PERFORMANCE OF SELF-COMPACTING CONCRETE
INCORPORATING PALM OIL FUEL ASH AND EGG SHELL POWDER AS
PARTIAL CEMENT REPLACEMENT

MOHAMAD SUGIN BIN KAMARUDDIN

A thesis submitted in partial
fulfillment of the requirement for the award of the
Degree of Master of Civil Engineering

Faculty of Civil and Environmental Engineering
Universiti Tun Hussein Onn Malaysia

FEBRUARY 2020
SPECIALY DEDICATED TO MY BELOVED PARENTS:

KAMARUDDIN BIN JUSOH
RAMLAH BINTI AWANG

Thank you for your sacrifices, good deeds, generosity and giving hearts.

My love to all of you will remain forever.....
ACKNOWLEDGEMENT

With the name of Allah the Most Merciful and His messenger Prophet
Muhammad p.b.u.h

Praise to be Allah, without His grace and compassion, none of this would have been possible.

I would like to take this opportunity to extend my appreciation and thankfulness to my supervisor, DR. GOH WAN INN and co-supervisor PROF. DR NORIDAH BT MOHAMAD for their kind guidance and support toward the accomplishment of this study.

I wish to express my gratitude and love to my loving parents and family members. Thank you very much for being so supportive and generous. Without their support, I would never to expect to come this far. Thanks for all my friends for their help throughout the year for solving over to finish my study.

Not forgetting also, special thanks to all technical staffs in Material and Structure Laboratory for their friendly assistance and help. Their views and tips are very useful indeed.

With Allah’s willing, such enduring aids and advice given by all of you definitely had contributed a lot toward building up my confidence to produce the best in this study. Thank you.....

May Allah showering His blessing upon us all
ABSTRACT

Self-compacting concrete (SCC), is an innovative concrete that uses less aggregates, but high content of cement compared to normal concrete. It is able to flow by itself and does not require compaction. Therefore, raw materials and natural resources are required in large quantities for SCC production. In order, to minimize the usage of the cement in the SCC, the use of agricultural wastes such as palm oil fuel ash (POFA) and eggshell powder (ESP) as partial cement replacement materials for an alternative preventive solution is suggested. This experimental work was conducted to study the potential combined utilization of POFA and ESP as partial cement replacement in SCC. The amount of POFA content ranged between 0% to 15% while ESP varied from 0% to 5% by weight of cement. A total of 90 cubes, 30 cylinders and 30 prisms were prepared for determining compressive, tensile and flexural strength of SCC respectively, while 30 cylinders were additionally prepared to determine modulus of elasticity and Poisson ratio. The physical, chemical, mechanical and microstructural properties were determined, in which it was observed that POFA had high silicon dioxide (62.1%) compared to ESP which had high percentage of calcium oxide (93.4%). Furthermore, based on the results, it was observed that the combined utilization of POFA and ESP enhanced the pozzolanic activity, thus, developing additional calcium silicate hydrate (C-S-H) gels which are responsible for the gain in strength. The combined utilization of POFA and ESP as a cement replacement in SCC had good effect on the compressive and tensile strengths. It was found that 5% POFA and 2.5% ESP was an optimum mix to be used in SCC with 28 days of curing which had the compressive strength of 9.66% higher than the control sample achieved.
ABSTRAK

