UNIVERSITI TEKNOLOGI MARA

THE POTENTIAL OF EFFECTIVE **MICROORGANISM (EM) INCLUSION IN ENHANCING THE PROPERTIES OF CEMENT PASTE AND CONCRETE** UN AMINA

NOORLI BINTI ISMAIL

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Civil Engineering

May 2019

CONFIRMATION BY PANEL OF EXAMINERS

I certify that a Panel of Examiners has met on 12 April 2019 to conduct the final examination of Noorli binti Ismail in **Doctor of Philosophy** thesis entitled "The Potential of Effective Microorganism (EM) Inclusion in Enhancing the Properties of Cement Paste and Concrete" in accordance with Universiti Teknologi MARA Act 1976 (Akta 173). The Panel of Examiner recommends that the student be awarded the relevant degree. The Panel of Examiners was as follows:

Lee Wei Koon , PhD Senior Lecturer Faculty of Civil Engineering Universiti Teknologi MARA (Chairman)

Marzuki Ab.Rahman, PhD Senior Lecturer Faculty of Civil Engineering Universiti Teknologi MARA (Internal Examiner)

Megat Azmi Megat Johari, PhD Professor School of Civil Engineering Engineering Campus Universiti of Sains Malaysia (External Examiner)

Saroj Mandol, PhD Professor Department of Civil Engineering Universiti of Jadavpur, India (External Examiner)

PROF SR TS DR HAJI ABDUL HADI HAJI NAWAWI Dean

Institute of Graduates Studies Universiti Teknologi MARA Date: 29 May 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student :	Noorli binti Ismail
Student I.D. No. :	2011505645
Programme :	Doctor of Philosophy – EC990
Faculty :	Civil Engineering The Potential of Effective Microorganism (EM) Inclusion in Enhancing The Properties of Cement Paste and Concrete
: Signature of Student	noorli

Date

May 2019

:

ABSTRACT

Recently, Effective Microorganism (EM) has shown the potential to be used as new additives in cement based materials. Previous research works reported the incorporation of EM increased the compressive and splitting tensile strength of cement based, significantly. However, extensive evaluation of other aspects need to be investigated to study their potential since the incorporation of EM in cement based materials is still new area. Experimental works in this present study showed the incorporation of EM in cement paste increased up to 40% compressive strength and leading to produce low porosity which decreased at least 19% corresponding to cement paste without EM. However, the hydration process was completed longer than specimens without EM due to the earlier reaction of dehydration and decarbonation detected using thermogravimetric (TGA/DTG) test and presence of potassium thulium chloride in EM solution. This can be a reasoning to the delayed initial and final setting time in the microbed cement paste. Furthermore, the high compressive strength and low porosity also leading to improve the internal densification of cement matrix which reported the formation of calcium silicate hydrate (CSH) and ettringite by detecting from formation of bundle shape and needles like pine leaves, acicular, thin, narrow and pointed shape, respectively at later age of 28 days and 60 days using scanning electron microscopy (SEM). The denser and lesser void in internal microstructure for the microbed cement paste also the factor contributes towards high compressive strength. Due to high resulted compressive strength, survivability of EM bacteria in cement paste was successfully detected using Biolog Microbial Identification System (BMIS) by the presence of EM bacteria species Microbacterium Flavescens, Leuconostoc Fallax and Achromobacter xylosoxidans which was able to survive up to 28 days in cement paste. Subsequently, the establishment of relationship between compressive strength and total porosity was established for low, normal and high concrete at the age of 3, 28, 60 and 180 days. Incorporation of EM also produce lower porosity of concrete which was conducted by mercury intrusion porosimetry (MIP). Also the relationship of compressive strength from destructive and non-destructive tests was successfully established. Multivariable linear regression was chosen to predict the compressive strength by applying dual regression equation which considered two (2) independent variables together; pulse velocity and rebound number obtained from the experimental results. The establishment of multivariable regression equation for both specimens was proposed as;

Control, $f_c = 0.0245 UPV - 0.1572 RN - 79.422$, $R^2 = 0.844$

Microbed, $f_c = 0.00247 UPV - 0.247 RN - 83.803 R^2 = 0.915$

where $f_{\rm c}=$ compressive strength, UPV = ultrasonic pulse velocity, RN= rebound number

Overall, the incorporation of EM in cement paste and concrete showed the potential to use as new additives in enhancing compressive strength associated with low porosity.

