alpha y\beta z) = 2x + y + 2z\) respectively, then \(A\) is a bi\(\Gamma\)-right and a bi\(\Gamma\)-lateral ideal of \(T\).

3.1.1.15. Example. In the above example if we define, \((x\alpha y\beta z) = 2x + 2y + 2z\), then \(A\) is a bi\(\Gamma\)-left, a bi\(\Gamma\)-right and a bi\(\Gamma\)-lateral ideal of \(T\). Hence \(A\) is a bi\(\Gamma\)-ideal of \(T\).

3.1.2 Bi\(\Gamma\)-ideals of bi\(\Gamma\)-ternary semigroup

Let \(T\) denotes a bi\(\Gamma\)-ternary semigroup then we shall use \(B\Gamma TS(s), B\Gamma TSS(s), B\Gamma LI(s), B\Gamma RI(s), B\Gamma MI(s)\) and \(B\Gamma I(s)\) for bi\(\Gamma\)-ternary semigroup(s), bi\(\Gamma\)-ternary subsemigroup(s), bi\(\Gamma\)-left ideal(s), bi\(\Gamma\)-right ideal(s), bi\(\Gamma\)-lateral ideal(s) and bi\(\Gamma\)-ideal(s) of a bi\(\Gamma\)-ternary semigroup respectively.

3.1.2.1. Proposition. Let \(T\) be a \(B\Gamma TS\) and \(X\) be a nonempty subset of \(T\). Then

(i) \(T\Gamma TTX\) is a \(B\Gamma LI\) of \(T\).

(ii) \(X\Gamma TTT\) is a \(B\Gamma RI\) of \(T\).

(iii) \(TTX\Gamma T \cup TTTX\Gamma T\) is a \(B\Gamma MI\) of \(T\).

Proof. Let \(T\) be a \(B\Gamma TS\) and \(X\) be a nonempty subset of \(T\).

(i) Let \(L = T\Gamma TTX\) and \(z \in TTTT\Gamma L\) then \(z = t_1\alpha_1 t_2 \alpha_2 a\) for some \(t_1, t_2 \in T, \alpha_1, \alpha_2 \in \Gamma\) and \(a \in L\). Since, \(a \in L = T\Gamma TTX\) implies that \(a = t_3 \alpha_3 t_4 \alpha_4 x_1\)
for $t_3, t_4 \in T, \alpha_3, \alpha_4 \in \Gamma$ and $x_1 \in X$. Then

$$z = t_1\alpha_1 t_2\alpha_2 a = t_1\alpha_1 t_2\alpha_2 (t_3\alpha_3 t_4\alpha_4 x_1) = t_1\alpha_1 (t_2\alpha_2 t_3\alpha_3 t_4)\alpha_4 x_1 = t_1\alpha_1 t_5\alpha_4 x_1, \text{ where } t_5 = t_2\alpha_2 t_3\alpha_3 t_4 \in T.$$

$$\in TTTT \times = L$$

$$\Rightarrow TTTT \subseteq L.$$

Hence, $L = TTTT \times$ is a BGLI of T.

(ii) Let $R = XTTTT$ and $z \in RTTTT$ then $z = r\alpha_1 t_1\alpha_2 t_2$ for some $t_1, t_2 \in T, \alpha_1, \alpha_2 \in \Gamma$ and $r \in R$. Since, $r \in R = XTTTT$ implies that $r = x_1\alpha_3 t_3\alpha_4 t_4$ for $t_3, t_4 \in T, \alpha_3, \alpha_4 \in \Gamma$ and $x_1 \in X$. Then

$$z = r\alpha_1 t_1\alpha_2 t_2 = (x_1\alpha_3 t_3\alpha_4 t_4)\alpha_1 t_1\alpha_2 t_2$$

$$= x_1\alpha_3 (t_3\alpha_4 t_4 \alpha_1 t_1)\alpha_2 t_2$$

$$= x_1\alpha_3 t_5\alpha_2 t_2, \text{ where } t_5 = t_3\alpha_4 t_4 \alpha_1 t_1 \in T.$$

$$\in XTTTT = R$$

$$\Rightarrow RTTT \subseteq R.$$

Hence, $R = XTTTT$ is a BGLI of T.

