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Abstract 

Textile wastes consist of multi-component materials are hardly recycled due to 

challenge to sort and separate the waste into a single component. Textile products 

dominantly produced from a non-renewable source that can be recycled several 

times before the end of life. Mixed-waste can be recycled together without sorting by 

thermo-mechanical process to produce hybrid fibres. The aim of this study was to 

investigate the potential on upcycling polyamide 6 (PA6) polymer mixed with 

secondary polymers via one-step twin-screw melt extrusion. Three secondary 

polymers were chosen in this study; thermoplastic polyurethane (TPU) which has 

interaction with PA6, and two polymers which do not have interaction with PA6; 

polyethylene terephthalate (PET) and polypropylene (PP). Different blending 

composition was prepared between PA6 and secondary polymers before being 

extruded into hybrid fibres through melt extrusion. The secondary polymers were then 

removed from the hybrid fibres to investigate the properties of the leftover of PA6 

component. The fibres were characterised using attenuate total reflectance Fourier 

Transform Infrared Spectroscopy (ATR-FTIR) and microscopy techniques, the 

mechanical and thermal properties were investigated via tensile strength and 

differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The 

results showed that the blending of PA6 with interacting polymer TPU creates novel 

fibres morphology with multi-connected porous fibres. The mean diameter of 

PA6:TPU hybrid fibres when the PA6 content at 50% and 80% are 136 and 126 µm, 

respectively. Thermal and chemical results demonstrated strong interaction happen 

between PA6 and TPU. Meanwhile, the co-extrusion of PA6 with non-interacting 

polymer PP and PET formed PA6 micro and nanofibres in the blend, respectively. In 

PA6:PP blend, the SEM images show the PA6 microfibres with mean diameters of 

0.76 µm and 1.13 µm developed in the hybrid fibres with PA6 content 50% and 60%, 

respectively. The phase inversion between PA6 and PP happened at the composition 

of 65% of PA6 showing the development of PA6 microfibres in a unique fibre 

morphology. In PA6:PET blend, PA6 nanofibres with mean diameter of 532 nm to 

1026 nm were obtained. The diameter of PA6 nanofibres increase when PA6 content 

increase in the blend. Later, single jersey knitted fabric was produced from PA6:PP 

60:40 blend composition and was treated later to remove the PP component. The 

treatment process exposed the development of PA6 microfibres fabric which has 

excellent behaviour in wicking and improved in ball burst strength compared to the 

untreated fabric. The success of upcycling PA6 fibres with value added properties 

through single-step melt extrusion can be applied to other mixed polymer waste.  
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Introduction 

1.1 Overview  

Textile waste has been an issue around the world with 92 million tonnes waste 

recorded in 2015 (Global Fashion Agenda and The Boston Consulting Group, 2017). 

With the increasing demand on textiles, the amount of waste generated is expected 

to increase up to 148 million tonnes by 2030. At the moment, only 25% of the waste 

is recovered via reuse and recycling route where most of it either incinerated for 

energy recovery or send off to landfill (Ellen MacArthur Foundation, 2017). Over two-

third of textile raw materials are produced from plastic sources, hence incineration or 

landfill disposal has negative impacts on the environment.  

Reuse and recycling can be the preferred option for textile waste. By reusing the 

product, the life of the product can be extended and the landfill can be avoided. 

However, recycling is needed for the products that are no longer useable. Four types 

of recycling approaches can be applied to textile waste; fabric recycling, fibre 

recycling, polymer recycling and monomer recycling (Ellen MacArthur Foundation, 

2017; Sandin and Peters, 2018). The most widely adopted recycling approach in the 

industry are fabric and fibre recycling. Meanwhile for polymer and monomer 

recycling, the fibre production is limited to single component polymers such as 

polyethylene terephthalate (PET) or known as polyester fibres, Polyamide 6 (PA6), 

and cellulose-based fibres (Palme et al., 2017).  

Even though the efforts to recycle the textile wastes into textile fibres have been in 

place, the conversion of textile waste into materials for clothing is extremely low 

(<1%) (Ellen MacArthur Foundation, 2017). The nature of textiles products that 

usually consists of more than one material, either by using blended yarns (e.g. 