ACKNOWLEDGEMENT

Firstly, I praise Allah, the Almighty for giving me with this opportunity and granting me the capability to complete the thesis. I would like express my sincere gratitude to my main supervisor Professor Dr. Hamidah Binti Mohd. Saman for the continuous support, for her patience, motivation and immense knowledge for completing this long and challenging journey successfully during my tenure as a PhD student. Furthermore, I am also very appreciative to my co-supervisors Associate Professor Dr Noor Hana Binti Hussain for her diligent advice and guidances for the constant help in understanding the multi-discipline area of microbiology. Also to other my cosupervisor Associate Professor Kartini Muhammad. Without their continued support and interest, this thesis would not have been the same as presented here.

I am greatly indebted to Ministry of Higher Education (MOHE) for providing scholarship SLAB, Ministry of Science, Technology and Innovation (MOSTI) for the grant and Universiti Tun Hussein Onn (UTHM), Universiti Teknologi MARA (UiTM) for given me this golden opportunity to pursue PhD, Faculty of Civil and Environmental Engineering (FKAAS), Faculty of Civil Engineering (FCE), Faculty of Applied Science (FCE), Tun Abdul Razak Library (PTAR) and to all technicians and laboratory assistants that have been involved throughout the completion of this thesis.

I wish to acknowledge the support to all my MSc and PhD colleague from FCE and FSG in helping me to understand of the subtle challenge in this journey. Finally, my lovely mother, husband, childrens and dedicated to the loving memory of my very dear late father. I would like to thank you, without your supports, encouragements and understanding, I may unable to go through the PhD journey. PERPUSTAKA

Alhamdulillah.

TABLE OF CONTENT

CON	FIRMATION BY PANEL OF EXAMINERS	ii
AUT	HOR'S DECLARATION	iii
ABS	ГКАСТ	iv
ACK	NOWLEDGEMENT	
TAB	LE OF CONTENT	vi
LIST	T OF TABLES	X
LIST	T OF FIGURES	xiv
LIST	T OF PLATES	xxi
LIST	T OF SYMBOLS	xxiv
LIST	T OF ABBREVIATIONS	XXV
	TOF ABBREVIATIONS PTER ONE: INTRODUCTION Research Background Problem Statement Objectives	
СНА	PTER ONE: INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Scope of Work and Limitations	6
1.5	Significance of Study	7
СНА	PTER TWO: LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Bacteria in Effective Microorganism (EM) Liquid	8
	2.2.1 Lactic Acid Bacteria	9
	2.2.2 Photosysnthetic Bacteria	11
	2.2.3 Yeast	13
	2.2.4 Actinomycetes	14
	2.2.5 Fungi	15
2.3	Isolation and Characterisation of Bacteria	15
2.4	Effective Microorganism (EM) Liquid in Cement Based Material	18
	2.4.1 Influence of EM Liquid to Mechanical Properties	18