Konkrit padat sendiri (SCC), adalah inovatif konkrit yang mengandung rendah kandungan agregat tetapi tinggi kandungan simen berbanding konkrit biasa. Ia dapat mengalir dengan sendirinya dan tidak memerlukan pemadatan. Oleh itu, bahan mentah dan sumber asli diperlukan dalam jumlah besar untuk penghasilan SCC. Bagi meminimumkan penggunaan simen dalam SCC, penggunaan bahan buangan pertanian seperti abu terbang kelapa sawit (POFA) dan serbuk kulit telur (ESP) sebagai bahan gantian simen sebagai alternative penyelesaian dicadangkan. Kajian ini menggunakan POFA dan ESP bersama-sama sebagai bahan pengganti simen dalam SCC. Kuantiti POFA digunakan antara 0% hingga 15%, manakala kuantiti ESP dari 0% hingga 5% berdasarkan berat simen. Sebanyak 90 kiub, 30 silinder dan 30 prisma disediakan untuk menentukan kekuatan mampatan, tegangan dan lenturan SCC, manakala 30 silinder juga disediakan untuk menentukan modulus keanjalan dan nisbah Poisson. Ciri-ciri fizikal, kimia, mekanikal dan mikrostruktural telah ditentukan, di mana didapati bahawa POFA mempunyai peratusan silikon dioksida yang tinggi (62.1%) berbanding dengan ESP yang mempunyai peratusan kalsium oksida yang tinggi (93.4%). Tambahan pula, berdasarkan pada keputusannya, ia didapati bahawa gabungan POFA dan ESP meningkatkan aktiviti pozolanik, dengan itu pembentukan gel tambahan kalsium silikat hidrida (C-S-H) yang dapat meningkatkan kekuatan. Penggunaan POFA dan ESP sebagai pengganti simen dalam SCC mempunyai kesan yang baik ke atas kekuatan mampatan dan tegangan. Ia mendapati bahawa 5% POFA dan 2.5% ESP adalah campuran optimum digunakan dalam SCC dengan pengawetan 28 hari yang mempunyai kekuatan mampatan 9.66% lebih tinggi daripada sampel kawalan yang dicapai.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS & ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background of study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Objective</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Scope of study</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Significant of study</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Thesis layout</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Self-compacting concrete</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 History of self-compacting concrete</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Uses and benefit of self-compacting concrete</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Previous research on self-compacting concrete</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Properties of self-compacting concrete</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1 Fresh state properties of SCC</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2 Hardened properties of SCC</td>
<td>17</td>
</tr>
</tbody>
</table>
2.3.3 Microstructural study 22

2.4 Constituents Material of Self-Compacting Concrete 26

2.4.1 Cement 26

2.4.2 Fine aggregates 27

2.4.3 Superplasticizer 28

2.4.4 Water 28

2.4.5 Aggregates 28

2.5 Supplementary cementitious materials (SCMs) 29

2.5.1 Palm oil fuel ash (POFA) 29

2.5.2 Eggshell powder 33

2.6 Utilization of concrete incorporating ESP and POFA 38

2.7 Chemical reaction between SCM’s 39

2.8 Summary 40

CHAPTER 3 METHODOLOGY 42

3.1 Introduction 42

3.2 Research methodology framework 42

3.3 Materials 45

3.3.1 Ordinary Portland cement 45

3.3.2 Eggshell powder (ESP) 45

3.3.3 Palm oil fuel ash (POFA) 46

3.3.4 Sand 47

3.3.5 Coarse aggregate 48

3.3.6 Water 48

3.3.7 Superplasticizer (SP) 49

3.4 Specimen size 49

3.5 Specimen preparation 52

3.5.1 Mix proportion 52

3.5.2 Mixing procedure 53

3.5.3 Mix design of SCC 54

3.6 Water curing 55

3.7 Chemical properties 56

3.7.1 X-Ray Fluorescence 56

3.8 Physical properties 57

3.8.1 Specific gravity 57
3.8.2 Water absorption 58
3.8.3 Particle size distribution 58

3.9 Fresh state properties 59
3.9.1 Filling ability 59
3.9.2 Passing ability 61
3.9.3 Segregation resistance 63

3.10 Microstructure study 64
3.11 Hardened SCC testing method 65
3.11.1 Compressive strength 65
3.11.2 Splitting tensile strength 66
3.11.3 MOE and Poisson’s ratio test 68
3.11.4 Flexural strength 69

3.12 Results of trial mix SCC 70
3.12.1 Mix ratio of SCC 70

3.13 Summary 71

CHAPTER 4 RESULTS AND DISCUSSION 73
4.1 Introduction 73
4.2 Physical and chemical properties of materials 74
4.2.1 Particle size distribution 74
4.2.2 Chemical analysis of materials 76
4.2.3 Morphology of OPC, POFA, ESP 78
4.2.4 Water absorption of aggregate 81
4.3 Workability of SCC incorporating POFA and ESP 82
4.3.1 Filling ability 82
4.3.2 Passing ability 84
4.3.3 Segregation resistance 86
4.4 Mechanical properties of SCC 88
4.4.1 Compressive strength 88
4.4.2 Splitting tensile strength 91
4.4.3 Modulus of elasticity and Poisson’s ratio 93
4.4.4 Flexural strength 94
4.5 Microstructure observation from SEM 96
4.6 Stress-strain relationship 103
4.7 Correlation of results 106
4.7.1 Correlation between compressive and splitting tensile strength 107
4.7.2 Correlation between compressive and flexural strength 109
4.7.3 Correlation between compressive strength and modulus of elasticity 111
4.7.4 Correlation between modulus of elasticity and Poisson’s ratio 112
4.7.5 Summary of correlation 114

