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ABSTRACT

Modern integrated circuits (ICs) are significant sources of undesired
electromagnetic wave. Therefore, characterization of chip-level emission is essential
to comply with EMC tests at the product level. A Gigahertz Transverse
Electromagnetic (GTEM) cell is a common test instrument used to measure IC
radiated emission and the test cost is relatively low. Regular IC radiated emission
measurements using GTEM tend to neglect some significant emission sources. Thus,
this research proposed an alternative methodology to perform field measurement of
the IC inside the GTEM cell in order to optimize the field measurements. This
research study also attempted analysis of the overall GTEM cell performance using
transmission line theory. An FPGA chip was adopted as the IC under test because of
its flexibility in configuration to any digital circuit. The investigations discovered
that the impact of the FPGA board supporting components and interconnection
cables can be significantly reduced with appropriate shielding and grounding. The
electric field predict a far distance from the FPGA chip was carried out based on the
dipole moment technique. In particular, the dipole moment model emphasizing the
tiny horizontal and vertical radiation elements inside the FPGA chip as Hertzian
antenna and small current loop. Equations to predict the horizontal and vertical
electric field were developed based on Hertzian antenna and small current loop
which relate the tiny radiation sources to electric and magnetic dipole moments. The
prediction was validated with 3-meter field measurements in a semi-anechoic
chamber. On top of that, a spiral-like pattern was developed to obtain a correction
factor for further improvement of the correlation between prediction and SAC
measurement. The results revealed that the correction factor effectively reduced the
gap between the prediction and measurement fields and boosted the correlation
coefficient by 44%. The difference of peak values also has limited to less than 10dB

after correction. These results suggest a promising finding for a future EMI test of
ICs with a cheaper GTEM cell.
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ABSTRAK

Litar bersepadu (IC) moden adalah sumber penting menyumbang kepada
gelombang electromagnet yang tidak diingini. Oleh sebab ini, penyifatan
pengeluaran peringkat cip adalah penting untuk mematuhi ujian EMC di peringkat
produk. Sel elektromagnetik melintang gigahertz (GTEM) ialah satu alatan yang
biasa digunakan untuk mengukur medan IC yang telah dipancarkan dan kos ujian
adalah agak murah. Satu ujian mengukur pancaran medan IC biasa yang dilakukan
dengan mengapit papan ujian IC di dinding sel GTEM, yang hamper mengabaikan
beberapa sumber pengeluaran penting. Oleh itu, kajian ini telah mencadangkan satu
keadah alternatif untuk melaksanakan pengukuran medan IC di dalam sel GTEM
untuk mengoptimakan pengukuran medan. Kajian manganalisa prestasi keseluruhan
sel GTEM menggunakan teori talian penghantaran. Cip FPGA telah dipilih sebagai
peranti dalam ujian kerana ia fleksibe ditatarajah dengan sebarang litar berdigit.
Penyiasatan menemui bahawa kesan komponen sokongan papan FPGA dan kabel
saling sambung boleh dikurangkan melalui perisaian dan pembumian yang sesuai.
Sinaran medan elektrik sepadan pada jarak jauh cip FPGA diramal berasaskan teknik
momen dwikutub. Khususnya, model momen dwikutub mewakili sumber pancaran
cip yang kecil mendatar dan menegak sebagai antena Hertzian dan gelung arus kecil.
Persamaan untuk meramal medan elektrik mendatar dan menegak diterbit daripada
antena Hertzian dan gelung arus kecil, dimana sumber pancaran ruas kecil dikaitkan
dengan momen dwikutub elektrik dan magnetik. Ramalan ini telah disahkan
menggunakan ukuran SAC 3 meter. Untuk penambahbaikan, satu corak pusaran
dibentukkan untuk membangun satu faktor pembetulan bagi tujuan meningkatkan
lolerasi antara ramalan dan ukuran SAC. Keputusan mendedahkan bahawa faktor
pembetulan adalah berkesan untuk mengurangkan jarak antara medan ramalan dan
ukuran dan meningkatkan pekali kolerasi sebanyak 44%. Perbezaan dalam nilai-nilai
puncak selepas pembetulan juga telah diambil kira bawah 10dB. Hasil keputusan ini

mencadangkan satu pencarian yang menjanjikan satu ujian EMI IC masa hadapan
dengan sel GTEM yang lebih murah.
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CHAPTER 1

INTRODUCTION

1.1 General

The electromagnetic compatibility (EMC) of electronic devices is defined as the
ability of the device to operate in its own electromagnetic (EM) environment without
generating and propagating any excessive EM wave and/or suffering degradation
from external electromagnetic interference (EMI) or radio frequency interference
(RFI). In general, EMI is an unintentional EM disturbance which may degrade the
performance of an electronic device or causes malfunction of the device. Any
electronic device must not be susceptible to EMI. This protects correct operation of
the devices from spurious emissions such as lightning strikes, electromagnetic pulses
(EMP), and the absorption of EMI. The concept is applicable for devices in different
levels including system, board, or component levels.

Modern electronic appliances use integrated circuits (ICs) for signal processing
due to the benefits of smaller size and lower development cost. An IC, which is also
known as a chip or microchip, is a semiconductor device fabricated with thousands
or millions of tiny resistors, capacitors and transistors. An IC is considered a
miniature set of electronic circuits fabricated on semiconductor materials, such as
silicon. In the semiconductor industry, advanced process integration technology and
the introduction of new packaging technology at chip scale realized the production of
denser ICs with a higher number of I/Os that can operate at a higher frequency. As a
result, the IC these days most likely has become a significant noise source that causes
EMC problems in electronic devices [1, 2].

