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Abstract: Phosphorus input with excessive use of fertilizers and manure as one of the main sources
of nutrient pollution has increased recently in the wastewater as result of intensive farming and
industrialized and densely populated areas. The novelty of the current work lies in improving a
Vertical Aerated Rock Filter (VARF) using steel slag and limestone media to enhance the efficiency
of a rock filter (RF) to eliminate total phosphorus (TP) from domestic wastewater. RF was designed
with steel slag and limestone (calcium hydroxide) as a pilot scale called vertical aerated steel slag
filter (VASSF) and optimized based on hydraulic loading rates (HLR) (0.16 to 5.44 m3/m3 day) and
airflow rates ranging from 3 to 10 L/min. The highest removal for the design of the laboratory scale
steel slag filter (LSSSF) was achieved by approximately 58%, while for the laboratory-scale limestone
filter (LSLSF), it was 64%. The VASSF achieved a removal percentage at 30% of TP, biological oxygen
demand (BOD; 89%), chemical oxygen demand (COD; 75%), total suspended solids (TSS; 73%), and
total coliforms (TC; 96%), recorded with 7 L/min of an airflow rate and 1.04 m3/m3.day of hydraulic
loading rate (HLR) at potential of hydrogen (pH) 7.3 and 5.09 mg/L of dissolved oxygen (DO).
These findings indicated that the steel slag is higher than limestone in TP removal, because of ion
exchange between phosphorus hydrolysis and the adsorption process. Moreover, in the pilot study,
the removal efficiency needs more investigation to determine the best conditions for TP considering
the temperature, which is unstable, and presence of other pollutants, which might negatively affect
the removal efficiency under unstable conditions.

Keywords: aerated rock filter; phosphorus; optimization; removal; pilot study

1. Introduction

The aerated rock filter (ARF), which uses waste media as a filter to enhance organic
pollutants removal quality before it is discharged to a river or stream, has become one
of the alternative natural wastewater treatment technologies for eliminating phosphorus
from wastewater [1,2]. The demand to improve the existing wastewater treatment plants is
developed by using ARF technology to remove the nutrient and to comply with stricter
regulation of wastewater disposal [3]. The ARF, created by Mara [4] in the UK, serves as an
alternative approach to the treatment of BOD5, suspended solids (SS), ammonia, and COD.
ARF has great potential to remove algae solid from lagoon effluents and becomes more ideal
for secondary treatment based on the saved area; and it has good potential by replacing the
lagoons and having the advantage of taking less space. Rock filters in vertical flow mostly
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perform better than horizontal flow and are easy to construct [5]. The aeration inside the
vertical flow filter is more accessible for maintenance and replacement because they are
below the wastewater level in the filter. In the vertical flow, it also prevents the media
from clogging and reduces the algae attachment on the media. According to Vymazal [6],
the aeration of the bed can cause desorption and release the phosphorus. However, this
can be solved by controlling the aeration rate using the minimum air flow inside the filter.
Žibienė et al. [7] claimed that 95.7% of the phosphorus removal was achieved using a
vertical flow filter.

The potential of steel slag waste, a byproduct of steel manufacture, to remove phosphorus
from various wastewaters was demonstrated [8,9]. The combination of steel slag with a
secondary treatment system can improve phosphorus removal and it can avoid the addition of
chemical products [10]. Maarup et al. [11] indicated that the steel slag used in vertical aerated
RF has a great impact on the removal of phosphorus in wastewater and can be well managed
after use through their recycling and reuse processes.

Additionally, after treatment, the steel slag, could be used in useful applications such
as steel slag cement, recycling of scrap metal, as the flux of iron and steel smelting, road
engineering or backfilling materials, fertilizers and soil improvers, preparation of ceramic
products such as glass-ceramics, and environmental protection applications [12,13]. Steel
slag could be used as a suitable material for carbon capture to mitigate global warming [14].
Moreover, in the study of the potential of P saturated electric arc furnace, steel slag as a P
fertilizer or soil modification with Medicago sativa was investigated. The study showed P
efficiency for high germination rates, suggesting that steel sludge with P could be re-used
as soil amendment [15]. The limitations of using steel slag are leaching of heavy metals
and costly factor [16].