4.8 Summary 114

CHAPTER 5 CONCLUSION 115
5.1 Physical and chemical properties of POFA and ESP 115
5.2 Fresh properties of SCC 115
5.3 Mechanical properties of SCC 116
5.4 Optimum mix of SCC 116
5.5 Recommendations 117

REFERENCES 118
APPENDIX 128
VITA 129
LIST OF TABLES

2.1 Physical properties and chemical compositions of OPC 27
2.2 Percentages of chemical compositions in POFA by 30
several researchers
2.3 Physical properties of ground POFA and raw POFA. 31
2.4 Summary of previous study by using POFA 32
2.5 The production of chicken egg in Malaysia. 34.
2.6 Chemical composition and specific gravity of the materials 35
2.7 Review of previous study by using Eggshell 37
3.1 Sieve analysis of sand 47
3.2 Sieve analysis of 20 mm coarse aggregates 48
3.3 Types, sizes and numbers of mould required 50
3.4 The percentage of self-compacting concrete 52
 incorporating POFA and ESP
3.5 Typical range of SCC mix composition 54
3.6 SCC mix design calculations 55
3.7 Slump flow classes. 61
3.8 Compressive strength at 7 days and slump flow results for 71
 controlled self-compacting concrete
4.1 The physical properties of POFA, ESP and OPC 75
4.2 Chemical composition of OPC, POFA and ESP 77
4.3 Classification of POFA according to ASTM C618-17a 78
4.4 Water absorption and specific gravity of sand and 81
 coarse aggregate
4.5 Result of filling ability using slump flow and t_{500} test 83
4.6 Result of passing ability by using J-ring test 85
4.7 Result of segregation resistance using sieve segregation 87
4.8 Compressive strength of SCC 88
4.9 Average splitting tensile strength of SCC 91
4.10 Results of modulus of elasticity and Poisson’s ratio 94
4.11 Flexure strength of SCC incorporating POFA and ESP 95
4.12 Peak stress and strains for SCC mixes 106
4.13 Strength of correlation coefficient 107
4.14 Correlation coefficient between compressive and splitting tensile strength 109
4.15 Correlation coefficient between compressive strength and flexural strength 110
4.16 Correlation coefficient between compressive strength and modulus of elasticity 112
4.17 Correlation coefficient between modulus of elasticity and Poisson’s ratio 113
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>J-Ring test</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Relationship between compressive strength</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Compressive strength for various percent replacement of POFA</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Relationship between splitting tensile strength and POFA content</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Relationship between static MOE and MT-POFA content</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Morphology of cement pastes</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>The sample paste containing 50% of POFA</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>SEM Micrographs of various mixes</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Compressive strength with age for control and ESP replaced control</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Research framework</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of ESP</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of POFA</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Superplasticizer</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Cube mould</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Cylinder mould</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Prism mould</td>
<td>51</td>
</tr>
<tr>
<td>3.8</td>
<td>Mixing procedure for SCC</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Sample kept in water tank</td>
<td>56</td>
</tr>
<tr>
<td>3.10</td>
<td>X-Ray Fluorescence</td>
<td>57</td>
</tr>
<tr>
<td>3.11</td>
<td>Die set</td>
<td>57</td>
</tr>
<tr>
<td>3.12</td>
<td>Flask capacity and kerosene</td>
<td>58</td>
</tr>
<tr>
<td>3.13</td>
<td>Particle size analyzer</td>
<td>59</td>
</tr>
<tr>
<td>3.14</td>
<td>Rotating water</td>
<td>59</td>
</tr>
<tr>
<td>3.15</td>
<td>Base plate for slump flow test and T_{500} test</td>
<td>60</td>
</tr>
</tbody>
</table>
3.16 Pouring SCC mixture into the slump cone and measuring the slump flow diameter
61
3.17 Top view of narrow gap J-ring
62
3.18 Measure the height difference flow of SCC
62
3.19 Sieve segregation test of cover and sample container
