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ABSTRAK

Masalah pengoptimuman sering ditemui dalam pelbagai bidang. Pengelasan algoritma
metaheuristik berasaskan anggaran telah diperkenalkan bagi menyelesaikan masalah
pengoptimuman. Algoritma Kalman Penapis Simulasi (SKF) adalah salah satu algoritma
di bawah klasifikasi ini. SKF diilhami oleh rangka kerja penapis Kalman (KF) iaitu
penganggar yang popular bagi menyelesaikan masalah anggaran. SKF memerlukan
parameter keadaan awalan, ralat kovarian awalan, hingar pengukuran, dan hingar proses
untuk beroperasi. Namun, tiada kajian penalaan parameter dijalankan bagi kesemua
parameter SKF. Memilih nilai parameter optimal dapat meningkatkan prestasi algoritma.
Ini boleh dilakukan melalui eksperimen penalaan parameter. Namun, penalaan beberapa
parameter adalah tugas yang mencabar dan memakan masa. Oleh itu, kajian ini cuba
mengguna pakai strategi pencarian baru dari penganggar popular yang lain, dinamakan
Penapis sambutan dedenyut terhingga saksama lelaran muktamad (UFIR) yang bekerja
dengan hanya satu parameter. Penapis UFIR adalah salah satu daripada variasi penapis
sambutan dedenyut terhingga (FIR). Penapis FIR diperkenalkan untuk mengatasi had
dalam penapis KF yang mempunyai beberapa parameter yang sukar ditentukan dalam
aplikasi-nyata. Dalam kerja ini, tiga algoritma baru metaheuristik berasaskan anggaran
diperkenalkan. Algoritma pertama adalah algoritma berasaskan ejen-tunggal, dinamakan
pengoptimum FIR ejen-tunggal (SAFIRO). Algoritma kedua adalah algoritma berasaskan
ejen-berbilang dengan mekanisme kemas kini segerak, dinamakan pengoptimum FIR
ejen-berbilang (MAFIRO). Algoritma ketiga adalah algoritma berasaskan agen-berbilang
dengan mekanisme kemas Kini tak segerak, dinamakan pengoptimum FIR tak segerak
(AFIRO). SAFIRO berbeza daripada MAFIRO dari segi bilangan ejen. Manakala,
MAFIRO berbeza daripada AFIRO dari segi strategi pencarian lelaran. Ketiga-tiga
algoritma ini dipanggil secara pendek sebagai pengoptimum-pengoptimum FIR (FIROs).
Setiap ejen FIROs bertanggungjawab mencari penyelesaian dengan melakukan
pengukuran dan anggaran. Semasa pengukuran, FIROs menggunakan mutasi rawak bagi
penyelesaian terbaik setakat ini beserta kaedah kejiranan tempatan untuk mengimbangi
antara proses penjelajahan dan eksploitasi. Nilai pengukuran ini kemudiannya digunakan
dalam anggaran bagi menambah baik penyelesaian secara lelaran. Prestasi FIROs diuji
dengan menyelesaikan suit tanda aras CEC 2014. Kompetensi FIROs dibandingkan
secara statistik dengan empat algoritma metaheuristik sedia ada: SKF, penyelesaian-
tunggal SKF (ssSKF), Pengoptimuman kerumunan zarah (PSO), dan algoritma Genetik
(GA). Analisis statistik menggunakan ujian Friedman dan ujian Holm post hoc
dilaksanakan untuk membariskan prestasi FIROs. Ujian Friedman menunjukkan SAFIRO
mempunyai baris tertinggi, diikuti oleh MAFIRO, AFIRO, ssSKF, SKF, PSO, dan GA.
Ujian Holm post hoc mendedahkan prestasi SAFIRO nyata lebih baik daripada SKF,
ssSKF, PSO, dan GA. Manakala, prestasi kedua-dua MAFIRO dan AFIRO nyata lebih
baik daripada PSO dan GA, tetapi setara dengan SKF dan ssSKF. SAFIRO, MAFIRO,
dan AFIRO memberikan prestasi yang setara. Walau bagaimanapun, SAFIRO boleh
dianggap sebagai algoritma terbaik dengan baris tertinggi Friedman dan jumlah tertinggi
prestasi terbaik dalam menyelesaikan suit tanda aras CEC 2014. Penemuan menunjukkan
konsep penapis UFIR adalah inspirasi yang baik bagi algoritma metaheuristik. Algoritma-
algoritma metaheuristik baru berasaskan penganggaran ini boleh menawarkan hasil yang
diharapkan bagi menyelesaikan masalah pengoptimuman.