polyester/cotton yarns), bicomponent fibres (core-sheath, pie-wedge, island in the 

sea types, etc.) or fabric coated with polymer, limits the recycling process. The mix-

material products result in complex waste where component polymers cannot be 

practically separated by commercially relevant technologies. The sorting and 

separation of mix-materials waste into single component polymers is challenging and 

results in unsuitability of a large proportion of waste for recycling. There is a paucity 

of technologies and facilities to sort and separate the mixed waste materials also 

limits the potential of recycling multi-component products (Östlund et al., 2015).  
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As most of the textile products are made from plastic sources, thermo-mechanical 

processing can be used to recycle mixed-waste product. The mixed-waste can be 

directly blended, melted and re-extruded to produce blended fibres. The mixing of 

two different polymers is called binary blending and three different polymers is ternary 

blending. In polymer blends, selection of polymers, blend composition, the viscosity 

of the polymers and processing conditions affect the morphology and subsequently 

the properties of the blended fibres. In textile industry, common polymers used to 

produce synthetic fibres are polyethylene terephthalate (PET) (51%), polypropylene 

(PP) (~5%) and polyamide (PA) (5.4%) (Textile Exchange, 2018). 

The possibility of mixed-waste textile product containing these polymers are high. For 

examples, polyamide and polyester were commercially produced as bicomponent 

fibres (Radici Group, n.d.). In carpet industry, polyamide was used as a face fibres 

and polypropylene as a bottom layer or backing fabric. Marine products such as 

inflatable raft and life jacket use polyamide as a base fabric and coated with polyester 

or thermoplastic polyurethane to make it durability against water (Erez, 2018). 

Complex materials exist in textiles result to the mixed-waste materials once entered 

the recycling centre. Even for textiles made from a single component, when collected 

as a waste, can also be mixed with varieties of other textile sources.  

Among common synthetic polymers used for textile fibres, polyamide is considered 

as an expensive polymer (USD2.32-2.42/kg) compared to PET (USD1.22-1.23/kg) 

(YNFX, 2020).Over 4.55 million tonnes of polyamide was produced in 2014 

(Wesołowski and Płachta, 2016). Two types of polyamide frequently use as textile 

fibres are PA6 and PA6,6 with PA6 dominates the usage in apparel industry (86%) 

compared with PA6,6 (14%) (Wesołowski and Płachta, 2016).  

PA6 or also known as nylon 6 is widely used in many applications such as apparel, 

carpet, parachute fabrics, tire cord, ropes and tents (Wesołowski and Płachta, 2016). 

Increasing demand of polyamide products contribute to the abundance of polyamide 

waste too. For example, carpet which contains approximately 24% of PA6 fibres, is 

thrown to landfill every year. Fibre grade PA6 is a high value thermoplastic polymer 

that has a low rate of degradation in landfill. Therefore, to avoid landfill, another option 

for PA6 waste is by recycling the PA6 containing products. Several studies have 

shown that reprocessing PA6 fibres into several cycles can be done successfully. 

However, the repetitive process of melting PA6 fibres may slightly decrease the 

mechanical properties and stability of the polymer (Tuna and Benkreira, 2017).  
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Polyamide and other thermoplastic textiles polymers can be processed several times. 

Recycling the mixed-waste containing different thermoplastic polymers without 

separation process can be done by thermo-mechanical recycling. Two polymers can 

be melted and extruded into new hybrid fibres. Blending of PA6 with other materials 

such as acrylonitrile–butadiene–styrene (Aparna et al., 2017) (ABS) cellulose acetate 

butyrate (CAB) (Zhang et al., 2015) and chitosan (Dotto et al., 2017) into hybrid fibres 

were studied previously.  

Blending of two different polymers can create interacting and non-interacting 

behaviour of the polymer blend. Amide group of PA6 and urethane group of TPU 

create interaction through hydrogen bonding. Non-interacting behaviour was found 

on the blending of PA6:PET and PA6:PP due to low chemical interaction (Hajiraissi 

et al., 2017). To improve the interaction on PA6:PET and PA:PP, compatibiliser was 

used (Aparna et al., 2017). However, the non-interacting behaviour of these polymers 

can benefit in the production of microfibres or nanofibres.  

A study on the interacting and non-interacting behaviour of possible polymers found 

in textile waste was crucial. There is a paucity of reported work on the blending of 

polyamide with TPU as hybrid fibres when prior research focused on composite (Cai 

et al., 2019), injection moulding (Xu et al., 2019) and compressed moulding (Rashmi 

et al., 2017). Blending of PA6:PET and PA6:PA6 was studied before however 

focusing on addition of compatibiliser for improving of interfacial connection and the 

optimisation of the blend focus on PET and PP in the blend (Aslan et al., 1995; Liao 

et al., 2015; Aparna et al., 2017; Hajiraissi et al., 2017). With the increasing of textile 

waste collected and lack of technologies to separate the waste, added with high price 

of PA6, a study on the PA6 blending with other polymers into fibres is needed.  