63
3.20 Scanning Electron Microscope (SEM)
64
3.21 Compressive strength testing
66
3.22 Tensile strength testing of cylinder
67
3.23 Poisson’s ratio and modulus of elasticity testing
69
3.24 4-points flexure test on prismatic specimen
70
4.1 Particle size analysis of OPC, ESP and POFA
74
4.2 Particle morphologies of OPC
79
4.3 Particle morphologies of ESP
80
4.4 Particle morphologies of POFA
80
4.5 Slump flow of SCC
83
4.6 Passing ability of SCC
85
4.7 Result of segregated portion, SR (%)
86
4.8 Average compressive strength of SCC
90
4.9 Average tensile strength of SCC
92
4.10 Average flexural strength of SCC
96
4.11 SEM images of sample at 90 days
97
4.12 Stress strain relationship of SCC based on 5% of POFA and 2.5%, 5% of ESP
104
4.13 Stress strain relationship of SCC based on 10% of POFA and 2.5%, 5% of ESP
105
4.14 Stress strain relationship of SCC based on 15% of POFA and 2.5%, 5% of ESP
105
4.15 Relationship between splitting tensile strength and compressive strength of SCC
108
4.16 Relationship between flexural strength and compressive strength of SCC
110
4.17 Relationship between compressive strength and modulus of elasticity
111
4.18 Relationship between modulus of elasticity and compressive strength of SCC
LIST OF SYMBOLS & ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
<td>- Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Temperature</td>
<td>- Temperature</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometre</td>
<td>- Micrometre</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>Aluminium trioxide</td>
<td>- Aluminium trioxide</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
<td>- British Standard</td>
</tr>
<tr>
<td>C-S-H</td>
<td>Calcium-silicate-hydrate</td>
<td>- Calcium-silicate-hydrate</td>
</tr>
<tr>
<td>$CaCO_3$</td>
<td>Calcium carbonate</td>
<td>- Calcium carbonate</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
<td>- Calcium oxide</td>
</tr>
<tr>
<td>$Ca(OH)_2$</td>
<td>Calcium hydroxide</td>
<td>- Calcium hydroxide</td>
</tr>
<tr>
<td>cm²/g</td>
<td>Centimeter square per grams</td>
<td>- Centimeter square per grams</td>
</tr>
<tr>
<td>CO_2</td>
<td>Carbon dioxide</td>
<td>- Carbon dioxide</td>
</tr>
<tr>
<td>CRTs</td>
<td>Cathode ray tubes</td>
<td>- Cathode ray tubes</td>
</tr>
<tr>
<td>ESP</td>
<td>Eggshell powder</td>
<td>- Eggshell powder</td>
</tr>
<tr>
<td>FAMA</td>
<td>Federal Agricultural Marketing Authorities</td>
<td>- Federal Agricultural Marketing Authorities</td>
</tr>
<tr>
<td>Fe_2O_3</td>
<td>Ferric oxide</td>
<td>- Ferric oxide</td>
</tr>
<tr>
<td>FKAAS</td>
<td>Faculty of Civil and Environmental Engineering</td>
<td>- Faculty of Civil and Environmental Engineering</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
<td>- Gross domestic product</td>
</tr>
<tr>
<td>IBS</td>
<td>Industrialized building system</td>
<td>- Industrialized building system</td>
</tr>
<tr>
<td>kg/m^3</td>
<td>Kilogram per cubic meter</td>
<td>- Kilogram per cubic meter</td>
</tr>
<tr>
<td>kN</td>
<td>Kilonewton</td>
<td>- Kilonewton</td>
</tr>
<tr>
<td>$litres/m^3$</td>
<td>Litres per meter cubic</td>
<td>- Litres per meter cubic</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss of Ignition</td>
<td>- Loss of Ignition</td>
</tr>
<tr>
<td>MOE</td>
<td>Modulus of elasticity</td>
<td>- Modulus of elasticity</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascal</td>
<td>- Megapascal</td>
</tr>
<tr>
<td>MS</td>
<td>Malaysia standard</td>
<td>- Malaysia standard</td>
</tr>
<tr>
<td>N/mm^2</td>
<td>Newton per millimeter square</td>
<td>- Newton per millimeter square</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
<td></td>
</tr>
<tr>
<td>POFA</td>
<td>Palm Oil Fuel Ash</td>
<td></td>
</tr>
<tr>
<td>PSD</td>
<td>Particle size distribution</td>
<td></td>
</tr>
<tr>
<td>SCC</td>
<td>Self-compacting concrete</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon oxide</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Sieve resistance</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium Oxide</td>
<td></td>
</tr>
<tr>
<td>UTHM</td>
<td>Universiti Tun Hussein Onn Malaysia</td>
<td></td>
</tr>
<tr>
<td>W/B</td>
<td>Water binder</td>
<td></td>
</tr>
<tr>
<td>W/C</td>
<td>Water content</td>
<td></td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the study