ABSTRACT

Optimization problems are frequently found in various fields. The classification of
estimation-based metaheuristic algorithms has been introduced for solving optimization
problems. Simulated Kalman filter (SKF) algorithm is one of the algorithms under this
classification. SKF is inspired by the framework of Kalman filter (KF) which is a popular
estimator for solving estimation problems. SKF needs parameters of the initial error
covariant, measurement noise, and process noise to operate. Nonetheless, no study on
parameter tuning being carried out for all SKF’s parameters. Selecting optimal
parameters’ values may improve an algorithm’s performance. This can be done through
parameter tuning experiment. However, tuning several parameters is a challenging task
and time-consuming. Thus, this study attempts to adopt a new search strategy from
another popular estimator, named the Ultimate iterative unbiased finite impulse response
(UFIR) filter which works with only one parameter. UFIR filter is one of the variants of
the finite impulse response (FIR) filter. FIR filter is introduced to overcome the limitation
in KF filter which has several parameters that difficult to be determined in a real
application. In this work, three new estimation-based metaheuristic algorithms are
introduced. The first algorithm is a single-agent-based algorithm, named Single-agent
FIR optimizer (SAFIRO). The second algorithm is a multi-agent-based algorithm with
synchronous update mechanism, named Multi-agent FIR optimizer (MAFIRO). The third
algorithm is a multi-agent-based algorithm with asynchronous update mechanism, named
Asynchronous FIR optimizer (AFIRO). SAFIRO differs from MAFIRO in term of the
number of agents. Meanwhile, MAFIRO differs from AFIRO in terms of the iteration
search strategy. These three algorithms are called in short as FIR optimizers (FIROs).
Each agent in FIROs responsible for searching a solution by performing the measurement
and estimation. During measurement, FIROs employ a random mutation of the best-so-
far solution with local neighbourhood method to balance between the exploration and
exploitation process. This measurement value is then used in the estimation to improve
the solution iteratively. The performances of FIROs are tested by solving the CEC 2014
benchmark suite. The competencies of FIROs are statistically compared with four
existing metaheuristic algorithms: the SKF, single-solution SKF (ssSKF), Particle swarm
optimization (PSO), and Genetic algorithm (GA). Statistical analysis using the Friedman
test and Holm post hoc test are performed to rank the performances of FIROs. Friedman
test shows that SAFIRO has the highest rank, followed by MAFIRO, AFIRO, ssSKF,
SKF, PSO, and GA. Holm post hoc test reveals SAFIRO performed significantly better
than SKF, ssSKF, PSO, and GA. Whereas, both MAFIRO and AFIRO performed
significantly better than PSO and GA, but equivalent to SKF and ssSKF. SAFIRO,
MAFIRO, and AFIRO provide on par performances. However, SAFIRO can be regarded
as the best algorithm with the highest ranking of Friedman and the highest number of best
performances in solving the CEC 2014 benchmark suite. Findings show that the concept
of UFIR filter is a good inspiration for metaheuristic algorithm. These newly estimation-
based metaheuristic algorithms can offer promising results for solving optimization
problems.



TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS

ABSTRAK

ABSTRACT

TABLE OF CONTENT

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Overview of Optimization and Metaheuristic Algorithms for

global optimization problems
1.3  Research Motivation
1.4 Problem Statement
1.5 Research Questions
1.6 Research Aim and Objectives
1.7  Research Scopes
1.8 Research Design

1.9 Thesis Outline

CHAPTER 2 LITERATURE REVIEW

Xi

Xiii

Xiv

10

11

12

14



2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

Introduction

An Overview of Classes of Metaheuristic Algorithms
2.2.1 Single-agent-based metaheuristic algorithm
2.2.2 Multi-agent-based metaheuristic algorithm
Iteration Strategy in Multi-agent-based Metaheuristic
2.3.1 Synchronous update mechanism

2.3.2 Asynchronous update mechanism

Review on Trends of Metaheuristic Algorithms

2.4.1 Standard Benchmark Test Suite

Estimators in the state-space model

2.5.1 Overview of the Kalman filter

2.5.2  Overview of the Finite Impulse Response Filter

2.5.3 Theoretical Background of the Ultimate Iterative
Unbiased Finite Impulse Response (UFIR) Filter

Estimation-based metaheuristic algorithms
2.6.1 Heuristic Kalman algorithm

2.6.2 Simulated Kalman filter algorithm
Research Gap Analysis

Chapter Summary

CHAPTER 3 FINITE IMPULSE RESPONSE OPTIMIZERS

3.1

3.2

3.3

3.4

Introduction

The Principle of the Finite Impulse Response Optimizers
The Single-agent Finite Impulse Response Optimizer
3.3.1 The Procedures of SAFIRO