	2.4.2	Microstructure Examination	22
2.5	Effect	ive Microorganism (EM) Non Liquid in Cement Based Material	23
	2.5.1	Chemical Properties	24
	2.5.2	Microstructure Examination	29
	2.5.3	Thermal Analysis	36
	2.5.4	Pore Structure Analysis	40
2.6	Capab	oility of Effective Microorganism (EM) precipitates	
	Calciu	ım Carbonate	47
2.7	Summ	nary of Literature Review	48
CHA	PTER 1	THREE: RESEARCH METHODOLOGY	50
3.1	Introd	uction	50
3.2	Identi	fication of Bacteria Species in Effective Microorganism (EM)	51
	3.2.1	Fermentation of Effective Microorganism (EM) and	
		distilled water mixture	53
	3.2.2	Preparation of Culture Medium in Microbial Cultivation	53
	3.2.3	Macroscopic Morphology of Bacteria Colony	55
	3.2.4	Isolating and sub-culturing in enumerating microbed using	
		serial dilution technique	57
	3.2.5	Cellular Morphology on Pure Colonies using gram staining	63
	3.2.6	Identification of pure colonies using Biolog Microstation	65
3.3	Incorp	poration of Effective Microorganism (EM) in Cement Paste	67
	3.3.1	Preparation and Fermentation of Effective Microorganism	
		(EM) in Cement Paste	69
	3.3.2	Optimisation of Molasses Contents	70
	3.3.3	Optimisation of EM content incorporating different methods	
		producing EMS in cement paste	71
	3.3.4	Preparation of cement paste specimens	77
	3.3.5	Testings on cement paste specimens	82
	3.3.6	Survivability bacteria of EM in cement paste	90
3.4	Incorp	poration of Effective Microorganism (EM) in Concrete	92
	3.4.1	Preparation and Fermentation of Effective Microorganism	
		(EM) in Concrete Specimens	93
	3.4.2	Testing of Aggregates	95
		vii	

	3.4.3	Concrete Mix Design	97
	3.4.4	Preparation of Concrete Specimens	98
	3.4.5	Reference standard for Properties of Concrete	99
	3.4.6	Testing of Concrete Specimens	100
3.5	Data (Collection and Analysis	107

CHAPTER FOUR: THE IDENTIFICATION OF EM BACTERIA SPECIES109

4.1	Introduction	109
4.2	Morphological identification of yeast	110
4.3	Interpretation of Gram Positive (GP)	111
4.4	Interpertation of Gram Negative (GN)	119
4.5	Summary	122

CHAPTER FIVE: THE INFLUENCE OF EFFECTIVE

MICROORGANISM (EM) INCORPORATION ON THE PROPERTIES			
OF C	EMENT PASTE	123	
5.1	Introduction	123	
5.2	Optimisation of Molasses Content in Cement Paste	124	
5.3	Optimisation of EM Contents by incorporating Different Methods of		
	Producing EMS in Cement Paste	127	
5.4	Chemical Properties of Microbed Cement Paste	129	
	5.4.1 X-Ray Fluorescence (XRF)	129	
	5.4.2 X-Ray Diffraction (XRD)	132	
5.5	Microstructure Examination of Microbed Cement Paste	137	
5.6	Thermal Analysis of Microbed Cement Paste	146	
5.7	Pore Characteristic Profiles of Microbed Cement Paste	152	
5.8	Survivability of EM Bacteria in Cement Paste	158	
5.9	Summary	165	

CHAPTER SIX: THE INFLUENCE OF EFFECTIVEMICROORGANISM (EM) INCORPORATION ON THE PROPERTIESOF CONCRETE167

6.1	Introduction		167
-----	--------------	--	-----

6.2	Compressive Strength of Microbed Concrete	168
6.3	Splitting Tensile Strength of Microbed Concrete	171
6.4	Ultrasonic Pulse Velocity of Microbed Concrete	179
6.5	Rebound Number of Microbed Concrete	190
6.6	Pore Characteristic Profiles of Microbed Concrete	202
6.7	Multivariable Linear Regression Analysis (MRA) between Destructive	
	and Non-Destructive Tests	207
6.8	Summary	216

218

224

262

CHAPTER SEVEN: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS

7.1	Introd	Introduction		
7.2	Conclu	Conclusions		
	7.2.1	Optimum percentage of constituent in molasses and EM to		
		give the most enhanced effect to cement paste (RO-1)	219	
	7.2.2	The influence of Effective Microorganism (EM) incorporation		
		on the properties of cement paste (RO-2)	219	
7.2.3 Identification of EM bacteria species and their survivability				
		period in cement paste (RO-3)	220	
	7.2.4	Relationship between concrete strength obtained from destructive		
		and non-destructive tests for the control and microbed		
		concrete (RO-4)	221	
	7.2.5	Relationship between the compressive strength and total porosity		
		for the control and microbed concrete (RO-5)	222	
7.3	Recommendations For Future Works		222	

