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ABSTRACT

Early detection of the breast cancer can decrease mortality rates. Screening
mammography is considered the most reliable method in early detection of breast
cancer. Due to the high volume of mammograms to be read by a physician, the
accuracy rate tends to decrease. Thus, automatic digital mammograms reading
becomes highly enviable, it is premised that the computer aided diagnosis systems
are required to assist physicians/radiologists to achieve high efficiency and
effectiveness. Meanwhile, recent advances in the field of image processing have
revealed that level of noise highly affect the mammogram images quality and
classification performance of the classifiers. Therefore, this study investigates the
functionality of wavelet de-noising filters for improving images quality. The dataset
taken from Mammographic Image Analysis Society (MIAS). The best PSNR and
MSE values 46.36423dB (hard thresholding) and 1.827967 achieved with Daub3
filter. Whilst, several medical imaging modalities and applications based on data
mining techniques have been proposed and developed. However, fuzzy soft set
theory has been merely experimented for medical images even though the choice of
convenient parameterization makes fuzzy soft set practicable for decision making
applications. Therefore, the viability of fuzzy soft set for classification of
mammograms images has been scrutinized. Experimental results show better
classification performance in the presence/absence of de-noise filter in mammogram
images where the highest classification rate occurs with Daub3 (Level 1) with
accuracy 75.64% (hard threshold), precision 46.11%, recall 84.67%, F-Macro
75.64%, F-Micro 60% and performance of FussCyier without de-noise filter
classification accuracy 66.49%, precision 80.83%, recall 50% and F-Micro 68.18%.
Thus, the results show that proposed approach FussCyier gives high level of
accuracy and reduce the complexity of the classification phase, thus provides an

alternative technique to categorize mammogram images.
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ABSTRAK

Pengesanan awal terhadap kanser payudara boleh mengurangkan kadar kematian.
Ujian mamografi merupakan kaedah pengesanan awal kanser payudara yang terbaik.
Oleh kerana terlalu banyak mamogram yang perlu dibaca oleh pakar perubatan,
maka kadar ketepatan pengesanan berkurang. Bacaan mamogram digital secara
automatik memberi saingan yang sangat tinggi, Oleh yang demikian, sistem
diagnosis bantuan komputer diperlukan untuk membantu pakar perubatan/radiologi
untuk mencapai tahap keberkesanan dan kecekapan yang tinggi. Kemajuan terkini
dalam bidang pemprosesan imej telah mendedahkan bahawa tahap hingar data sangat
memberi kesan kepada kualiti imej mamogram dan prestasi pengelasan. Oleh itu,
kajian ini mengkaji fungsi penapisan gelombang derau untuk mempertingkatkan
kualiti imej. Dataset telah diperoleh daripada Mammographic Image Analysis
Society (MIAS). Nilai PSNR terbaik dicapai pada 46.36423dB(ambang keras)
dengan penapisan gelombang Daub3. Manakala, beberapa kaedah pengimejan-
perubatan dan aplikasi berdasarkan teknik-teknik perlombongan data telah
dicadangkan dan dibangunkan. Walau bagaimanapun, teori set kabur lembut hanya
diuji untuk imej perubatan walaupun pilihan pemparameteran yang sesuai
menjadikan set kabur lembut dilaksanakan untuk aplikasi membuat keputusan.
Keberkesanan set kabur lembut untuk pengelasan imej mamogram telah diteliti.
Hasil eksperimen menunjukkan bahawa ketepatan pengelasan lebih baik dengan
kehadiran/ketiadaan hingar dalam imej mamogram di mana kadar pengelasan yang
paling tinggi berlaku pada Daub3 (tahap 1) dengan ketepatan 75.64% (ambang
keras), kepersisan 46.11%, perolehan kembali 84.67%, F-Makro 75.64%, F-Mikro
60% dan kadar Klasifikasi tanpa hingar dengan ketepatan 66.49%, kepersisan
80.83%, perolehan kembali 50% dan F-Mikro 68.18%. Oleh itu, hasil keputusan
menunjukkan bahawa pendekatan yang dicadangkan FussCyier memberi tahap
ketepatan yang tinggi dan mengurangkan kekompleksan untuk pengelasan dengan

menyediakan teknik alternatif untuk mengkategorikan imej mamogram.
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CHAPTER 1

INTRODUCTION

1.1  Background of the Study

Medical image processing technology has been one of the most important techniques
in treating diseases by creating precise images of human bodies. It encompasses
image segmentation, feature extraction, classification, image matching, motion
tracking, detect changes of image sequences, measurement of anatomical and
physiological parameters from images (Otoom ef al., 2015; Saha et al., 2015). On the
other hand, it assists physicians and scientists to reveal and diagnose many types of
diseases and illnesses, such as pneumonia and cancer. These medical images are
mostly resolute in the field of radiology, in which X-ray, Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), ultrasound, Positron Emission
Tomography (PET), digital mammogram images are involved for diagnosis and
prognosis of diseases (Ramani et al., 2013).