1.2 Research aim and objectives 

The aim of this research is to investigate the effect of blending of PA6 polymer with 

interacting and non-interacting polymer commonly used in textile fibres production. 

Subsequently, the developed fibres will be processed into fabric form to evaluate their 

performance for apparel applications. The objectives of this research are to: 

i. produce interacting hybrid fibres consisting of PA6 as main polymer blending 

with thermoplastic polyurethane (TPU) as secondary polymer. 

ii. produce non-interacting hybrid fibres consisting of PA6 as main polymer 

blending with polyethylene terephthalate (PET) and polypropylene (PP) as 

secondary polymers. 
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iii. Investigate the properties of the interacting and non-interacting hybrid fibres 

that blended in different weight composition by:  

a. removal of secondary polymer. 

b. assess the morphology of the hybrid fibres before and after removal 

of secondary polymer under. 

c. characterise the properties of the fibres concerning thermal, chemical 

and mechanical and fibre diameter. 

iv. produce fabrics made of hybrid fibres and investigate the properties of the 

fabrics before and after removal of secondary polymer. 
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Literature Review 

Textile waste has been considered as an environmental issue. The scenario of textile 

waste management and current methods on recycling textile waste are presented in 

this chapter. Previous studies on recycling Polyamide 6 and its properties were 

reported. Different types of textile fibres; single and bicomponent fibres, were also 

discussed, including the method to produce fibres. Finally, the blending of two 

polymers in producing textile fibres, with melt spinning approach that is suitable for 

thermo-mechanical recycling of the polymer blend, will be discussed. 

2.1 Textile waste  

Textile waste has been an issue all around the world. It is reported that over 92 million 

tonnes of textile waste generated globally in 2015 and the numbers are expected to 

increase up to 148 million tonnes by 2030 due to growing global population (Global 

Fashion Agenda and The Boston Consulting Group, 2017). In UK alone, 921,000 

tonnes of textile waste collected in 2017 which end up in landfill (WRAP, 2019).  

Textile waste can be divided into two categories: pre-consumer waste and post-

consumer waste. Pre-consumer waste refers to by-product materials generated by 

textile industries such as surplus fabrics, yarns and fibres, whereas post-consumer 

waste is contributed by the owners of textiles including clothing and textile household 

such as bed linen, curtains, towels and floor covering (Echeverria et al., 2019).  

Textile waste can be either reused, recycled, incinerated or sent off to landfill. Almost 

55% of textile waste collected in UK was sent to landfill and only 36% was recovered 

through reuse and recycling process (WRAP, 2019). Most of the waste was reused 

domestically through second hand or charity shop or exported to developing 

countries. Only small proportion of the waste was recycled, currently into down-cycle 

application such as wiper, insulation materials and padding mattress while less than 

1% of the waste was recycled back into textile fibre (Ellen MacArthur Foundation, 

2017).  

The route of the textile waste can be improved, to conserve the resources. The 

unwanted clothes, mostly exported to third-world country where there are no proper 

recycling and collecting facilities, will end up wasting the valuable materials into 

landfill. Moreover, in 2015, East African Community announced to ban an importation 

of used clothing that will affect the utilisation of the collected textile waste in the future 

(SMART Secondary Materials and Recycled Textiles, n.d.).  
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Over two-third of textile raw materials derived from petroleum resources have high 

compostable times in landfill, compost and aquatic environments. The risk of harmful 

gas emission to the atmosphere such as methane (CH4) and carbon dioxide (CO2) is 

also a significant concern (UNEP, 2002). Department for Environment Food & Rural 

Affairs (DEFRA, 2013) estimated that 3 tonnes of CO2 can be saved with reusing or 

recycling of 1 ton of general waste. Sending off the waste into landfill or incinerating 

bring harmfulness to the environment and contribute directly to the global climate 

change. The more optimum option for handling the waste is either reuse until the end 

of product life or recycling.  

2.2 Textile recycling 

Textile recycling industries were developed with a target to reduce both pre-

consumer and post-consumer wastes and conserve resources while minimising the 

amount of waste going to landfill (Echeverria et al., 2019). Moreover, most of the 

textile products are recyclable and have a potential to replace virgin materials. The 

UK government has also been promoting recycling as more and more waste has 

been directed towards landfills. Approximately GBP 82 million were spent on 

disposing the textile waste in landfill (Ellen MacArthur Foundation, 2017). Serious 

actions have been taken to emphasise recycling such as increasing the landfill tax. It 

was expected that by 2030, municipal waste including textile waste sent to landfill will 

reduced to 10% (Bukhari et al., 2018).  