3.3.2 Numerical Example

The Multi-agent Finite Impulse Response Optimizer

Vi

14

14

21

23

23

23

25

29

32

35

36

37

38

40

41

42

44

46

48

48

49

51

52

58

70



3.5

3.6

3.7

3.8

3.9

3.4.1 The Procedures of MAFIRO

The Asynchronous Finite Impulse Response Optimizer
3.5.1 The Procedures of AFIRO

Comparisons of UFIR filter and FIROs

Comparisons of SAFIRO, MAFIRO, and AFIRO
Comparisons of SKF algorithm and MAFIRO

Summary

CHAPTER 4 EXPERIMENTS, RESULTS, AND DISCUSSION

4.1

4.2

4.3

4.4

4.5

Introduction
Experimental Setup

Evaluation of Performances for FIROs and Comparisons with
other Optimizers on the CEC 2014 Benchmark Suite

4.3.1 Unimodal functions (Fnl to Fn3)

4.3.2 Simple multimodal functions (Fn4 to Fn16)
4.3.3 Hybrid functions (Fnl17 to Fn22)

4.3.4 Composition functions (Fn23 to Fn30)
4.3.5 Statistical analysis

4.3.6 Convergence behaviour

4.3.7 Exploration and exploitation in FIROs
Parameters Analyses for FIROs

4.4.1 Analyses of different values of the coefficient and the
horizontal length for SAFIRO

4.4.2 Analyses of the different number of agents for MAFIRO
and AFIRO

Discussion

vii

73

77

79

83

83

86

91

92

92

92

97

98

99

100

100

110

111

117

131

131

135

137



4.6

45.1 Comparison of FIROs and the other algorithms based

on the findings

4.5.2 Analysis of SAFIRO, MAFIRO, and AFIRO based on
the findings

Chapter Summary

CHAPTER 5 CONCLUSION

51 Introduction

5.2  Conclusion

5.3  Research Contribution

54 Research Limitation

5.5  Recommendation for Future Research
REFERENCES

APPENDIX A LIST OF PUBLICATIONS

APPENDIX B DATA FOR PARAMETER ANALYSIS

APPENDIX C TABLE of CHI-SQUARE

APPENDIX D TABLE OF Z

APPENDIX E FOURTEEN BASIC FUNCTIONS IN CEC 2014
BENCHMARK SUITE

APPENDIX F THE 3-D MAP of CEC 2014 BENCHMARK SUITE

viii

137

141

144

145

145

145

150

151

151

153

174

175

185

186

187

190



Table 2.1

Table 2.2

Table 2.3

Table 2.4
Table 3.1
Table 3.2

Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10
Table 3.11
Table 3.12
Table 3.13
Table 4.1
Table 4.2
Table 4.3

Table 4.4

Table 4.5
Table 4.6

Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11

LIST OF TABLES

General differences between synchronous and asynchronous
iteration strategy

Categories of some existing metaheuristic algorithms (2014 to
2016)

Categories of some existing metaheuristic algorithms (2017 and
2019)

The CEC 2014 benchmark suite
Setting of the sphere function and the SAFIRO’s parameters

Random initial measurements and the calculation of the fitness
values

Calculations of the new measurement, Y(1)

Calculations of the estimation, X(1) at iteration, t=1

The value and fitness of the initial X_best_so_far and X(1)
Calculations of the measurement, Y(2) and estimation, X(2)
The value and fitness of X_best_so_far and X(2)
Calculations of the measurement, Y(3) and estimation, X(3)
The value and fitness of X_best_so_far and X(3)

The value and fitness of X_best_so far at t=0 until t=3
Comparisons of UFIR filter and FIROs

Comparisons of SAFIRO, MAFIRO, and AFIRO
Comparisons of SKF algorithm and MAFIRO
Experimental settings

The parameter settings for SKF, ssSKF, GA, and PSO

Results of FIROs, SKF, ssSKF, GA, and PSO for unimodal
functions

Results of FIROs, SKF, ssSKF, GA, and PSO for simple
multimodal functions

Results of FIROs, SKF, ssSKF, GA, and PSO for hybrid functions

Results of FIROs, SKF, ssSKF, GA, and PSO for composition
functions

Average ranking of the algorithms

Holm post hoc result for =0.05

Average Friedman ranking of different f values for N=4
Holm post hoc of different g values for N=4

The rank of SAFIRO’s performance with different £ values for
N=4 until N=10

26

30

31
34
59

60
62
63
64
66
66
67
67
68
83
89
90
94
94

102

102
104

105
111
111
133
133

133



Table 4.12
Table 4.13
Table 4.14
Table 4.15

Table 4.16

Table 4.17

Average Friedman ranking of different N values for =10
Results of Holm post hoc test for different values of N
Setting for the number of iteration for each number of agents used