One of the second largest leading causes of deaths among women is breast
cancer (Saha et al., 2015). Presently, there are no methods to avert breast cancer, that
is why early detection indicate an extremely important factor in cancer treatment and
allow reaching a high survival rate (Otoom et al.,, 2015; Zaidi & EINaqa, 2010). At
the same time, breast cancer etiologies are not clear and neither do they have reasons
for the increased number of breast cancer cases all around the world. However,
previous studies demonstrated that the possibility to cure breast cancer can increase
by 40 percent or up to 40 percent if it is identified in its early stage (Howell et al.,
2014; Srinivas & Bangalore, 2012).
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Thus, automatic digital mammograms reading turn out to be extremely
enviable, that is why the Computer Aided Diagnosis (CAD) systems are required to
assist the physicians/radiologists to attain elevated effectiveness in detecting subtle
lesions and reducing the probability of the risk of failure in detecting abnormalities
(Fenton et al., 2013). In other words, CAD in screening mammographic images is
considered as an immediate available opinion for radiologists in identifying high
suspicious regions of malignancy (Howell ef al., 2014).

However, CAD still facing challenging problems such as low image quality
(film noise, low contrast resolutions) and lack of sensitive algorithms for detection
of cancerous images (Otoom ef al., 2015; James & Dasarathy, 2014). In view of the
fact that, the need for improving the image quality which arose from the signal noise
(Naveed et al., 2012). A solution to this problem is the de-noising of the images.
Therefore, de-noising is primarily used to take away noise that is present in
mammogram images and preserve the significant information (Rangarajan et al.,
2002). Consequently, wavelet based noise removal has gained much consideration of
the researchers for several years (Xiao & Zhang, 2011; Bruni & Vitulano, 2007).
Wavelet de-noising filters have been successfully employed in image compression,
noise reduction, image enhancement, texture analysis/segmentation and multi-scale
registration (Xiao & Zhang, 2011; Xu et al., 1994; Yang et al., 2010) and not yet
fully utilized for mammogram images classification.

Hence, this study investigates the functionality of wavelet de-noising filters
for noise removal in order to enha‘nce the images quality and viability of fuzzy soft
set for classification of mammogram images to increase the classification accuracy
while lower the classifier complexity. To accomplish these major tasks, proposed
classifier FussCyier comprises of six phases that are data acquisition, data pre-
processing, feature extraction, data partitioning, classification using FussCyier and

performance evaluation.
1.2 Problem Statement

Despite the fact that, when addressing the mammogram image classification, the
emphasis has been placed in the direction of developing image processing algorithms

that attempt to improve the imaging quality and regions of interest within images
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(Naveed et al., 2012). Even though, the enhancements to images quality have a
positive impact towards images classification (James & Dasarathy, 2014). However,
the noise present in the images is subtle and varied in appearance which adversely
affects classification accuracy of mammogram images (Naveed et al., 2012; Malar et
al., 2012). Besides, it is worth noting that there have been relatively few research on
the noise removal for mammogram images (Saha et al., 2015, Malar et al., 2013;
Naveed et al., 2012); nevertheless, much emphasis has been placed on standard
images and other medical images (MRI, ultrasound, CT scan) for noise removal
(Taujuddin & Ibrahim, 2015; Sidh et al., 2012; Arivazhagan ef al., 2007).

Meanwhile, medical diagnosis and prognosis problems are prime examples of
decision making in the face of uncertainty (Begum & Devi, 2011). Uncertainties
affect the image analysis and the most challenging problem in image analysis and
pattern recognition research is classification (Souza et al., 2008; Mitra & Pal, 2005).
Thus, fuzzy set theory plays a vital role in formalizing uncertainties for medical
diagnosis and prognosis (Zadeh, 1965; Adlassnig, 1986; Steimann, 2001). To handle
uncertainty in the decision making, the use of fuzzy set theory has given rise to a lot
of new methods of pattern recognition such as Mushrif et al., (2006) offered a novel
method Soft Set Classifier (SSC) for classification of natural textures using the
notions of soft set theory.