Previous research looked at how well a vertical flow aerated steel slag filter system
combined with nitrifier bacteria removed nutrients from residential wastewater [17–21],
while research into the effectiveness of steel slag using more calcium oxide and ferric oxides
to remove phosphate from synthetic wastewater was conducted [22,23]. A preliminary
study with simple work was conducted on the removal of TP using Pilot-Scale Vertical
Aerated Steel Slag Filter based on the filter depth [11]. The current study aimed to improve
a Vertical Aerated Rock Filter (VARF) to enhance the efficiency of phosphorus removal
from the residential wastewater by using selected media containing Ca, Mg, and Al with
the different hydraulic load level (HLR) and airflow rates. The effectiveness of VARF was
tested at the pilot scale vertical aerated steel slag filter (VASSF), while the effectiveness of
elimination was investigated at the lab scale with steel slag filter (LSSSF) and laboratory-
scale limestone filter (LSLSF). The study also investigated the optimization of the removal
technique and process.

2. Materials and Methods

At the initial stage of the experiments, the process started with the designing process
and was constructed in the lab-scale filter and vertical ASSF system. A lab-scale filter was
placed at the laboratory to investigate the effective filter media with limestone and steel
slag while for the pilot scale, the filter was placed on site to investigate the most effective
HLR and to study the effectiveness of the pilot scale under a warm climate. Influence and
effluent were collected once a week and tested in the laboratory.

2.1. Wastewater Sampling and Analyses

Wastewater samples were collected from the Bukit Perdana primary clarifier wastewa-
ter treatment plant (WWTP), Batu Pahat (1◦50′37.05′′ N, 102◦56′49.43′′ E) owned by Indah
Water Konsortium (IWK) (Figure 1). Wastewater samples were collected and fed into the
filter using a dual-headed peristaltic pump (Cole-Parmer Masterflex L/S Model 7524-40
with the W77200-62 pump head). The filtration systems were aerated using an oil-free
compressor (rocker model 167420-11-22), while the effluent was discharged by gravity from
the filter outlet to the nearest river.
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Figure 1. Sampling location.

Domestic wastewater samples were collected on a weekly basis, every Sunday at
10 a.m. (± 1 h) from WWTP. Samples were treated on site using the VARF filter and the
effluent was analyzed in the laboratory, while a sample of wastewater was collected from
WWTP Bukit Perdana to fill in the feeder tank in the laboratory for the lab-scale treatment
filter. The factors affecting on the removal efficiency included the duration of time to
take the sample, weather, apparatus, sampling method, temperature store box, and the
chemicals needed to preserve the sample. The sample was kept in an ice box container to
maintain the temperature at 4 ◦C until analysis. All samples were taken in a glass jar. pH,
TSS, alkalinity, temperature, TP, COD, and BOD were determined according to APHA [24].

2.2. Laboratory-Scale Rock Filter for Phosphate Removal Study

These experiments were carried out in a laboratory and were conducted simultane-
ously using the limestone and steel slag filter. The pipe containers used to hold the filters
were made from acrylic which was 15 cm in diameter and 39.5 cm high. The schematic
diagram in Figure 2a shows that the 14 cm aerator was located at the base of the filter with
influent and effluent taps. The porous plate was placed above the diffuser to protect the
diffuser from being clogged and damaged due to the media. Table 1 illustrated the lab-scale
characteristics and operational conditions.

2.2.1. Construction of Lab-Scale Filter

The laboratory-scale filter pipe used in this experiment was made of acrylic. The
filter with 14.4 cm in diameter was fitted with 14 cm diameter coarse bubble diffuser and
protected by a porous plastic plate to protect the diffuser from being clogged or damaged.
The filter had an inlet tap to feed the filter with wastewater and an outlet tap to discharge
treated wastewater to the drain, as shown in Figure 1b, where the sampling was taken at
both outlets. Both filters had different outlet taps and it had a plastic pipe to discharge
effluent to drain nearby. The wastewater supply tank was held using plastic containers
with a 10 mm outlet to feed the lab-scale filter. Each filter was run together to make sure
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there were no different data observed and it was receiving the same influent characteristic
(Figure 2b).
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Table 1. Lab-scale characteristics and operational conditions.

Parameter Unit Lab-Scale Filter

Total height cm 39.5

Internal diameter cm 14.4

Liquid depth cm 27.5

Volume of wastewater (working volume), Q m3 0.0044

HLR m3/day 0.00264

HRT day 1.67

Airflow L/min 20

2.2.2. Lab-Scale Filter Media

Limestone and steel slag were selected as the filter, medium in the laboratory-scale
filter, and these materials were locally available in Malaysia. Both media have great
potential in removing phosphorus due to the high capacity of phosphorus adsorbent
available chemically in these media [25]. The media were kindly provided via Perwaja
Steel Sdn. Bhd. based in Kemaman, Terengganu. Before the media were used, they were
subjected to the cleaning process before being placed into the filter. The medium was
washed with tap water and then washed again with distilled water. After that, the media
were dried in the oven for 24 h at 105 ◦C. Table 2 shows the chemical composition of both
media as analyzed using the X-ray fluorescence (XRF) instrument.