Several organisations are involved in recycling textile waste such as Waste & 

Resources Action program (WRAP), Department for Environment, Food & Rural 

Affairs (DEFRA) and Carpet Recycling United Kingdom (CRUK). WRAP has 

launched several plans to promote the usage of textile waste such as European 

Clothing Action Plan, Sustainable Clothing Action Plan (SCAP) and Love Your 

Clothes campaign to raise awareness of the value of clothing. CRUK focuses on 

carpet recycling and acts as a centre and connector for companies and organisations 

involved in carpet recycling. The target is to decrease the number of carpet waste 

that goes to landfill and develop close loop recycling of carpets. 

London based company Worn Again have a collaboration with several companies to 

develop FIBERSORT technology with the aim to produce an automated sorting 

technology that can sort a variety of post-consumer textile waste (Worn Again, 2016). 

These show that the effort has been made by the private sector to emphasise on the 

recycling industry. However, these examples limit the recycling effort only onto a 

single component polymer. Textiles waste consists of mix-materials that encounter 
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difficulties to be sorted and separated were send off to other easier route either 

landfilled or incinerated (Robert, 2016). 

Textile recycling can be divided into fabric recycling, yarn and fibre recycling and 

polymer/monomer recycling which can be accomplished by either through 

mechanical, thermal, chemical processing or combination of these processing (Ellen 

MacArthur Foundation, 2017; Sandin and Peters, 2018).  

Fabric recycling makes use of fabrics from pre-consumer waste generated by 

garment industries (e.g. off-cut fabrics, rejected fabrics) or post-consumer waste 

contributed by the users of the textiles (e.g. unwanted clothes, old clothes) and 

converted into new clothes or products. Tonlè, is an example of a company that 

produced textile products from the pre-consumer waste and managed to save 10 

tonnes of waste being send to landfill in 2014 (Explorer, 2019). For fibre and polymer 

recycling, the methods can be simplified as mechanical recycling and chemical 

recycling. 

2.2.1 Mechanical recycling 

Fibre recycling, also referred to mechanical recycling, mechanically shredding the 

fabric to reclaim fibres for subsequent conversion into yarns or nonwovens. Polyester 

and cotton fibres, which dominantly used in textile industry were mechanically 

shredded during recycling process. The reclaimed cotton fibres result to shorter and 

lower cotton fibre quality thus produced coarser yarn count. Therefore, cotton waste 

was recovered into down-cycling route such as insulation materials, blankets, wipes, 

etc (Sandin and Peters, 2018). Pure Waste Textiles Ltd. be able to produce new 

100% recycled cotton t-shirt from shredded textile cotton waste (Pure Waste Textiles, 

n.d.). Apart from recycling into yarn, the recycled cotton and polyester fibres were 

also produced into nonwoven fabrics for household application (Sharma and Goel, 

2017). Low quality fibres restrict the recycling process into fibres found suitable 

approaches as reinforced composites(Serra et al., 2019; Meng et al., 2019), pressed 

into compressed mould (Dissanayake et al., 2018), sound absorption panel 

(Santhanam et al., 2019) or reinforced in brick or mortar (Orasutthikul et al., 2017; 

Kimm et al., 2018).  

2.2.2 Chemical recycling 

Other method for textile waste recycling is chemical recycling, either by polymer 

recycling or monomer recycling. Polymer recycling can be achieved by treating the 

fibres chemically/mechanically while keeping the polymer or oligomer intact. 
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Monomer recycling is a process where the polymers/oligomers are broken down to 

the monomer level. Textile waste consists of synthetic fibres made from thermoplastic 

polymers which can be chemically recycle to produce new fibres with identical 

properties to the virgin raw materials. ECONYL Regeneration yarn for example, was 

produced by recycling textile waste and fishing nets (Moorhouse and Newcombe, 

2018). Some examples of regenerated fibres produced through chemical recycling 

were MIPAN Regen fibres, which are made by recycling PA6 post-consumer waste, 

REPREVE® PA6,6 fibres made of 100% recycled polyamide fabric (UNIFI, 2008) 

and CYCLEAD™ fabrics which are made by recycled PA6 fibres (Toray, 2007). The 

separation of polyester from cotton/polyester blend for example, involved chemical 

process such as hydrolysis and dissolving in solvent (Ling et al., 2019). 

2.3 Polyamide 

Polyamides are linear macromolecules containing amide (-CONH-) linkage. Two 

popular variances in the textile and plastic industries are PA6 and PA6,6. Other 

popular polyamides available commercially are polyamide 11, 12, 46 and 69. PA6 

widely used in the apparel industry (86%) compared to PA6,6 (14%) (Wesołowski 

and Płachta, 2016). In this study, the research will concentrate on the polymer 

derived from PA6 which is mainly used for clothing.  