(iii) Let $M = TTXTT \cup TTTT XTT \Gamma T$ and $z \in M$. Then $z \in TTXTT$ or $z \in TTTT XTT \Gamma T$.

If $z \in TTXTT$ then $z = t_1\alpha_1 x_1\alpha_2 t_2$ for some $t_1, t_2 \in T, \alpha_1, \alpha_2 \in \Gamma$ and $x_1 \in X$. Now, for any $t_3, t_4 \in T, \alpha_3, \alpha_4 \in \Gamma$

$$t_3\alpha_3 t_4 = t_3\alpha_3 (t_1\alpha_1 x_1\alpha_2 t_2)\alpha_4 t_4$$

$$= t_3\alpha_3 t_1\alpha_1 (x_1\alpha_2 t_2 \alpha_4 t_4)$$

$$\in TTTT XTTTT.$$

$$\Rightarrow t_3\alpha_3 t_4 \in TTXTT \cup TTTT XTTTT = M$$

$$\Rightarrow TTTT M \subseteq M.$$
If $z \in \Sigma T T T X T T T \Gamma T$ then $z = t_1a_1t_2a_2x_1a_3t_3a_4t_4$ for some $t_1, t_2, t_3, t_4 \in T, a_1, a_2, a_3, a_4 \in \Gamma$ and $x_1 \in X$. Now, for any $t_5, t_6 \in T, a_5, a_6 \in \Gamma$

$$t_5a_5z_6a_6t_6 = t_5a_5(t_1a_1t_2a_2x_1a_3t_3a_4t_4)a_6t_6$$

$$= (t_5a_5t_1a_1t_2)a_2x_1a_3(t_3a_4t_4a_6t_6)$$

$$\in TTXX\Gamma T$$

$$\Rightarrow t_5a_5z_6a_6t_6 \in TTXX\Gamma T \cup TTXTX\Gamma TT = M$$

$$\Rightarrow TTMM\Gamma T \subseteq M.$$

Hence, $M = TTXX\Gamma T \cup TTXTX\Gamma TT$ is $B\Sigma \Gamma M I$ of T

Alternative proof.

(i) $TTXX\Gamma X$ is a $B\Sigma \Gamma L I$ of T.

Let $L = TTXX\Gamma X$ then

$$T T T T L = T T T T (T T T T X)$$

$$= T T T T T T T X$$

$$\subseteq T T T T X = L$$

$$\Rightarrow T T T T L \subseteq L.$$

Hence, $L = TTXX\Gamma X$ is $B\Gamma L I$ of T.

(ii) $XX\Gamma TT T$ is a $B\Gamma R I$ of T.

Let $R = X\Gamma TT T$ then

$$R\Gamma TT T = (X\Gamma TT T)\Gamma TT T$$

$$= X\Gamma TT T TT T T$$

$$\subseteq X\Gamma TT T = R$$

$$\Rightarrow X\Gamma TT T \subseteq R.$$

Hence, $R = X\Gamma TT T$ is a $B\Gamma R I$ of T.

(iii) $TTXX\Gamma T \cup TTXTX\Gamma TT$ is a $B\Sigma \Gamma M I$ of T.

Let \(M = T\Gamma X\Gamma T \cup TT\Gamma X\Gamma T \) then

\[
T\Gamma M\Gamma T = T\Gamma (T\Gamma X\Gamma T \cup TT\Gamma X\Gamma T)\Gamma T
\]
\[
= (TT\Gamma X\Gamma T \cup TT\Gamma X\Gamma T)\Gamma T
\]
\[
= TT\Gamma X\Gamma T \cup TT\Gamma X\Gamma T\Gamma T
\]
\[
\subseteq TT\Gamma X\Gamma T \cup TT\Gamma X\Gamma T, \text{ since } TT\Gamma X\Gamma T \subseteq T.
\]
\[
= TT\Gamma X\Gamma T \cup TT\Gamma X\Gamma T = M
\]
\[
\Rightarrow T\Gamma M\Gamma T \subseteq M.
\]