2.2.3. Experimental Setup of a Lab-Scale Filter

The laboratory-scale filter experiment was conducted simultaneously for both lime-
stone and steel slag filters. Each filter was filled with 10 to 20 mm medium aggregate, and
these media were filled up to 26 cm high while wastewater was 25 cm in height, leaving a
freeboard space of about 2 cm to prevent algal growth in the filter (Figure 3). These filters
were left running for two weeks to allow the filter media to acclimate to wastewater before
the sample was taken. After the steady state of the filters was achieved and the fraction
allowed between 0 and 2.0 mm, the wastewater samples were sampled in weekly analysis
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for phosphorus removal. In steady state conditions, these two types of media were equal
and maintained a result, and the sampling data were analyzed for further analysis. Steady
state is where there is a condition mostly indicated by the stability in effluent concentration.

Table 2. Chemical composition for both media.

Chemical Component
Concentration

Steel Slag Limestone

CO2 0.10% -

CaO 31.20% 94.20%

Fe2O3 40.00% 0.87%

SiO2 16.40% 2.57%

Al2O3 5.04% 0.79%

MgO 3.25% 0.98%

K2O - 0.14%

MnO 2.00% -

TiO2 0.53% -

Cr2O3 0.32% -

P2O5 0.56% -

S 0 < LLD -
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2.2.4. Hydraulic Loading Rate (HLR) Determination

Rock filters require low HLR and long HRT to achieve efficient removal of P [26]. The
HLR is very important because it can ensure a lasting performance without any problem
such as clogging or overflow. It becomes an important factor in designing rock filters based
on these HLR and HRT determination.

HLR is expressed as a volume of filter effluent (m3) applied over a gross rock filter volume
per day (m3/m3·d) [4]. HLR and HRT can be calculated using the following equations:
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HLR =
m3

m3day
Qww

V
(1)

HRT, 0 day =
Vww

Qww
(2)

where:
Qww = wastewater flow (m3/day)
V = gross volume of the rock filter (m3)
Vww = wastewater volume (m3)

2.3. Removal Study

The pilot-scale vertical upward-flow ARF (VARF) design developed by Maarup et al. [11]
was used in this experiment. The treatment plant under study was designed with 15,800 popu-
lation equivalents (PE). Figure 4a shows that the VARF flow diagram system is running. The
aerator inside the VARF was protected by a porous disc to ensure that the air diffuser did not
get damaged when the steel slag was placed in the VARF. The wastewater sample was taken
at the primary treatment chamber by using a peristaltic pump (Cole-Parmer Masterflex L/S
Model 7524-40 with W77200-62 pump head). The influent wastewater sample was filtered
using a PVC strainer as shown in Figure 4b to retain the large particles that entered through
the VARF to prevent the system from getting clogged. The airflow in the filter was fed to the
diffuser by using oil-free Jun-Air compressor (West Air Compressor, Sydney) with airflow for
3, 5, 7, and 10 L/min and Table 3 shows the operational conditions for VARF.

Table 3. VARF operational condition.

No Parameter Unit VASSF

1 Total Height m 2.0

2 Internal Diameter m 0.3

3 Filter Bed Depth/Liquid Depth m 1.5

4 Media Volume, V m3 0.106

5 Volume of Wastewater in the filter
(Working Volume) m3 0.063

6 Qwastewater (variable) m3/d
0.0170, 0.0276, 0.0360, 0.0339, 0.0551, 0.0721, 0.1103,

0.1442, 0.2205, 0.2884, 0.4411, 0.5768

7 Hydraulic Retention Time, θ
(variable) day 3.71, 2.29, 1.75, 1.86, 1.14, 0.87, 0.57, 0.44, 0.29, 0.22,

0.14, 0.11

8 Hydraulic loading rate, HLR
(variable) m3/m3·d 0.16, 0.26, 0.34, 0.32, 0.52, 0.68, 1.04, 1.36, 2.08, 2.72,

4.16, 5.44

9 Air Flow Rate
(variable) L/min 3, 5, 7, 10

10 Flow Rate, Q
(variable) mL/min 12, 19, 25, 24, 38, 50, 77, 100, 153, 200, 306, 401

2.4. Construction of VASSF

The VARF was constructed on site and made from 15 mm thick PVC pipe which is
30 cm in diameter and 2 m in height, as seen in Figure 3c. The filter base consists of a 25 cm
diameter of fine air bubble air diffuser while the inlet and outlet water tap were placed with
a 0.25 m gap between the other taps (Figure 3c) with the material used in the installation of
fine bubble air diffusers in the VARF system on site.
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2.4.1. Filter Media Used in VASSF

Filter media, either limestone or steel slag, showed the best potential in removing
phosphorus from the domestic wastewater that has been selected as filter media. Steel slag
was selected to be used as a filter medium in the pilot-scale filter to remove phosphorus
from wastewater. Fresh slag samples with triplicate samples were analyzed for chemical
composition by using X-ray fluorescence (XRF).