REFERENCES

APPENDICES

AUTHOR'S PROFILE

LIST OF TABLES

Tables	Title	Page
Table 2.1	Compressive strength increment of concrete due to EM	19
	addition as compared to control for 28 days	
	(Nobuyuki et al., 2004)	
Table 2.2	Compressive strength increment and decrement when	20
	EM Product was added into concrete mixtures exposed to	
	different curing regimes (Jamaluddin et al., 2009)	
Table 2.3	Mix design of microbed concrete with the Grade 30 in	20
	weight (kg)(Andrew et al., 2012)	
Table 2.4	Strength increment of concrete at the age of 28 days	21
	(Andrew et al., 2012)	
Table 2.5	EDX analysis of microbed concrete containing 10% silica	28
	fume and 10% fly ash (Navneet and Rafat, 2013)	
Table 2.6	Analysis of EDX in cement mortar (Jeong et al., 2017)	35
Table 2.7	Weight loss in TG curves (Etuko et al., 2006)	38
Table 2.8	Total intrusion of mortar specimens with different w/c ratio	44
	(Shih, 2012)	
Table 2.9	The pore analysis in different concrete grades with and	46
	without bacteria (Seshagiri et al., 2014)	
Table 3.1	The series of mix proportion denoted in percentage of the	71
	total volume of water	
Table 3.2	The series of mix proportion used in four (4) different	72
	methods of preparing EMS denoted in percentage of the total	
	volume of water	
Table 3.3	Mix proportion used for all designation series for	80
	one (1) kg of cement based on standard consistency	
Table 3.4	Summary series of designated variables for compressive	83
	strength test of cement paste	
Table 3.5	Reading of pH taken for seven (7) days	94
Table 3.6	Specific gravity of fine and coarse aggregate	97

Table 3.7	Mix Design of Concrete Specimens by weight (kg/m ³)	98
Table 3.8	Mode of compaction and number of layers for cylinder	99
	specimens required in accordance with ASTM C192	
Table 3.9	Summary of series of the designated variables for	101
	compressive strength test on the control and microbed concrete	
	specimens	
Table 3.10	The permissible hours and days tolerance in	101
	conducting the compressive strength (ASTM C39)	
Table 3.11	Summary of series of designated variables for splitting	104
	tensile strength on control and microbed concrete specimens	
Table 4.1	Carbon sources on Microplate A analysed as	112
	Pediococcus Pentosaceus using Biolog system	
Table 4.2	Biolog results of Gram positive EM bacteria in Microplate A	112
Table 4.3	Carbon sources pattern on Microplate B analysed as	114
	Microbacterium Flavescens using Biolog system	
Table 4.4	Biolog results of Gram positive EM bacteria in Microplate B	115
Table 4.5	Carbon sources pattern on Microplate C analysed as	116
	Leoconostoc Fallax using Biolog system	
Table 4.6	117Biolog results of Gram positive EM bacteria in Microplate C	C117
Table 4.7	Carbon sources pattern on Microplate D analysed as	119
	Achromobacter xylosoxidans using Biolog system	
Table 4.8	Biolog results of Gram positive EM bacteria in Microplate D	120
Table 5.10	Cellular and macroscopic morphology of bacteria in	163
	microbed cement paste at the age of 1, 3, 7, 14 and 28 days	
Table 5.1	Average compressive strength of six (6) series designated in	
	control and microbed concrete specimens	169
Table 5.2	Relative (%) of compressive strength with reference to	
	control specimens of six (6) series designated in control and	
	microbed concrete specimens	169
Table 5.3	Comparison between compressive strength and improvement	
	made of concrete by adding the Effective Microorganism (EM)	
	in the present study with those investigated by previous studies	
	at 28 days	171
Table 5.4	Average of splitting tensile strength of six (6) series designated	
	xi	