Hence, \(M = T\Gamma X\Gamma T \cup TT\Gamma X\Gamma T \) is \(B\Gamma MI \) of \(T \). \(\square \)

3.1.2.2. Lemma

Let \(T \) be a \(B\Gamma TS \), for any \(t \in T \), define,

(i) \((t)_1 = \{t\} \cup TT\Gamma T \)

(ii) \((t)_r = \{t\} \cup t\Gamma TT \)

(iii) \((t)_m = \{t\} \cup TT\Gamma T \cup TT\Gamma t \Gamma TT \)

(iv) \((t) = \{t\} \cup TT\Gamma T \cup t\Gamma TT \cup TT\Gamma t \Gamma TT \cup TT\Gamma T \Gamma TT \).

Then \((t)_1, (t)_r, (t)_m \) and \((t) \) are \(B\Gamma LI, B\Gamma RI, B\Gamma MI \) and \(B\Gamma I \) of \(T \) respectively.

Proof. Let \(T \) be a \(B\Gamma TS \), for any, \(t \in T \),

(i) Since, \((t)_1 = \{t\} \cup TT\Gamma T \) then

\[
T\Gamma TT(t)_1 = T\Gamma TT(t \cup TT\Gamma t) = TT\Gamma T \cup TT\Gamma TT\Gamma T \\
\subseteq TT\Gamma T \cup TT\Gamma T = TT\Gamma T \subseteq \{t\} \cup TT\Gamma t = (t)_1
\]

\[
\Rightarrow T\Gamma TT(t)_1 \subseteq (t)_1.
\]

Hence, \((t)_1 \) is \(B\Gamma LI \) of \(T \).

(ii) Since, \((t)_r = \{t\} \cup t\Gamma TT \) then

\[
(t)_r\Gamma TT = \{(t) \cup t\Gamma TT\}\Gamma TT = t\Gamma TT \cup t\Gamma TT\Gamma TT \\
\subseteq t\Gamma TT \cup t\Gamma TT \quad \text{(since, } TT\Gamma T \subseteq T) \\
= t\Gamma TT \subseteq \{t\} \cup t\Gamma TT = (t)_r
\]

\[
\Rightarrow (t)_r\Gamma TT \subseteq (t)_r.
\]
Hence, \((t)_m\) is $B\Gamma RI$ of \(T\).

(iii). Since, \((t)_m = \{t\} \cup T\Gamma t\Gamma T \cup TT\Gamma T\Gamma TT\). Then

\[
TT\Gamma(t)_m\Gamma T = TT\Gamma(\{t\} \cup T\Gamma t\Gamma T \cup TT\Gamma T\Gamma TT)\Gamma T \\
= TT\Gamma t\Gamma T \cup TT\Gamma T\Gamma TT \cup TT\Gamma T\Gamma TT \\
\subseteq TT\Gamma T \cup TT\Gamma T\Gamma TT \cup TT\Gamma T\Gamma TT \text{ (since, } TT\Gamma TT \subseteq T) \\
= TT\Gamma T \cup TT\Gamma T\Gamma TT \\
\subseteq \{t\} \cup TT\Gamma T \cup TT\Gamma T\Gamma TT = (t)_m
\]

\[
\Gamma T(t)_m\Gamma T \subseteq (t)_m.
\]

Hence, \((t)_m\) is $B\Gamma MI$ of \(T\).