Average Friedman ranking of the different number of agents for
MAFIRO

Average Friedman ranking of the different number of agents for
AFIRO

Comparisons of the number of the best performances for FIROs,
SKF, ssSKF, GA, and PSO in solving the CEC 2014 benchmark
suite

134
134
136

136

136

138



Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4
Figure 2.5

Figure 2.6
Figure 2.7

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20

LIST OF FIGURES

A general optimization flow

Classification of optimization methods

The flow chart of the major research milestones
A general flow of evolutionary algorithms

A general flow of swarm intelligence algorithms

Flowchart for general steps of a single-agent-based
metaheuristic algorithm

Flowchart for general procedures of multi-agent-based
metaheuristic algorithm with synchronous update

Flowchart for general steps of multi-agent-based
metaheuristic algorithm with asynchronous update.

The strategy of KF for state estimation.

The strategy of UFIR filter for state estimation
(for example, N=7).

Tasks for SAFIRO’s agent

The principle of SAFIRO

The SAFIRO’s agent with the example of three dimensions
The strategy of a local neighbourhood in FIROs

The plot of e — B X t/T against variants of £ values

A graphical representation of SAFIRO operation

A search surface for sphere function

Five random initial measurements generated at t=0

The position of SAFIRO’s random initial measurements at t=0

The position of SAFIRO’s new measurement, Y (1) at
iteration, t=1

Five recent measurements required to calculate the X(1)

The estimation of SAFIRO at t=1 (X(1))

The position of SAFIRO’s estimation, X(1) at iteration, t=1
The estimation of SAFIRO for t=1 until t=3 (X(1) until X(3))
The position of SAFIRO’s estimations for t=1 until t=3

The principle of MAFIRO

Global topology communication among agents

Tasks for each of MAFIRO agent

The example of three agents with three dimensions

A graphical representation of the estimation operation

Xi

12
16
21

22

24

26
36

39
52
52
54
55
56
57
59
59
61

62
63
64
64
68
69
70
71
72
75
75



Figure 3.21
Figure 3.22
Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5

Figure 4.6

Tasks for each of AFIRO agent
The principle of AFIRO
Boxplots comparison of FIROs, SKF, ssSKF, GA, and PSO

Convergence curves comparison of FIROs, SKF, ssSKF, GA, and
PSO in solving the CEC 2014 benchmark suite

Trajectories of solutions performed by FIRO’s agent
Search histories performed by FIRO’s agent

Fitness trend of FIRO’s agent in solving the CEC 2014
benchmark suite

Comparisons of the number of the best performance for FIRO,
SKF, ssSKF, GA, and PSO in solving the CEC 2014 benchmark
suite

Xii

78
79
108

114
119
125

128

139



LIST OF SYMBOLS

Y Measurement of solution

Estimation of solution

X best_so far The best-so-far solution

N Horizon length

B Coefficient

d Dimension for agent/s

D Maximum dimension

6 Step size/radius for local neighbourhood
Xonin The lower limit of search space
Xonax The upper limit of search space
F¢ Friedman Statistic

x2 Chi-square

a Significant level

p-value Probability value

z Static value of Holm

Xiii



LIST OF ABBREVIATIONS

ABC Artificial bee colony

AFIRO Asynchronous finite impulse response optimizer
CEC Congress on evolutionary computation

DTI Discrete time-invariant

DOF Degree of freedom

EAs Evolutionary algorithms

FES Function evaluation

FIR Finite impulse response

FIROs Finite impulse response optimizers

Fn Function

GA Genetic algorithm

GSA Gravitational search algorithm

GWO Grey wolf optimizer

HKA Heuristic Kalman algorithm

KF Kalman filter

MAFIRO Multi-agent finite impulse response optimizer
maxFES Maximum function evaluation

NIA Nature-inspired algorithm

no. Number

PSO Particle swarm optimization

SAFIRO Single-agent finite impulse response optimizer
SA Simulated annealing

Sl Swarm-inspired

SKF Simulated Kalman filter

TS Tabu Search

UFIR Ultimate iterative unbiased finite impulse response
VNS Variable neighborhood search

Xiv



CHAPTER 1

INTRODUCTION

1.1 Introduction

Chapter 1 provides an introduction to this research. It begins with an overview of
optimization and metaheuristic algorithms. Then, the research motivation, problem
statement, research questions, research aim and objectives, research scopes, and research
design are presented. The overall organization of the thesis is also presented before the

summary of chapter 1.