2.4.2. Experimental Setup

For these VARFs, the acclimatization period was run for two weeks until it reached
steady state before the grab samples were taken. The steady state was achieved when
the result data were equal, or when the result and stability in effluent concentration were
maintained. Sample media were filled in the filter with 10–20 mm media aggregate and this
filter was filled up to 1.6 m height while wastewater was at 1.5 m height, leaving a freeboard
space about 0.30 m to prevent algal growth on the surface. While the acclimatization period
was running, the VARF system was optimized for the HLR study of 0.16–5.44 m3/m3·d.
The value of the HLR range was taken from Swanson and Williamson [27] for a warm
climate of 0.06–0.34 m3/m3·d and the range was multiplied until the HLR failed in the
VARF system. These HLR values were selected based on phosphorus removal efficiency.
The selected HLR was used until the system achieved a steady state based on phosphorus
removal (maintain approximately 90% phosphorus removal or achieve effluent stability),
and after that, all parameters were tested weekly.

2.5. Routine Maintenance

Both systems, which were lab-scale and pilot-scale filters, required proper maintenance
throughout the overall study period (Table 4). The system was maintained on a weekly
basis to ensure there was no clogging in the piping and to ensure the system ran smoothly.

Table 4. Routine maintenance.

Type Maintenance Lab Scale Pilot Scale

Cleaning the strainer for inlet system N.A. Cleaning strainer

Checking and Maintenance of the Inlet and outlet piping system N.A. Change broken piping

Replacing the clogged pipe and water tap N.A. Change clogged tap

Maintenance of the peristaltic pump and compressor Change broken pipe Change broken piping

Remove the plant that grew on the filter media Remove algae Remove algae

2.6. Microstructure Analysis

In the present study, scanning electron microscopy (SEM/EDX) (Hitachi, Jeol-JSM6380LA,
Tyoko, Japan) was used to find the phosphorus attachment on the steel slag surface. Both
fresh and treated samples were characterized using SEM/EDX. Steel slag sample was taken
out from the filter and analyzed using SEM/EDX test after being treated in the filter for a
two-month period. SEM analysis enables direct observation of the surface microstructures of
the composite material. It is the primary tool for characterizing the surface morphology and
fundamental physical properties of the adsorbent. The sample of media was used in the form
of tiny stones to carry out the SEM-EDX analysis. The media containing metal salt was adhered
with double-sided carbon tape before being placed on a factory sample plate. The sample was
cleaned and dried, and after that, the sample was placed inside the auto fine coater. After a few
minutes, the samples were run with SEM to identify the size, particle shape, energy dispersive
X-ray spectroscopy (EDX spectra), and surface microstructures.

2.7. Statistical Analysis

All data for influent and effluent samples were statistically analyzed using Microsoft
Excel 2010 and the Social Science Statistical Package (SPSS) to analyze the t-test. The t-test
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was used to compare the mean for two different groups which is between the limestone
and steel slag laboratory filter for total phosphorus removal.

3. Results and Discussion
3.1. Performance of Treatment Systems

Table 5 provides the characteristics of domestic wastewater. The results revealed that
domestic wastewater contains 126 mg/L of BOD, 262.08 mg/L of COD, and 19 mg/L of TP.
These concentrations were considered high for the final disposal of the wastewater and
had to be subjected for the treatment process to meet the discharge criteria.

Table 5. Initial characteristics of domestic wastewater.

Parameter Concentration ± SD *

BOD (mg/L) 126 mg/L ± 4.00

COD (mg/L) 262.08 mg/L ± 21.00

DO 1.04 mg/L ± 0.48

pH 6.97 ± 0.03

Temperature (◦C) 28.6 ◦C ± 0.07

TSS (mg/L) 146.7 mg/L ± 1.15

Alkalinity (mg/L) 205 mg CaCO3/l ± 5.00

TP (mg/L) 19 mg/L ± 1.53

TC 1600 cfu/100 mL ± 50.00
* Standard division for triplicate sampling.