(iv) \((t) = \{t\} \cup TTTTTt \cup ttTTTTT \cup TTt\Gamma T \cup TTTTT\Gamma TT\). As,

\[
TTTT(T) = TTTT(t \cup TTTTTt \cup TTTTTT \cup TTt\Gamma T \cup TTTTT\Gamma TT) \\
= TTTT(t \cup TTTTTT \cup TTTTT\Gamma TT \cup TTTTT\Gamma TT \\
\subseteq TTTT(t \cup TTTTT \cup TTTTT\Gamma TT \cup TTTTT\Gamma TT \\
= TTTT(t \cup TTTTT \cup TTTTT\Gamma TT \\
\subseteq \{t\} \cup TTTTTt \cup t\Gamma TT \cup TTt\Gamma T \cup TTTTT\Gamma TT = (t) \\
\Rightarrow TTTT \subseteq (t).
\]

This implies that \((t)\) is $B\Gamma LI$. Similarly, we can show that it is $B\Gamma RI$. Now consider,

\[
TT(t)\Gamma T = TT(t \cup TTTTTt \cup TTTTT \cup TTt\Gamma T \cup TTTTT\Gamma TT)\Gamma T \\
= TTt\Gamma T \cup TTTTTt\Gamma T \cup TTt\Gamma TT \cup TTTTT\Gamma TT \\
\subseteq TTt\Gamma T \cup TTTTTt\Gamma T \cup TTt\Gamma TT \cup TTTTT\Gamma TT \\
= TTt\Gamma T \cup TTTTTt\Gamma T \\
\subseteq ttTTTTt \cup t\Gamma TT \cup TTt\Gamma T \cup TTTTT\Gamma TT = (t) \\
\Rightarrow TT(t)\Gamma T \subseteq (t).
\]

This implies that \((t)\) is $B\Gamma MI$ of \(T\). Hence \((t)\) is $B\Gamma I$ of \(T\).}

\[\square\]
3.1.2.3. Remark. The ideals $(t)_l, (t)_m, (t)_r, (t)$ are called principal biΓ-left, biΓ-right, biΓ-lateral and biΓ-ideal of T generated by t. Note that for any $a \in A \subseteq T$, $\bigcup_{a \in A} (a)_l = (A)_l$, $\bigcup_{a \in A} (a)_m = (A)_m$, $\bigcup_{a \in A} (a)_r = (A)_r$ and $\bigcup_{a \in A} (a) = (A)$ are biΓ-left ideal, biΓ-right ideal, biΓ-lateral ideal and biΓ-ideal of T generated by A.

3.1.2.4. Lemma. Let T be a biΓTS then,

(i) The arbitrary intersection of biΓTS$S(s)$ of T is again a biΓTSS of T.

(ii) The arbitrary intersection of biΓLI(s) (biΓRI(s), biΓMI(s), biΓI(s)) of T is a biΓLI (biΓRI, biΓMI, biΓI) of T.

Proof. Let T be a biΓTS.

(i) Let $\{A_i, i \in I\}$ be a collection of biΓ-ternary subsemigroups of T, then $A_i \Gamma A_i \Gamma A_i \subseteq A_i$, for all $i \in I$. Also $\cap_{i \in I} A_i \subseteq A_i$ for all $i \in I$ then,

$$\bigcap_{i \in I} (A_i) \Gamma \left(\bigcap_{i \in I} A_i \right) \Gamma \left(\bigcap_{i \in I} A_i \right) \subseteq A_i \Gamma A_i \Gamma A_i \subseteq A_i, \text{ for all } i \in I.$$

$$\Rightarrow \left(\bigcap_{i \in I} A_i \right) \Gamma \left(\bigcap_{i \in I} A_i \right) \Gamma \left(\bigcap_{i \in I} A_i \right) \subseteq \bigcap_{i \in I} A_i.$$

Hence $\bigcap_{i \in I} A_i$ is a biΓ-ternary subsemigroup of T.

(ii) Let $\{L_i, i \in I\}$ be a collection of biΓ-left ideals of T then $TTTTL_i \subseteq L_i$, for all $i \in I$. Also $\cap_{i \in I} L_i \subseteq L_i$ for all $i \in I$ then,

$$TTTT \left(\bigcap_{i \in I} L_i \right) \subseteq TTTTL_i \subseteq L_i, \text{ for all } i \in I.$$

$$TTTT \left(\bigcap_{i \in I} L_i \right) \subseteq L_i, \text{ for all } i \in I.$$

$$\Rightarrow TTTT \left(\bigcap_{i \in I} L_i \right) \subseteq \bigcap_{i \in I} L_i.$$

Hence $\bigcap_{i \in I} L_i$ is a biΓ-left ideal of T. Similarly, we can prove for biΓ-right and biΓ-lateral ideal and biΓ-ideal of T.