1.2 Overview of Optimization and Metaheuristic Algorithms for global

optimization problems

One of the issues emphasized in areas such as industry, accounting, economics,
and engineering is the optimization problem. In general, optimization refers to the process
of finding the best either minimum or maximum solution. Optimization problems can be

differentiated according to the following criteria:

I. the type of variables, either continuous or combinatorial (discrete) optimization
problem. A continuous optimization problem has an infinite number of solution
spaces. In contrast, a combinatorial optimization problem has a finite number of
solution spaces.

ii. the number of the objective of the given optimization problem, either single-
objective, bi-objectives, or multi-objective optimization problem. A single-
objective optimization problem involves only one objective function and has only
one optimal solution, whereas bi-objectives involves two objective functions. On
the other hand, a multi-objective optimization problem involves more than one

objective function and has more than one optimal solution.



iii.  the constraints applied to variables either constrained or unconstrained
optimization problem. A constraint optimization problem has some limitations
that the solution must satisfy. As the name suggests, an unconstrained
optimization problem refers to the problem without restriction.

iv. either the time-independent (static optimization problem) or time-dependent
(dynamic optimization problem). In a static optimization problem, the objective
function does not change over time. On the contrary, for a dynamic optimization
problem, the objective function is deterministic at a given time and changes over

time.

Figure 1.1 depicts a general optimization flow. Variables, constraints, and
objective functions are elements that should be investigated in solving optimization
problems. Variables are the input to the objective functions. Meanwhile, constraints are
the limitation on values of variables. The objective functions (also known as fitness
function) are the functions of the given optimization problem to be either minimized or
maximized. The optimization problems can be solved efficiently (within a reasonable
time with a global or also called an optimal solution) by applying any suitable
optimization methods. Optimization methods can be defined as procedures or algorithms
used to solve optimization problems. The aim of an optimization algorithm (also known
as optimizer) is to find an optimal variable’s value that can either minimize or maximize

the objective function under the given constraint.

Typically, optimization methods can be categorized into two major categories: the
exact methods and approximate methods (Talbi, 2009), as illustrated in Figure 1.2. Exact
methods such as the Dynamic programming (Pombeiro, Machado, & Silva, 2017), the
Branch-and-bound algorithm (Kadri, Kacem, & Labadi, 2016) and the Constraint
programming (Carlsson, Johansson, & Larson, 2017) can be applied to solve optimization
problems with a guaranteed optimal solution. However, the exact methods are not suitable
to solve a complex optimization problem due to computational cost in terms of time and
memory. Furthermore, exact methods normally developed as a problem-dependent
algorithm. Thus, they are not flexible to handle various types of optimization problems
(Dumitrescu & Stutzle, 2003).



Values of variables with I . Optimal value of
. . Objective functions .
constraints or unconstraint > (Process) > variables
(Input) (Output)
A
Optimization algorithm |«
Figure 1.1 A general optimization flow
Optimization methods
]
| | | |
Exact methods Approximate methods
1] |
| | 1
Heuristic algorithms Approximation algorithms
] |
| | | |
Metaheuristics Problem-specific heuristics

Single-solution-based metaheuristics

Population-based metaheuristics

Figure 1.2 Classification of optimization methods
Source: Talbi (2009)

Therefore, approximate methods are the other option which can solve complex
optimization problems with a near-optimal solution within a reasonable computational
cost. Approximate methods can be further categorized into two categories: heuristic
algorithms and approximation algorithms (Talbi, 2009). Approximation algorithms can
offer the solution within the range that meet the minimum requirement as determined by
the given problem. However, the solution is usually far from optimal (Baykasoglu,
Hamzadayi, & Akpinar, 2019). Heuristic algorithms have simple rules in finding a near-
optimal solution which requires the problem domain knowledge as they are problem-
dependent algorithms. Problem-specific heuristics and metaheuristics are other categories
of heuristic algorithms. The former is implemented based on the problem’s
characteristics. The latter, on the other hand, is more general algorithms (problem-

independent algorithms) that can be used for various types of optimization problems.



The terminology of metaheuristic was first used by Glover in (Glover, 1986). The
words meta and heuristic originated from Greek words. The former means higher-level
methodology, while the latter means the ways of finding new strategies or rules in
problem-solving (Talbi, 2009). In other words, metaheuristic means higher-level
strategies that provide a set of guidelines for finding an adequately good solution for
optimization problems. Metaheuristic algorithms have gained huge popularity and
attracted researchers’ attention because of the flexibility and ability in solving a variety
of optimization problems.