The efficiency of the filtration process is presented in Figure 5, which shows the COD
removal rates for each day and contains data on influent and effluent concentrations for
both the steel slag and the limestone lab-scale filter. The influent COD concentration for
both lab-scale filters averaged 426.06 ± 343.5 mg/L while the effluent concentration for
the lab-scale steel slag filter (LSSSF) averaged from 110.43 ± 62.5 mg L and the lab-scale
limestone filter (LSLSF) averaged from 168.82 ± 180.37 mg/L. The COD removal efficiency
for LSSSF varied from 34% to 94% while for LSLSF varied from 12% to 94%. The highest
COD removal was found at 94% for both media. Laboratory-scale experiments showed
quite satisfactory performance in organic matter removal, with almost three-quarters of the
sampling data removal rates reaching more than 70% but less than 90% removal. According
to Stefanakis and Tsihrintzis [28], satisfactory removal usually exceeds 90%. The final
effluents for both laboratory-scale filters were consistently lower and met the allowed
discharge of wastewater for the standard B limit (200 mg/L). The increase in DO by the
aeration process was associated with the decrease in the value of COD from domestic
wastewater. The main reason for the large variation in both the influent and effluents of
two lab-scale reactors was the effect of the weather that caused dilution of the wastewater
on rainy days, whereas in dry days, the wastewater was more concentrated. The higher
HLR (lower flow rate) reduced the COD because it deduced with a longer contact time in
the filter, the higher removal rate can be reached. The utilization of steel slag and limestone
in the filter led to the elimination of COD, as they have the capacity to absorb organic
and inorganic compounds from wastewater. Grab samples were taken twice a week and
analyzed for COD/BOD removal. The removal of BOD was much higher in the aerated
lab scale filter and most of the effluent concentration from both lab scale filters was found
to meet the effluent quality for the standard B requirements of <50 mg L compared to the
influent that did not meet the requirement. Since the p-values for the LSSSF was 0.256 and
LSLSF systems was 0.531, none of the variables related to effluent quality and elimination
effectiveness was statistically significant.
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Figure 5. LSSSF and LSLSF of influent and effluent COD concentration; (a) Percentage removal;
(b) Acceptable condition of sewage discharge (200 mg/L).

The influent concentration of BOD in the laboratory scale filter averaged
266.3 ± 269.7 mg/L, while for the effluent concentration for LSSSF the average was
47.59 ± 51.7 mg/L and for LSLSF the average was 78.86 ± 74.8 mg/L (Figure 6). The
efficiency of the lab-scale steel slag filter (LSSSF) ranged from 33% to 99% while it varied
from 15% to 95% for the laboratory-scale limestone filter (LSLSF) (Figure 5). The graph
fluctuated because of the filter received different loading from the wastewater treatment
plant. However, the most effective filter was steel slag compared to limestone. The highest
removal of BOD from steel slag was 99%, while it was 95% by limestone. The filter aeration
process improves the removal of BOD and SS [5]. LSSSF and LSLSF systems efficiently
removed BOD from domestic wastewater, as it was statistically significantly different in
terms of effluent efficiency and effluent quality since the p-values were 0.043 and 0.025.
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Figure 6. LSSSF and LSLSF of influent and effluent BOD concentration; (A) Percentage removal;
(B) Acceptable condition of sewage discharge (50 mg/L).

pH and alkalinity are the important monitoring parameters in the ARF system as a TP
removal from wastewater. pH is important in controlling the removal of phosphorus on
the adsorption and desorption process. The removal of TP from wastewater depends on
the adjustment of pH values [29]. pH profile and final effluent quality were statistically
significant difference as the p-value both LSSSF and LSLSF systems were 0.009. Figure 6
shows the concentration for both steel slag and limestone media. The influent or inlet pH
ranged from 6.11 to 6.46. pH increased from 6.69 to 7.68 in the steel slag filter, while it
increased from 6.42 to 7.18 in limestone filter. This is because the component inside the
steel slag consists of magnesium oxide, sulfur, and iron oxide while limestone consists
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of calcium, where this component can increase the pH almost 10–12 when it reacts with
water [30].

Figure 7 shows the alkalinity concentration for both lab-scale filters. The value of
alkalinity for influent was averaged from 314.61 to 206.98 mg/L. The final effluent of both
filters was lesser than the influent. The effluent from LSSSF had 169.34 ± 38.6 mg/L and
192.50± 113.80 mg/L from LSLSF. Because the p-value was 0.563, there were no statistically
significant differences between the LSSSF and LSLSF systems. In the filter, the data were
slightly lower and at a pH less than 8.3, the alkalinity was affected, indicating that less
alkalinity was created [31]. Because the pH of the influent was less than 6.5, it was assumed
that the pH controlled the alkalinity. pH is a good indicator of the transition from carbonate
to bicarbonate alkalinity [32].
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Figure 7. LSSSF and LSLSF of influent and effluent pH (A); alkalinity (B).