3.1.3 BiΓ-quasi and biΓ-bi-ideals of biΓ-ternary semigroup

3.1.3.1. Definition. A nonempty subset Q of a biΓ-ternary semigroup T is called a biΓ-quasi-ideal of T if

$$QTTTT \bigcap TTQTT \bigcap TTTTQ \subseteq Q \text{ and}$$
$QTTT \cap TTTQTTT \cap TTQTTQ \subseteq Q$.

3.1.3.2. Definition. A nonempty subset B of a bi-Γ-ternary semigroup T is called a bi-Γ-bi-ideal of T if

(i) B is a bi-Γ-ternary subsemigroup of T.
(ii) $BTTTBTGT \subseteq B$.

We will write $B\Gamma QI(s)$ and $B\Gamma BI(s)$ for bi-Γ-quasi-ideal(s) and bi-Γ-bi-ideal(s), respectively.

3.1.3.3. Proposition. Let T be a $B\Gamma TS$. Then every $B\Gamma QI$ of T is a $B\Gamma TSS$ of T.

Proof. We suppose that Q is a bi-Γ-quasi-ideal of T. Since

$$Q\Gamma Q\Gamma Q \subseteq QTTT, \quad Q\Gamma Q\Gamma Q \subseteq TTQTT \quad \text{and} \quad Q\Gamma Q\Gamma Q \subseteq TTTTQ.$$

$$\Rightarrow Q\Gamma Q\Gamma Q \subseteq QTTT \cap TTQTT \cap TTTTQ \subseteq Q.$$

$$\Rightarrow Q\Gamma Q\Gamma Q \subseteq Q, \quad \text{since Q is bi-Γ-quasi-ideal.}$$

Hence, Q is bi-Γ-ternary subsemigroup of T. \hfill \Box

3.1.3.4. Proposition. The arbitrary intersection of $B\Gamma QI(s)$ of T is a $B\Gamma QI$ of T.

Proof. The proof is simple and can be done by routine calculations so omitted. \hfill \Box

3.1.3.5. Remark. Note that a $B\Gamma LI (B\Gamma RI, B\Gamma MI)$ of T is also $B\Gamma QI$ of T but any $B\Gamma QI$ of T may not be a $B\Gamma LI (B\Gamma RI, B\Gamma MI)$ of T, so we have following lemma.

3.1.3.6. Lemma. Let T be a $B\Gamma TS$. Then every $B\Gamma LI (B\Gamma RI, B\Gamma MI)$ of T is a $B\Gamma QI$ of T.

Proof. Let L be a bi-Γ-left ideal of T, then $T \Gamma TTT \subseteq L$, implies that

$$LTTT \cap TTTLTT \cap TTTT \subseteq L,$$

and

$$LTTT \cap TTTLTTTT \cap TTTT \subseteq L.$$}

Hence L is bi-Γ-quasi-ideal of T. Other cases are similar. \hfill \Box

3.1.3.7. Lemma. A nonempty subset Q of T is a $B\Gamma QI$ of T if and only if it is an intersection of a $B\Gamma LI$, a $B\Gamma MI$ and a $B\Gamma RI$ of T.
\textbf{Proof.} Let \(L, M \), and \(R \) be the bi\(\Gamma \)-left, bi\(\Gamma \)-lateral and bi\(\Gamma \)-right ideals of \(T \). Let
\[Q = R \cap M \cap L, \]
then
\begin{align*}
QTTT \cap TTQ \cap TTQ & = (R \cap M \cap L) \cap TT \\
& \subseteq R \cap TT \\
& \subseteq R \cap M \cap L, \ \text{since,} \ L, M, \ \text{and} \ R, \ \text{are bi} \Gamma \text{-left, lateral and right ideals.} \\
& = Q.
\end{align*}

Similarly, \(QTTT \cap TTQ \cap TTQ \cap TT \cap TT \subseteq Q \). Hence \(Q \) is a bi\(\Gamma \)-quasi-ideal of \(T \).