Malaysia is a successful developing country and forging ahead to become a developed nation. In order to be more successful, Malaysia has to improve its construction sector which has been playing a significant role in the accretion of its economy (Lee et al., 2014). Considering the important role of the construction sector in the economic development of Malaysia, it is necessary for Malaysian government to give due attention and focus on the construction sector for qualifying the title of a developed nation.

Concrete materials are extensively used in the building and construction industries. Commonly, concrete is produced by using cement, sand, gravel and water. There are many different types of concrete being produced by using waste materials to reduce the utilization of cement, save the landfill areas and decrease the environmental pollution (Pourakbar et al., 2015).

SCC also known as self-consolidating concrete is an innovative concrete technology which has a wide range of advantages compared to normal concrete. The advantages of SCC include faster construction, reduction in site workers, better and easy finishing, easy placement and reduction in noise level. SCC was developed to compensate for the shortage of skilled labour in the construction industry. Thus, it has been rendered efficient and beneficial from both technological and economic standpoint. SCC has great advantages in being used in dense reinforcement, deep foundations and vertical structural members e.g column without any external efforts (Yakhlaf, 2013).
SCC contributes to industrialized building system (IBS) which is sustainable and environment friendly. With an ever-growing demand for affordable housing, conventional building construction being practiced in Malaysia is unable to fulfill the housing demand (Afif Iman et al., 2018). Thus, adoption of innovative construction system such as IBS is much needed to overcome such raising demand.

SCC contains greater cement content as binder ranging from 430 kg/m3 to 700 kg/m3 (Alsubari et al., 2015). In addition, using high cement content in the concrete mix is a disadvantage of this type of concrete from an environmental sustainability point of view.

Cement is an important ingredient for all kinds of concrete. The cement production generates carbon dioxide (CO$_2$) during the production of clinker thus causing global warming (Andrew, 2018). According to Ranjbar et al. (2014), about 0.7 to 1.1 ton of CO$_2$ per ton of the cement is produced and about 50% of this can be attributed to limestone calcination, 40% to fuel combustion in the kiln, and the remaining 10% to other manufacturing processes and product transportation. Ordinary Portland cement (OPC) is among the most popular construction material used. CO$_2$ emissions can be reduced by minimizing the use of OPC by using the cementitious materials such as fly ash (FA), POFA, ESP, silica fume (SF), and ground granulated blast furnace slag (GGBS) as partial replacements for cement to decrease cement consumption and hence its production.

The large quantities of industrial by-products are generated every year through the agricultural processing industries which have created environmental pollution as well as an economic burden on the industry regarding the disposal of such waste products (Alsubari et al., 2015). Increasing environmental awareness, lack of space for land-fill and the ever-growing cost of disposal of waste products, has led to the utilization of waste materials. Utilization of waste products in construction materials such as concrete ultimately helps in reducing the amount of disposed landfill waste and CO$_2$ emission during the production of cement (Francis & Eldhose, 2017).

Malaysia is one of the world’s largest palm oil producers and exporters. It generates 4 million tons of a waste product known as POFA annually, which is disposed of as solid waste (Mat Aris et al., 2018). POFA is major waste that needs to be recycled.
Another waste material is Eggshells. It has been recorded that 2.8 million eggs are consumed daily especially chicken eggs (Ministry of Agriculture and Agro-Based Industry Malaysia, 2017). Due to its large consumption, the disposal of eggshell has the potential to cause significant environmental pollution. To overcome this, previous studies have utilized POFA and eggshells as a cement replacement individually (Alsubari et al., 2015; Yong et al., 2016; Sivakumar & Mahendran 2014; Yerramala 2014; Pliya, 2015).