Ordinary domestic or municipal wastewater contains both inorganic and organic
materials as suspended solids. Both consist of a biodegradable and a nonbiodegrad-
able fraction. At the bottom of the filter, inorganic suspended materials collect [33].
The concentration of TSS influent for these experiments was averaged at approximately
612.37 ± 581.98 mg/L. The effluent of both filters (steel slag and limestone) was
54.74 ± 41.31 mg/L for LSSSF and 138.16 ± 174.01 mg/L for LSLSF (Figure 8). TSS results
were not statistically significant differed as p-value was 0.053 and 0.201 for effluent quality
and removal efficiency. Both filters performed well in removing the TSS, but the steel slag
filter achieves more removal than limestone. The percentage of TSS removal shows that
the highest removal was recorded at about 97% for LSSSF while 95% for LSLSF (Figure 7).
LSSSF recorded 10 samples with more than 90% of removal while LSLSF recorded less than
5 samples with 90% of the removal. LSSSF has a capability in removing TSS compared to
LSLSF because of steel slag has a porous and rough surface compared to limestone with a
smooth and plain surface. The suspended solid cannot be attached to any smooth surface,
leading to the solid being removed with effluent.

DO profile was recorded with the best result because the wastewater was fed with
oxygen by using the aeration system. The influent concentration was 0.19 ± 0.2 mg/L. The
effluent result for both media was higher in both filters. The effluent for steel slag was
3.86 ± 1.2 mg/L, while for limestone it was 3.43 ± 1.6 mg/L. Figure 9 shows that the
highest concentration was recorded at 5.60 mg/L for LSSSF and LSLSF. The DO level was
higher in the LSSSF and LSLSF system and there was no statistically significant difference
since the p-value was 0.706. The levels of DO levels in steel slag filters were found to be
higher than those of limestone due to the structure of the medium and the filter condition.
According to Hamdan [34], the vertical system effectively treats high-strength effluent as a
good or as further removal of biodegradable organic matter. However, more importantly,
that makes the DO level higher because of the aeration process that is inducted into the
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treatment system. The filter system’s state is the more appropriate for providing a more
favorable environment for the anaerobic process [35].
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Figure 8. LSSSF and LSLSF of influent and effluent TSS concentration; (A) Percentage removal;
(B) Acceptable condition 100 mg/L.

Water 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

 
 

(A) (B) 

Figure 8. LSSSF and LSLSF of influent and effluent TSS concentration; (A) Percentage removal; (B) 
Acceptable condition 100 mg/L. 

DO profile was recorded with the best result because the wastewater was fed with 
oxygen by using the aeration system. The influent concentration was 0.19 ± 0.2 mg/L. The 
effluent result for both media was higher in both filters. The effluent for steel slag was 3.86 
± 1.2 mg/L, while for limestone it was 3.43 ± 1.6 mg/L. Figure 9 shows that the highest 
concentration was recorded at 5.60 mg/L for LSSSF and LSLSF. The DO level was higher 
in the LSSSF and LSLSF system and there was no statistically significant difference since 
the p-value was 0.706. The levels of DO levels in steel slag filters were found to be higher 
than those of limestone due to the structure of the medium and the filter condition. Ac-
cording to Hamdan [34], the vertical system effectively treats high-strength effluent as a 
good or as further removal of biodegradable organic matter. However, more importantly, 
that makes the DO level higher because of the aeration process that is inducted into the 
treatment system. The filter system’s state is the more appropriate for providing a more 
favorable environment for the anaerobic process [35]. 

  
(A) (B) 

Figure 9. LSSSF and LSLSF of influent and effluent DO concentration (A); temperature (B). 

Figure 9 shows the temperature profile summaries for both filter media. The ambient 
temperature for this experiment averaged room temperature (31.36 ± 0.7 °C) and the result 
obtained fluctuated due to the change of climate condition. However, an effluent temper-
ature of 26.67 ± 0.7 °C was recorded during this experiment. The temperature was 
dropped because of the filter block heat from outside, and the aeration process in the filter 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

C
on

ce
nt

ra
tio

n 
(m

g/
L)

Time (days)

 inlet
 conc's LSSSF
 conc's LSLSF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

25

26

27

28

29

30

31

32

Te
m

pe
ra

tu
re

 (0 C
)

Time (days)

 inlet
 conc's VASSF, LSSSF, LSLSF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

500

1000

1500

2000

C
on

ce
nt

ra
tio

n 
(m

g/
L)

Time (days)

 inlet
 conc's LSSSF
 conc's LSLSF

70 % of percentage removal 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

20

40

60

80

100

Pe
rc

en
ta

ge
 R

em
ov

al
 (%

)

Time (days)

 % LSSSF
 %LSLSF

Figure 9. LSSSF and LSLSF of influent and effluent DO concentration (A); temperature (B).