Over the past twenty years, various metaheuristic algorithms have been designed
and improved to achieve an optimal solution in solving optimization problems. A wide
range of applications such as in power system stabilizer (M. Singh, Patel, & Neema,
2019), medical dataset (Mahendru & Agarwal, 2019), Internet of Things (1oT) application
(Ali, Ejaz, Lee, & Khater, 2019), business forecasting (Puchalsky, Ribeiro, da Veiga,
Freire, & Santos Coelho, 2018), image processing (Anita Christaline, Ramesh, Gomathy,
& Vaishali, 2018), teaching and learning process (De Souza et al., 2018), logistics and
transportation management (Ting, Liao, Huang, & Liaw, 2017), and decision-making
process (Amiri, Sardroud, & Soto, 2017) have been effectively handled using
metaheuristic algorithms. The success of metaheuristic algorithms is mainly due to the
ability to reach an optimal or near-optimal solution within a reasonable execution time,
as well as simple and convenient to be applied for solving different types of optimization

problems.

Besides metaheuristic, there is one more upper-level of heuristic, called
hyperheuristic (Cowling, Kendall, & Soubeiga, 2001). Hyperheuristic algorithms are
another option in searching a good enough solution for optimization problems which
allowed metaheuristic algorithms to be selected adaptively or generated automatically
during the search process (Zamli, Din, Kendall, & Ahmed, 2017). However, the approach
of metaheuristic algorithms is still relevant due to some limitations in hyperheuristic
algorithms. Metaheuristic algorithms attempt to solve an optimization problem directly.
Unlike metaheuristic algorithms, hyperheuristic algorithms are seen more to find the right
method or sequence of heuristic (Burke et al., 2013). Thus, the user needs to know several

metaheuristic algorithms to apply the hyperheuristic algorithm to solve the problem.



Many new metaheuristic algorithms have been proposed which either based on
nature or non-nature inspired. As can be extracted from the No free lunch (NFL) theorem
(Wolpert & Macready, 1997), there is no single optimization algorithm able to solve all
types of optimization problems. A certain metaheuristic algorithm may give good results
for a set of optimization problems, while other metaheuristic algorithms may provide
good results for another set of optimization problems. Since metaheuristic algorithms
cannot promise an optimal solution for all types of problems, the development of new

optimizer or modification of an existing algorithm is still an active research domain.

Nonetheless, a new or a modified algorithm should have improvement and
promising direction of metaheuristic algorithm (Koohi, Abdul Hamid, Othman, &
Ibragimov, 2019; Sorensen, 2013). An increasing number of metaheuristic algorithms
also gives more choice to researchers in choosing a potential optimizer that can work well
for their problem (Lones, 2019).

1.3 Research Motivation

An inspirational source is important to produce an efficient optimizer. An efficient
search strategy by an optimizer contributes to the quality of the solution (X.-S. Yang,
2013). Nevertheless, the challenge is on how to get an inspirational source in developing
a new algorithm or improving the existing algorithm. The trend is to use the inspiration
by infusing biological behaviours or natural phenomena. A new inspiration other than this
trend is not frequently observed, while there are still many inspirational sources that have
not yet gain attention. Therefore, there is immense room for investigating more new

inspirational sources other than biological behaviours or natural phenomena.

The inspirational source can also be taken from the work procedure of an estimator
in a state-space model. A state-space model is a mathematical representation to describe
the input, output, and variables of a system. It was introduced by mathematically-oriented
engineers and applied mathematicians in the late 1950s. A state-space model is often used
in solving various problems, including estimation problems in control engineering. The
use of a state-space model for improving the control design process was investigated by
Rudolf Emil Kalman and his team in the 1960s (Friedland, 2012). The Infinite impulse

response (IIR) filter (including Kalman filter) and Finite impulse response (FIR) filter



(Kwon, Kim, & Han, 2002) are two types of estimators that are popular among engineers

in solving state estimation problems (Shmaliy, Zhao, & Ahn, 2017).

Kalman filter (Kalman, 1960) able to provide an optimal solution for estimation
problems. However, the outputs of Kalman filter (KF) are always corrupted with the noise
and numerical data error (Ojstersek, Zhang, Palcic, & Buchmeister, 2017). KF needs
correct values of the initial state, X(0), initial error covariance, P(0), process noise, Q,
and measurement noise, R. In real-world, it is difficult to determine the correct values of
those parameters, especially under a poor operational condition (Shmaliy et al., 2017).
Without correct values of those parameters, KF unable to produce a good performance

and may affect the next estimation process due to its infinite impulse response structure.