POFA has pozzolanic materials and possesses a high content of silica oxide (SiO_2) but limited content of calcium oxide (Narendra & Pathrose, 2017) compared to ESP which has a high content of calcium oxide (CaO) and limited content of silica oxide (Yerramala, 2014). The SiO_2 of the treated POFA reacts chemically with the calcium hydroxide Ca(OH)_2 to form a secondary calcium-silicate-hydrate (C–S–H). This additional C–S–H is the main compound contributing to strength and it fills in the capillary pores to improve the microstructure of the cement matrix and the transition zone resulting in an enhancement of compressive strength (Le et al., 2016).

It is hypothesized that if POFA and ESP are utilized together as a partial cement replacement, the extra CaO from the eggshell can act as a catalyst to POFA’s pozzolanic reaction and ultimately increase the strength gain and increase the percent cement replacement.

1.2 Problem statement

SCC represents an innovation in the building industry due to its workability. SCC is able to flow under its own weight, filling perfectly the formwork even in the presence of congested reinforcement without vibration. The benefits of SCC include higher powder content, limited volume and nominal maximum size of coarse aggregate, superplasticizers presented in the design requirements to achieve self-compatibility (Bradu et al., 2016). The higher powder content leads to the idea of replacement of cement with waste materials. At the same time, a considerable quantity of agricultural waste and disposal of other types of solid materials are posing serious environmental issues. To minimize the negative impact of the concrete industry through the explosive
usage of raw materials, the use of agricultural wastes as supplementary cementitious materials, the source of which are both reliable and suitable for alternative preventive solutions promotes the environmental sustainability of the industry.

In Malaysia, the egg consumption was recorded at 2.8 million eggs daily especially chicken eggs (Astro Awani, 2016). The disposal of the eggshell has the potential to cause environmental pollution, due to its availability and chemical composition, hence proper management and treatment are required (Raji & Samuel, 2015). Nowadays, chicken eggshell had been listed worldwide as one of the worst environmental problems, causing undesirable odors, which cause irritation and affect the well-being of humans (State, 2012). In this case, it is noticeable that the waste produced by eggshells alone is extremely tremendous. So, by following this trend, the amount of eggshell waste produced was estimated to be same and will increase every year.

POFA is another major waste that needs recycling in Malaysia. Recently, Malaysia is said to be one of the largest producers of palm oil waste every year (Kushairi, 2019). POFA is the ash that is produced by burning the palm oil shell and husk as fuel in a palm oil mill boiler in order to produce steam to generate electricity for the palm oil extraction process. This material is usually sent to landfill without any commercial gain. To counter that several researchers had attempted to reuse POFA sustainably, and it was found that POFA has pozzolanic properties due to which it can be used as an alternative of cement in the construction industry. Specifically, as a unique cement replacement in materials of building construction.

Throughout the years, attempts have been made to use waste materials in the concrete to improve its mechanical properties as well as to reduce the issues related to waste disposal (Al-Hadithi et al., 2016; Hama, 2017; Patnaik et al., 2018). Major waste materials such as POFA, silica fume, quartz sand, ESP and others have been utilized in the concrete (Mohamad et al., 2018; Mujah, 2016; Lu et al., 2015). Several researchers were using a wide array of supplementary cementitious materials and waste products with concrete. This innovative utilization of waste materials aims at reducing the amount of cement in concrete along with finding an alternative disposal method for these waste materials.
Many researchers have studied the use of POFA and eggshell individually in normal concrete, high strength concrete and lightweight concrete (Munir et al., 2015; Wan Yusof et al., 2015). Previous studies reveal that agricultural wastes containing a high amount of silica could be used as a pozzolanic material. Sooraj (2013), stated that, in comparison between OPC concrete and concrete containing POFA, waste materials showed improvement in the mechanical properties of concrete. Another agricultural waste is eggshell. The studies on ESP as a cement replacement revealed that ESP can replace cement at an optimum percentage (Yerramala, 2014). It is a poultry waste with a chemical composition nearly same as that of the cement. Use of eggshell waste instead of natural lime to replace cement in concrete can have benefits like minimizing use of cement, conserving natural lime and utilizing a waste material.

The POFA has high content of silica oxide (Lim et al., 2015) but less proportion of calcium oxide (Najim et al., 2016) compared to ESP which has a high content of calcium oxide and less content of silica oxide. Therefore, the combination of supplementary materials of POFA and ESP provides a good composition suitable for being used as a cement replacement.