Figure 9 shows the temperature profile summaries for both filter media. The ambient
temperature for this experiment averaged room temperature (31.36 ± 0.7 ◦C) and the
result obtained fluctuated due to the change of climate condition. However, an effluent
temperature of 26.67 ± 0.7 ◦C was recorded during this experiment. The temperature was
dropped because of the filter block heat from outside, and the aeration process in the filter
helped to reduce the temperature in the filter system. The temperature results were not
statistically significant due to differences as the p-value was 1.000 for both the LSSSF and
LSLSF system. Temperature mainly has a great impact on phosphorus because it affects
the rate of adsorption or desorption. According to Weber (1972) cited in Hamdan [34],
the adsorption increases when the temperature decreases due to the vibration energies
desorbing into the surface. According to Akpor [36], the optimal temperature for phospho-
rus removal is between 30 and 40 ◦C, and it is an optimal temperature condition for the
biological nutrient removal activities.

Total phosphorus removal for this experiment was recorded in Figure 10. The influent
amounted to 10.44 ± 2.7 mg/L during the experiment. The effluent of phosphorus was
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7.89 ± 3.6 mg/L for LSSSF and 8.25 ± 3.4 mg/L for LSLSF. The highest removal of TP
by LSSSF was 58%, while by LSLSF it was 64%. The data fluctuated because the filter
received different loading from the wastewater treatment plant. It seems that the filter
removes phosphorus less than 60% due to unfavorable environmental conditions and
due to different loading, it receives from the wastewater treatment plant. The removal
of phosphorus decreases because of the detachment and clogging of the medium, which
causes decreased mass transfer from the liquid phase to the surface of the filter medium,
decreasing the adsorption and the removal efficiency. This is because a large amount
of attachment on the media slows the adsorption capacity and detaches from the media
surface. In addition, the treatment plant also combined the household waste with yard
waste, for example sludge treatment. From the data obtained, the influent was also recorded
to be less than 10 mg/L due to the raining season, diluting the wastewater sample and
making it lower than others. Domestic wastewater TP compared to the LSSSF and LSLSF
system was not statistically significantly different in terms of effluent quality and effluent
removal efficiency, since the p-values were 0.708 and 0.688, respectively. The results show
that steel slag and limestone remove phosphorus nearly 60%, indicating they are still good
adsorbents for phosphorus removal in wastewater treatment. Steel slag is the best material
that can be used for this experiment because it is one of the waste products, abundant, and
locally available compared to limestone.
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Figure 10. LSSSF and LSLSF of influent and effluent TP concentration (A); Percentage removal (B).

Figure 11 shows the TC concentration for both filters and for the influent averaged
50,949 CFU/100 mL. In the effluent, the data concentration was recorded averaged at
17,595 CFU/100 mL for steel slag, while it was 15,831 CFU/100 mL for limestone. Figure 10
shows that all the samples achieved more than 50% removal and that it was the most
efficient removal for this experiment. The removal seems to not be 100% because it still
has the balance of TC inside the water. The filter needs an alternative solution to eliminate
100% of TC from wastewater.

3.2. Phosphorous Removal Mechanism

The understanding of the identification of P removal in wastewater treatment by using
steel slag is necessary to maximize the efficiency of P removal and to prevent pollution
from the wastewater plant. Chemical composition results from XRF analysis of steel slag
showed iron (Fe)—40.00%, calcium (Ca)—31.20%, silica (Si)—16.40, aluminum (Al)—5.04%,
manganese (Mn)—3.25%, and other elements. The slag used in these experiments was
primarily high in iron and aluminum. According to Ndegwa et al. [29], removal of phosphorus
in wastewater was accomplished by the simultaneous adjustment of pH and the addition
of iron, calcium, or aluminum. Steel slag is rich in Fe and calcium and plays an important
role in P retention in wastewater. The presence of calcium in the steel slag facilitates P
retention through precipitation and deposits Ca-P on the solid surface [37]. However, the
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identification of phosphorus removal in the filter is still being investigated for future studies
because it considers various factors. According to Hamdan [34], phosphorus from the slag
filter is regulated by pH, temperature, and the concentration of metallic salt in the treatment
system [38].
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The mineral composition of fresh steel slag in terms of its components is presented in
Figure 12a. From the figure, oxygen, calcium, carbon, and silica are the highest chemistry
domination. The filter systems are controlled by the interaction and reaction between
oxygen, calcium, carbon, and silica.