PA6 or polycaprolactam is made by ring opening polymerisation of caprolactam 

monomer. The ring opening of ɛ-caprolactam monomer occurs when the monomer 

is heated at 250-280°C at atmosphere pressure for 12-24 hrs as shown in Figure 2.1 

(Richards, 2005) and the complete process of ring opening can be seen in Appendix 

A. The polymerisation could be initiated by water, acid or very strong base such as 

sodium hydride (NaH), but water is the favoured option in the industry (Richards, 

2005). The amide bonds (-CONH-) developed lactam provide hydrogen bonding 

between chains hence contribute to the excellent properties of PA6 such as stiffness 

and toughness (John and Furukawa, 2012). The H-bonds also make the PA6 

categorised under hygroscopic material as water molecules can form H-bonds with 

the amide groups as shown in Figure 2.2 (Reimschuessel, 1998). 
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Figure 2.1 Ring opening polymerisation of PA6 (Richards, 2005). 

 

 

Figure 2.2 Interaction of water molecules with PA6 polymer (Reimschuessel, 1998). 

The important parameter of polyamide is the molecular weight or molecular mass. 

Molecular weight influences the melt viscosity of the polymer namely; higher 

molecular weight contributed to higher melt viscosity. The melt viscosity of the 

polymer influences the movement of the polymer chains, namely higher melt viscosity 

tends to reduce the polymer chain movement (Grümer and Hopmann, 2018). 

2.3.1 Polyamide 6 waste 

Polyamide is a significant textile fibre with 5.7 million tonnes produced annually 

comprising 5.4% of the synthetic fibre market and was ranked second among all the 

textile fibres (Textile Exchange, 2018). The application of polyamide in textile 

industries is apparel, carpet and industrial filament such as tire cord and ropes 

(Wesołowski and Płachta, 2016).  

 

Caprolactam Polyamide 6 

Water molecules 
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From these applications, carpet waste can be collected easily and the amount is 

significant. The volume of carpet waste for disposal rose by 400,000 tonnes every 

year in the UK alone (Hilton et al., 2019). Carpet is classified as textiles and is 

extensively used in buildings and automobile as well as in aircrafts. The surface of 

carpet acts as a feet insulator from cold floor, sound proof and also adds to the décor 

of a room. 698 million m2 of new carpets were produced in the United Kingdom in 

2016 to replace the old carpets(Hilton et al., 2019). The huge quantity of fibres 

consumed to produce carpets lead to an enormous volume of waste, which dominant 

by nylon fibre (50-70%) (Mohammadhosseini et al., 2018).  

2.3.2 Recycled polyamide 6 fibres 

Early work on the extrusion of polyamide waste into filaments was conducted by 

Esfahani (1983) which reported that re-extrusion of PA6 and PA6,6 waste polymers 

up to 5 cycles is possible. A study conducted by Meyabadi et al. (2010) also showed 

that PA6 waste can be recycled into filaments. The blending of recycled PA6 with 

virgin PA6 showed an improvement in the tensile and thermal properties of recycled 

PA6. Other than the above, to the best of authors’ knowledge, there is no published 

work on the recycling of polyamide waste into PA6 filaments or fibres. Other studies 

on this domain focused on the reprocessing of polyamide waste via injection 

moulding up to 16 cycles (Su et al., 2007; Crespo et al., 2013; Grümer and Hopmann, 

2018). These studies proved that recycling the polyamide waste into multiple 

processing cycles are achievable. Besides, polyamide waste polymers were recycled 

into reinforced composites (Pan et al., 2016; Hasan et al., 2018), cement mortar and 

concrete reinforcement (Orasutthikul et al., 2017).  

2.3.2.1 Mechanical Properties 

The common tensile properties for filaments or fibres are tenacity, initial modulus, 

breaking elongation and work of rupture. Polyamide’s relative mass, the extrusion 

speed, draw ratio, and heat treatment influence the tensile properties of the fibres.  

Early study conducted by Esfahani (1983) on the recycling PA6 fibres found that the 

tenacity of PA6 fibre decreases slightly with the increasing number of cycles with 48.7 

cNtex-1 (5.5gd-1) and 43.7 cNtex-1 (4.94 gd-1) reported for the first and fifth cycle 

respectively. The other tensile properties (the work of rupture, Young’s modulus and 

breaking elongation) also show a similar trend to that of tenacity. Similarly, the study 

done by Meyabadi et al. (2010) also suggest that the tensile strength and modulus of 

recycled PA6 fibres are slightly lower than the virgin PA6 fibres. The loss of the 
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