Conversely, let \(Q \) be a bi\(\Gamma \)-quasi-ideal of \(T \). For any \(q \in Q \), \((q)_l, (q)_m, (q)_r \), be the bi\(\Gamma \)-left, bi\(\Gamma \)-lateral and bi\(\Gamma \)-right ideals of \(T \) generated by \(q \), then
\[q \in (q)_r \cap (q)_m \cap (q)_l \]
\[\cup_{q \in Q} \{ q \} \subseteq \cup_{q \in Q} (q)_r \cap \cup_{q \in Q} (q)_m \cap \cup_{q \in Q} (q)_l \\
Q \subseteq (q)_r \cap (q)_m \cap (q)_l.
\]

Since, \((Q)_l = Q \cup QTTT \), \((Q)_m = Q \cup TTQ \cap TT \cap TT \cap TT \) and \((Q)_r = Q \cup TT \Gamma Q \), then
\[(q)_r \cap (q)_m \cap (q)_l \]
\begin{align*}
& = (Q \cup QTTT) \cap (Q \cup TTQ \cap TT \cap TT) \cap Q \cup TT \cap TT \\
& = Q \cup (QTTT \cap TTQ \cap TT \cap TT) \cup (QTTT \cap TT \cap TT) \\
& \subseteq Q, \ \text{since} \ Q \ \text{is bi} \Gamma \text{-quasi-ideal of} \ T.
\end{align*}

This implies that \(Q = (q)_r \cap (q)_m \cap (q)_l \), where, \((Q)_r, (Q)_m, \) and \((Q)_l \) are bi\(\Gamma \)-left ideal, bi\(\Gamma \)-lateral ideal and a bi\(\Gamma \)-right ideal of \(T \). Hence the proof. \(\square \)

\textbf{3.1.3.8. Lemma.} Let \(T \) be a BI\(\Gamma \)TS and \(R_s, M_s, L_s \) be the smallest BI\(\Gamma \)RI, BI\(\Gamma \)MI, BI\(\Gamma \)LI of \(T \). Then \(R_s \cap M_s \cap L_s \) is the smallest BI\(\Gamma \)QI of \(T \).

\textbf{Proof.} Let \(R_s, M_s, L_s \) be the smallest BI\(\Gamma \)RI, BI\(\Gamma \)MI, BI\(\Gamma \)LI of \(T \). Then by Lemma 3.1.3.7, \(Q = R_s \cap M_s \cap L_s \) is BI\(\Gamma \)QI of \(T \). Now, we have to show that \(Q = R_s \cap M_s \cap L_s \) is smallest BI\(\Gamma \)QI of \(T \). Suppose that \(P \) be any other BI\(\Gamma \)QI of \(T \). Then \(PTTT \) is a BI\(\Gamma \)RI of \(T \) and \(PTTT \subseteq QTTT \subseteq R_s \) but \(R_s \) is smallest BI\(\Gamma \)RI of \(T \) so
REFERENCES

47. Ahsan, J., Saifullah, K. and Khan, M. F. Semigroups characterized by their

71. Atanassov, K. T. New operations defined over the intuitionistic fuzzy sets.

74. Hong, Y. and Jiang, C. Characterizing regular semigroups using intuitionistic fuzzy sets.

76. Ozturk, M. A., Ceven, Y. and Jun, Y. B. Intuitionistic fuzzy sets in semigroups.

77. Shabir, M., Arif, M. S., Khan, A. and Aslam, M. On intuitionistic fuzzy prime

78. Lekkoksung, S. Intuitionistic fuzzy bi-ideals of ternary semigroups.

79. Akram, M. Intuitionistic fuzzy points and ideals of ternary semigroups.

(s,t)- fuzzy ideals of ternary semigroups. *Indian Journal of Science and Technology*, 2013. 6(11): 5418-5428.

84. Davvaz, B. and Majumder, S. K. Atanassov’s intuitionistic fuzzy interior