The XRF test was used to determine the chemical composition of the fresh steel slag,
and the data are presented in Table 6. The results of the XRF analyses show that the
highest elemental chemistry was dominated by calcium, iron, and silica. Based on the
SEM/EDX and XRF analysis, the highest chemical composition on a fresh steel slag surface
was dominated by calcium, iron, and silica. The test result revealed no detection for the
phosphorus on the surface of the fresh steel slag.

Table 6. Chemical composition of fresh steel slag.

Chemical Component Concentration

CO2 0.10%

CaO 31.20%

Fe2O3 40.00%

SiO2 16.40%

Al2O3 5.04%

MgO 3.25%

MnO 2.00%

TiO2 0.53%

Cr2O3 0.32%

P2O5 0.56%

S 0 < LLD

The steel slag sample taken out from the filter was analyzed using the SEM/EDX test
after being treated in the filter over a two-month period. The steel slag with CaO and MgO
easily produce volume expansion after hydration, and this is the main factor affecting the
stability of steel slag. The composition of the steel slag with CaO has important role in
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the removal process and at pH 3 to 5, reached to the optimal saturation and P-removal
efficiency due to the higher amount of CaO, which might have caused higher levels of CaO
dissolution, followed by Ca2PO4 precipitation.
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Figure 12. (a): EDX spectrum of a fresh steel slag sample. (b): SEM/EDX micrograph of the surface
and spectrum of fresh steel slag. (c): SEM/EDX micrograph of surface scanned and spectrum of used
steel slag over a two-month treatment period in the filter.

Figure 12b,c shows the presence of phosphorus in steel slag by using EDX mapping
and by spectrum analysis of the surface sample over a two-month period of wastewater
treatment. Based on Figure 11c, phosphorus was found on the surface of the steel slag
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sample and was clearly seen based on the peak value in the EDX graph. In the steel slag
sample, a peak value was available on the surface. It shows that the steel slag has an
adsorption capacity based on finding from the EDX result. Adsorptions occur based on
the mechanism key contained in the steel slag because of its richness in calcium, iron, and
silica which is why this composition plays an important role in P-removal. At acidic pH,
high reductive dissolution of Fe oxides leads to the release of more Fe which then reacts
with phosphate and is removed efficiently from the wastewater influents. Furthermore,
Ca facilitates P retention through precipitation and forming a Ca-P deposition on the solid
surface [39,40].

3.3. Membrane-Based Separation Processes Using Steel Slag

Membrane-based separation technologies have developed over the last decades to
provide an elegant, robust, and cost-effective treatment solution to achieve high effluent
standard [41–44]. When combined with enhanced phosphorous co-precipitation such as
steel slug, a great and stable phosphorous removal can be expected [45–47]. The contact
angle of such modified membrane with steel slag demonstrated increased hydrophilic-
ity and subsequently increase in water-flux and P-removal. According to the Malaysia
Environmental Quality (Scheduled Waste) Regulation (2005), steel slag is classified as
non-hazardous waste which can be disposed of in appropriate landfills.

4. Conclusions

The novelty of the current work is in improving a Vertical Aerated Rock Filter (VARF)
using steel slag and limestone media to enhance the efficiency of a rock filter (RF) to
eliminate total phosphorus (TP) from domestic wastewater. The effluent parameters that
left the lab-scale system met the discharge limit for standard B throughout the monitoring
period for LSSSF and LSLSF in domestic wastewater. The organic matter from the original
influent was successfully removed through this system. LSSSF and LSLSF are good at
removing COD, BOD, and TSS. The effluent complies with the requirement, but almost
70% of COD removal is from LSSSF. Alkalinity, pH, and DO effluent significantly met the
criteria requirement standard. Both filters were good at increasing the pH value due to
the action of the filter media. Influents from wastewater treatment had a zero DO and
when the influent was treated in the filter, the DO became higher because of the aeration
process and media surface. According to the TP result, both filters had good removal
of about 58% for steel slag and 64% for limestone. As a result, the LSSSF system was
more appropriate compared to LSLSF because steel slag is the best material that can be
used for this experiment. The contact angle of such modified membrane with steel slag
demonstrated increased hydrophilicity and subsequently an increase in water-flux and
P-removal. The presence of Ca, Al, and Fe helps remove phosphorus in wastewater. In
addition to that, the difference between steel slag and limestone is that the slag has a porous
surface compared to limestone. This porous surface makes the adsorption of phosphorus
better than that of a smooth surface. Steel slag is also a waste product, abundant and locally
available compared to limestone. LSSSF is the alternative media for phosphorus. Steel
slag is also a waste product, abundant and locally available compared to limestone, and
could be a successful alternative medium to eliminate the phosphorus from residential
wastewater in wastewater treatment plants.
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