A Field Programmable Gate Array (FPGA) chip is a programmable IC that

comprises prebuilt programmable logic blocks and reconfigurable interconnects.



Reconfigurable interconnects can be hard-wired to connect different logic blocks
together for the execution of any desired digital logic function. The flexibility and
rapid prototyping capabilities of the FPGA chip have provided an excellent solution
to reach time-to-market constraints in product development, as well as cutting down
non-recurring expenses (NREs) cost for the ICs design industry from the beginning,
These are the uniqueness of the FPGA chip and why it has been increasingly adopted
to replace custom application-specific integrated circuits (ASICs) instead, as
processors for signal processing and control applications. Since the invention of
programmable technology, its density has grown dramatically from a simple
programmable chip into a high density FPGA chip [3]. Therefore, the FPGA chip as
well as the modern IC eventually became an ultimate source of EMI that may
generate excessive disturbance to interfere with functionality of nearby components
or devices [4].

Over the years, EMI concerns at the component level have gained great attention
among semiconductor producers [5]. This is due to growing demand by the end user
with respect to low emission and high immunity device towards EM disturbance,
especially when engaging safety implications in automotive and consumer
electronics applications [6]. In particular, the Society of Automotive Engineers has
introduced standard SAE J1752/3 [7] for measuring the EM radiation from an IC in
1995. During the following year, the International Electrotechnical Commission
(IEC) published standard IEC 61967-2 [8] for the similar purpose. Both standards
define evaluation of an IC EM radiation by clamping the IC test printed circuit board
(PCB) to a wall port cut in the top or bottom of a TEM or wideband TEM (GTEM)
cell. The frequency range of the evaluation is 150 kHz to 1 GHz. Today, both
standards are widely accepted by industry and researchers to perform EM radiation
from an IC. As ICs require supporting components for operation, it is extremely
important to separate the radiation of the IC from its board environment. This is the
reason why the standards suggest evaluation by clamping on the cell wall.

The exploration of the IC EM behavior provides vital information for component
selection and design concerns in an early product development stage. This can
further help to shorten the product development process and avoid additional costs

for shielding or filtering prior compliant product EMC requirements.



1.2 Problem Statements

Modern ICs which engage in extraordinary complexity and clock frequency pose
vast challenges for product design engineers in developing electronic appliances to
comply with product EMC test. Inadequate information on the EM behavior of the
ICs is the key factor unworkable of EM simulation involving IC at the early PCB
design stage. Therefore, it has become a normal practice for designers to evaluate
radiated emission of their design at the end of product development. In this case, the
whole design cycle will be repeated if the test is unsuccessful. This happens to
require a longer design timeline and the rising of design costs. Evaluation the EM
behavior at IC level provides useful information that can be used to facilitate EMI in
the design process. With many sophisticated tools available, designers may utilize
the information provided to build a model for analyzing product performance at the
design level.

The International Standard IEC 61967-2 describes the characterization of ICs
radiated emissions using TEM/GTEM cell up to 1GHz. The test setup as described in
the standard is clamping the IC test board on a cell wall port so that the IC test board
becomes a part of the cell wall. This ensures that the IC is the only radiation source
in the measurement and the interference contributed by other noise sources can be
avoided. According to the test procedure in the IEC 61967-2, a wall port must be
developed at an exact location of a GTEM cell for the IC radiated emission test.
Inappropriate wall port integration not only affects the cell characteristics, but it also
will upset the accuracy of the measured voltage because it is closely related the
spacing between the septum and the test board.

The horizontal positioning of the IC has limited the device rotation in two
dimensions across its vertical axis. However, radiated emissions due to the vertical
polarization field is also significant [6, 7] and should not be neglected. It is therefore
destrable to develop an alternative method to evaluate IC radiated emissions, which
account for both horizontal and vertical polarization fields. By performing the
emission test inside the GTEM cell, unpredicted fabrication defects can be avoided.
In addition, the test device can freely rotate in three orthogonal dimensions for data
collection.

Having the IC radiated emission test performed inside the GTEM cell is
challenging because the IC requires supporting components for operation. So, the IC



under test must firstly be isolated from the disturbance due to the supporting
components so that reliability of the measured voltage is attained. The isolation can
be done using a metallic enclosure; however, there is a possibility whereby the cavity
might be excited as a radiator. Hence, the metallic enclosure must be set up carefully
to avoid this situation. The usage of external sources to exercise the IC remains the
most crucial matter in the effort to improve repeatability of emission measurement
[9). The unbalanced current on the outer layer of the connection cable causes
common-mode radiation and requires further studies for minimizing the cable effects
for emission tests in the GTEM cell .

In GTEM cell measurement, the electric field strength cannot be directly
measured instead its relative voltage of the field strength is evaluated. Hence, a
model must be developed for estimating the actual electric field strength. As the
internal structure of the IC is complex, it is difficult to evaluate all the corresponding
parameters throughout measurement technique. The dipole moment technique is a
unique approach which is suitable for this research. In this technique, an equivalent
dipole model is extracted from the GTEM measurement to represent the behavioral
aspect of the IC. The advantage is that the model can be constructed without
revealing the inner details of the actual circuit. The equivalent model is useful to
facilitate EMI of ICs in the design process. Thus, designers may use the model to

represent actual activities for analyzing their design alternatively via simulation.

1.3 Objectives of the Research

i. To establish a technique to perform radiated emission measurement of FPGA chip
inside a GTEM cell.

ii. To create an equivalent model to represent the radiation sources in the FPGA chip
based on dipole moment technique and GTEM cell measurement.

iii. To predict the electric fields of the FPGA using the equivalent model for
correlation with semi-anechoic chamber fields.

iv. To validate the predicted electric fields with the measurement in a semi-anechoic

chamber.
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