However, soft set theory is appropriate for binary numbers although still
difficult to handle real numbers (Herawan et al., 2010; Ma et al., 2011). For that
reason, fuzzy soft set can handle fuzzy attributes (parameters in the form of real
numbers) (Roy & Maji, 2007; Handaga & Deris, 2011). Later, Handaga et al., (2012)
demonstrated a new application of soft set for numerical data classification by
offering a more general concept based on similarity measure between two fuzzy soft
sets that is Fuzzy Soft Set Classifier (FSSC), which can handle parameters in the
form of real numbers, yet, FSSC has high algorithm complexity.

Limitations of the earlier studies and lack of work on the mammogram
images classification using similarity measure on fuzzy soft set motivated the present
research. Thus, the present study is intended to increase the mammogram images
quality by incorporating wavelet threshold de-noising functions (pre-processing
phase) whilst introducing distance measure function for mammogram images
classification and named the proposed classifier as FussCyier. All these three

classifiers SSC, FSSC and FussCyier comprised of three phases: pre-processing,
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training and testing respectively. In order to appraise the performance of FussCyier,
existing fuzzy soft set classifiers SSC and FSSC were used to benchmark the
proposed FussCyier. After that, performances of these three classifiers were

evaluated by five performance measures which are classification accuracy, precision,
recall, F-Macro and F-Micro.

1.3  Research Objectives

Based on the research background and the related issues, three objectives of this

research have been formulated as follows:

i. To propose a wavelet threshold de-noising filter in the pre-processing phase.

ii. To propose and develop a classifier FussCyier for mammogram images
classification based on fuzzy soft set.

iii. To evaluate the performance of FussCyier based on classification accuracy,
precision, recall, F-Macro and F-Micro and to compare with existing fuzzy
soft set based classification algorithms which are Soft Set Classifier (SSC)
and Fuzzy Soft Set Classifier (FSSC).

1.4  Research Scope

This study focuses only on testing the effectiveness of an alternative approach
FussCyier for mammogram images classification to be categorised into two classes
namely benign and malignant. Mammogram images were taken from the
Mammographic Image Analysis Society (MIAS) dataset (Suckling et al., 1994). The
performance of FussCyier is validated based on five performance measures namely:
classification accuracy, precision, recall, F-Macro and F-Micro with the existing

fuzzy soft set based classification algorithms SSC and FSSC.
1.5  Thesis Outline
This chapter portrays the briefing of the research. The description encompasses the

background of the study, motivation, research objectives, research scope and the

thesis outline. In general, this chapter has not only given the preliminary depiction of
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the research, thus it is an executive summary of the entire research. At the end of this
chapter, the organization of the following chapters is discussed in brief to give an

overall picture of this thesis. The thesis consists of seven chapters, which are briefly
described as follows:

Chapter 1: Introduction explains an overview of the research encompasses
the background of the study, motivation, research objectives, scope of the study and
thesis outline respectively.

Chapter 2: Literature Review begins with a glance through soft set theory and
fuzzy soft set. The important definitions of soft set theory and fuzzy soft set which
structure the focus point of this research are explained in details with some examples.
The discussion then continues on computer-aided mammography, mammogram
images and breast cancer detection. Later, several complementary approaches and
prior research for studying mammogram images and their relevance to the
classification tasks is presented.

Chapter 3: Research Methodology illustrates the methodology of the research
starting from choosing the data used in the experiment until the evaluation of the
experimental results. The methodology presented for FussCyier consisting of six
phases namely data acquisition, data pre-processing, feature extraction, data
partitioning, classification using FussCyier and performance evaluation. Each phase
contains its different steps and delivers useful results to be used in the next phase.

Chapter 4: Design and implementation of FussCyier describes the
development of a proposed classification algorithm for mammogram images.
FussCyier uses distance measure fuzzy soft set to classify mammogram images. The
chapter presents the main three phases involved in the development of FussCyier
namely: pre-processing, training and testing phase respectively. Afterwards,
FussCyier is explained with few examples.

Chapter 5: Pre-Processing results and discussion. A thorough analysis related
to identified factors namely: effect of threshold determination on image quality,
effect of data partition, effect of presence/absence of de-noise filter and effect of de-
noising before and after Region of Interest (ROI) were examined. The proposed de-
noising filters allows for a significant improvement in FussCyier efficiency by
finding the appropriate parameter settings that must be examined. The obtained

results address the first objective of this study.
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Chapter 6: Classification results and discussion presents the performance of
the FussCyier and explained the effectiveness of the FussCyier when compared with
SSC and FSSC in terms of classification accuracy, precision, recall, F-Macro and F-
Micro. Chapter 6 answered the second and third objectives of the study.

Finally, Chapter 7: Conclusion and Future works presents a summary of the
dissertation research. Significant contributions are highlighted and additional

avenues for research works are given.
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