Hence, an estimator with FIR structure (Jazwinski, 1968) has been introduced to
overcome the limitation of KF. FIR filter is able to ignore the X(0), P(0), Q, and R, thus
has a strong practical feature (Zhao, Shmaliy, Ahn, & Liu, 2018). Instead of KF that needs
four parameters to start the estimation process, FIR only needs one parameter. FIR filter
increasingly being chosen compared to KF due to the robustness and stability in its finite
structure (Ahn, Zhao, Shmaliy, & Sakthivel, 2018; Shmaliy & Simon, 2013).
Subsequently, several FIR versions have been introduced. One of the versions is the
ultimate iterative unbiased finite impulse response (UFIR) filter. UFIR filter offers a fast
near-optimal estimation with a simple form of mathematical modeling (Shmaliy et al.,
2017). With these promising features, the UFIR filter has been applied in many

engineering applications.

In literature, there is a new class of metaheuristic algorithms named as the
estimation-based metaheuristic algorithms (lbrahim, Abdul Aziz, Ab. Aziz, Razali, &
Mohamad, 2016). In this classification, the process of solving estimation problems in
state-space modeling is transformed into the process of solving optimization problems.
An optimal solution for optimization problems is estimated by using the framework of an
estimator. The heuristic Kalman algorithm (HKA) (Toscano & Lynonnet, 2009) and
Simulated Kalman filter (SKF) algorithm (Ibrahim et al., 2015) are among the earlier
estimation-based metaheuristic algorithms. The HKA and SKF algorithm mimic the work

procedure of KF.



The potential for any metaheuristic algorithm to solve other problems can
sometimes be predicted from the pattern of performance of that algorithm in solving the
previous problems (Lones, 2019). Since algorithms under the estimation-based have
competitive performances as reported in (Abdul Aziz, Ibrahim, Razali, & Ab Aziz, 2016),
it motivates this work to look into the potential of another estimator other than KF to be
a source of inspiration for a new optimizer. As previously mentioned, the UFIR filter is
one of the popular estimators besides KF. A good capability of UFIR filter drives this
research to adopt the framework of this estimator into new metaheuristic optimizers.

1.4 Problem Statement

A multi-agent-based SKF algorithm (Ibrahim et al., 2015) has been inspired by
two steps of KF’s framework in estimating the state variables. The two steps are
prediction and estimation. SKF generates its own measurement since it is an optimizer
and no physical system exists to provide the measurement values. Thus, there are three
main steps in SKF. The search strategy starts with the prediction of the position, followed

by the measurement, and lastly, the estimation of an optimal solution.

Similar to its inspirational source, KF, SKF needs four parameters value: the
initial state, X(0), the initial covariance, P(0), the process noise, Q, and the measurement
noise, R to start the optimization process. In KF, the setting value for all parameters is
very important to estimate the state variable efficiently. Without correct values of these
parameters, KF unable to provide good performance. In SKF, besides the number of
agents, the parameters’ values that need to be assigned in the algorithm are P(0), Q, and

R. The value of X(0) is generated randomly as an initial solution.

In the original SKF, the value of P(0) is set as 1000. Meanwhile, both Q and R are
set as 0.5. These values are given based on the nature of KF as an estimator. Until now,
no study on experimental tuning being performed to determine the optimal value for all
parameters used in SKF as an optimizer. All existing works either for improvement of
SKF such as in (Ab.Aziz, Ibrahim, Abdul Aziz, & Ab. Rahman, 2018; Md Yusof et al.,
2018; Mohd Azmi et al., 2019; Muhammad et al., 2016) or application of SKF for real
engineering problems such as in (Abdul Aziz et al., 2016; Ahmad Zamri, Bhuvaneswari,
Ab. Aziz, & Abdul Aziz, 2018; Muhammad et al., 2018) used the same value of P(0), Q,
and R, as in original SKF.



In 2016, a parameter-less SKF was proposed (Abdul Aziz, Ibrahim, Ab Aziz, &
Razali, 2017) as another version of SKF. Instead of using constant values in original SKF,
the value of P(0), Q, and R are randomized in parameter-less SKF. However, no
significant improvement is shown by parameter-less SKF as both versions demonstrated
equivalent performances in solving the CEC 2014 benchmark test suite.

Setting optimal parameter values can optimize the performance of an algorithm
(Ab.Aziz, Abdul Aziz, Zulkifli, Ibrahim, & Ab Rahman, 2018). If parameters P(0), Q,
R, and also the number of agents are set with the optimal value, it is possible that the SKF
can provide better performance than the original SKF as well as the parameter-less SKF.