Based on POFA and ESP properties, the solid waste materials can either be used as supplementary cementitious materials or as replacement of fine aggregate in SCC. Therefore, recycling POFA and eggshells into the useful product gives a good potential for the agricultural industry, food manufacturing and much wider construction industry. It is because the usage of waste products can reduce the usage of cement in manufacturing, but can also reduce the cost of landfill activity and pollution. At the same time, it contributes to a significant improvement in the quality of concrete structures and opens up new fields for the application of SCC.

1.3 Objectives

The objectives of this research are:

i. To investigate the physical and chemical properties of POFA and ESP.

ii. To determine the fresh and mechanical properties of SCC incorporating POFA and ESP as partial cement replacement.
iii. To define the optimum percentage of POFA and ESP as partial cement replacement in SCC.

1.4 Scope of the study

This study focused on the physical and chemical properties of the material, workability of fresh SCC, microstructural analysis and hardened properties of SCC by using different percentages of ESP namely 0%, 2.5% and 5% and of POFA namely 5%, 10% and 15% as partial cement replacement. The limitation percentage of the materials are used based on the optimum percentage from previous study (Oyejobi et al., 2018; Golizadeh & Banihashemi, 2015; Hama, 2017; Gowsika et al., 2014).

The physical properties such as specific gravity, water absorption and particle size distribution of raw materials were analyzed. The chemical composition of POFA and ESP were investigated by x-ray fluorescence (XRF) test. The workability of fresh state SCC was determined by slump flow test, J-ring test and segregation test. Scanning electron microscope (SEM) used to investigate the morphology of POFA, ESP and the concrete for microstructural analysis. The mechanical properties such as compressive strength, splitting tensile strength, modulus of elasticity, Poisson’s ratio and flexural strength of SCC were analyzed by utilizing different proportions of POFA and ESP.

Material preparation and casting were conducted according to requirements of the American Society for Testing and Materials (ASTM). To determine the effect of POFA and ESP, utilized as partial cement replacement, on the compressive strength of SCC three cubes were cast for each of the 7, 28 and 90 days curing regimes. Six cylindrical samples were cast for each mix proportion, three for split tensile tests and three for the compressive test to determine the modulus of elasticity and the Poisson’s ratio on 28th day. Besides, the prisms having dimensions 100 mm x 100 mm x 500 mm were cast to examine the flexural strength and failure mode with 4-point load test for 28 days curing.
1.5 Significance of the study

The higher consumption of cement in SCC production, led to finding alternatives that can be used as partial cement replacement especially disposable and less valuable wastes from industry and agriculture, whose potential benefits can be realized through recycling, reuse and renewal. It is because the demand for concrete is increasing day by day which needs to be resolved using supplementary cementing materials.

Therefore, the significance of this study is to gain knowledge and improve the strength of the SCC incorporating POFA and ESP as cement replacement. The importance of this study is to explore sustainable products made from the waste materials which can contribute to the reduction of agricultural waste residual.

In addition, this study can help in providing an idea and vision to other researchers or engineers regarding the potential applications of sustainable SCC. This research output will also contribute towards sustainability of available material resources and environmental protection through minimizing the usage of natural materials.

1.6 Thesis layout

This thesis covers the experimental study conducted in five chapters. Chapter one provides a brief background related to this study and the problems faced therein. The chapter also presents objectives, scope and significance of the study and the layout of report.

Chapter two discusses SCC and its advantages over normal weight concrete, utilization of supplementary cementitious materials which include POFA and ESP, and the innovative idea of SCC containing POFA and ESP rising from the environmental issues caused by the production of cement.

Chapter three presents the research framework associated with this experimental work involved in this study. It contains the materials used and their preparation, detailed mix proportions, mixing procedures, curing as well as various tests related to this study are discussed.
Chapter four presents the results obtained and their analysis to provide a discussion of the results. The physical and chemical properties of POFA and ESP are discussed. While the effect of partial cement replacement by utilizing POFA and ESP on the fresh and hardened state properties of SCC is also discussed. The optimum mix proportions of POFA and ESP in SCC are also discussed.

Chapter five concludes based on the results obtained and provides recommendations for further research related to the development of SCC incorporating POFA and ESP.
REFERENCES

Ayisy Yusof (2019). Malaysia to cap 6.5m ha of oil palm plantations by 2023. *New Straits Times*.