Algorithm employing more than two parameters need extra effort to be
understood and more complex to be tuned compared to algorithms with lesser than two
parameters. Hence, this study attempts to adopt a new source of inspiration from the
framework of another estimator that require a lesser parameter to estimate the state. The
inspirational source is from the work procedure of the FIR filter, specifically the UFIR
filter (Shmaliy et al., 2017). UFIR filter works with only one parameter which is the
horizon length, N. UFIR has shown higher robustness than the KF, subject to errors in the
presence of temporary model uncertainties and the noise statistics (Zhao et al., 2018).
Unlike KF that has two steps of procedures in estimating the state, UFIR filter only needs
one step, which is the estimation step, without the prediction step. UFIR has a finite
impulse structure where the estimation is performed based on the information of N recent
measurements and does not require the information of X(0), P(0), Q, and R. It is easier to
determine an optimal value of N in UFIR filter compared to determine an optimal value
of X(0), P(0), Q, and R in KF (Shmaliy et al., 2017).

As aforementioned, this research looks into the potential of using the UFIR filter’s
framework in metaheuristic optimizers. The single-agent-based or multi-agent-based
(either with synchronous update or asynchronous update) are categories of optimizers.
Unlike the other algorithms such as Particle swarm optimization (PSO) (Eberhart &
Kennedy, 1995), Grey wolf optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014), and
Hill-climbing (HC) (Hinson & Staddon, 1983) where they are inspired by physical
behaviour, single-agent-based or multi-agent-based is a clear decision for those
algorithms. However, for FIR optimizer, since it is inspired by a mathematical

representation in the state-space model, a single-agent-based or multi-agent-based (either



with synchronous update or asynchronous update) are subjects of investigations in this

study. The purpose of this investigation is to determine the best algorithm structure for

FIR optimizer and subsequently can facilitate the problem statement.

Therefore, based on the advantages of the UFIR filter against Kalman filter, it is

expected that a new search strategy from the framework of the UFIR filter can provide

lesser parameter and better performances compared to the algorithms inspired by Kalman

filter in solving optimization problems.

1.5

RQL.

RQ2.

RQ3.

RQ4.

RQ5.

1.6

Research Questions
The research questions of this study are as follows:

Is FIR filter able to be a good inspirational source for metaheuristic algorithms as
KF?

How to transform the FIR filter from an estimator into an optimizer framework?

What is the best structure for this new FIR optimizer? Is it better as a single-agent-
based algorithm or as a multi-agent-based algorithm? As a multi-agent-based
algorithm, is it better with synchronous iteration strategy or asynchronous

iteration strategy?

Are these algorithms able to solve optimization problems? Do they show better

results than the algorithm inspired by KF?

What is the optimal value for the parameter/s used in the newly proposed

algorithms?
Research Aim and Objectives

This research aims to investigate the potential of the FIR filter, specifically the

UFIR filter as a new search strategy in metaheuristic algorithm which expected to provide

lesser parameter and better performance than the algorithm inspired by the Kalman filter’s

framework in estimating an optimal or near-optimal solution for optimization problems.

To achieve the aim, the objectives of this research are listed below:



1.7

to develop a single-agent-based metaheuristic algorithm named Single-agent
finite impulse response optimizer (SAFIRO).

to develop a multi-agent-based metaheuristic algorithm with synchronous update
mechanism, named Multi-agent finite impulse response optimizer (MAFIRO) and
a multi-agent-based metaheuristic algorithm with asynchronous update
mechanism, named Asynchronous finite impulse response optimizer (AFIRO).
to evaluate the performances of SAFIRO, MAFIRO, and AFIRO in solving a
standard benchmark test suite and compare their performances against the other

existing metaheuristic algorithms.
Research Scopes
The scopes of this research are as follows:

the proposed SAFIRO, MAFIRO and AFIRO are developed for continuous
single-objective optimization problems with bounded constraint.

the proposed algorithms are implemented and tested using MATLAB. The other
algorithms involved in the benchmarking of this research are also implemented
using MATLAB.

the performances of the proposed algorithms are evaluated and compared with
other metaheuristic algorithms based on the mean fitness value and statistical
ranking that obtained in solving the IEEE Congress on evolutionary computation
(CEC) 2014 benchmark suite (J. J. Liang, Qu, & Suganthan, 2013). Besides, the
boxplots of the algorithms are produced to observe the stability of the results. The
patterns of convergence curves are also generated to observe the ability of the
algorithms in finding the solution.

four algorithms are considered to compare the results of the proposed algorithms
against other algorithms, which are the SKF algorithm (Abdul Aziz et al., 2017),
single-solution SKF (ssSKF) algorithm (Abdul Aziz, lbrahim, Ab Aziz,
Mohamad, & Watada, 2018), Genetic algorithm (GA) (Holland, 1992), and PSO
algorithm (Kennedy & Eberhart, 1995).

the Friedman test is applied in this research for statistical analysis as it is suitable
for multi-comparison where performances of all tested algorithms are compared
and ranked with each other. Besides Friedman test, the post hoc analysis using

Holm's method is also applied to characterize the significant differences of

10
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