	in concrete specimens	172
Table 5.5	Relative (%) of splitting tensile strength with reference to	173
	control specimens of six (6) series designated in control and	
	microbed concrete specimens	173
Table 5.6	Comparison between splitting tensile strength and	
	improvement made of concrete containing EM obtained in the	
	present study with those investigated by previous	
	studies at 28 days	174
Table 5.7	Accuracy assessment of splitting tensile strength, f_s based	
	on regression equations on linear, polynomial second order,	
	exponential and power laws	175
Table 5.8	Mean, standard deviation and variances of the data compressive	
	and splitting tensile strength obtained in this present study for	
	one year duration	
Table 5.9	Regression equations between splitting tensile strength, fs	
	and compressive strength, fc in the present study with those	
	investigated by previous studies	178
Table 5.10	Predicted compressive strength against relative error for	
	regression model of linear and polynomial second order based	
	on pulse velocity data obtained	186
Table 5.11	Predicted compressive strength against relative error for	
	regression model of exponential and power based on pulse	
	velocity data obtained	187
Table 5.12	Regression equations between compressive strength, fc and	
	pulse velocity, V in the present study with those investigated	
	by previous studies	190
Table 5.13	Measurement of rebound number (RN) taken for control	
	and microbed concrete specimens at age of 3 days for concrete	
	grade of 20, 30 and 40	191
Table 5.14	Measurement of rebound number (RN) taken for control	
	and microbed concrete specimens at age of 28 days for concrete	
	grade of 20, 30 and 40	192
Table 5.15	Measurement of rebound number (RN) taken for control	
	and microbed concrete specimens at age of 60 days for concrete	

	grade of 20, 30 and 40	192
Table 5.16	Measurement of rebound number (RN) taken for control	
	and microbed concrete specimens at age of 180 days for	
	concrete grade of 20, 30 and 40	193
Table 5.17	Accuracy assessment of rebound number, RN based on	
	regression equations on linear, polynomial second order,	
	exponential and power laws	198
Table 5.18	Regression equations between compressive strength, fc and	
	rebound number, RN in the present study with those	
	investigated by previous studies	200
Table 5.19	ANOVA of model summary for control and microbed	
	concrete specimens	209
Table 5.20	Actual compressive strength by experimental results and	
	predicted compressive strength obtained from pulse velocity	
	and rebound number for control concrete specimens	211 NAH
Table 5.21	Actual compressive strength by experimental results and	
	predicted compressive strength obtained from pulse velocity	
	and rebound number for microbed concrete specimens	212
Table 5.22	Summary of single and dual regression equations and	
	coefficient of determination of compressive strength	
	model for cylindrical control and microbed concrete specimens	214
Table 6.1	Carbon sources on Microplate A analysed as	
	Pediococcus Pentosaceus using Biolog system	
Table 6.2	Biolog results of Gram positive EM bacteria in Microplate A	112
Table 6.3	Carbon sources pattern on Microplate B analysed as	
	Microbacterium Flavescens using Biolog system	220
Table 6.4	Biolog results of Gram positive EM bacteria in Microplate B	115
Table 6.5	Carbon sources pattern on Microplate C analysed as	
	Leoconostoc Fallax using Biolog system	222
Table 6.6	Biolog results of Gram positive EM bacteria in Microplate C	117
Table 6.7	Carbon sources pattern on Microplate D analysed as	
	Achromobacter xylosoxidans using Biolog system	224
Table 6.8	Biolog results of Gram positive EM bacteria in Microplate D	120

LIST OF FIGURES

Figures	Title	Page
Figure 2.1	Genera and species for lactic acid bacteria	10
Figure 2.2	Image of lactic acid bacteria captured by microscope	10
	(Tanasupawat and Daengsubha, 1983)	
Figure 2.3	Genera and species of phototropic bacteria	12
Figure 2.4	Image of phototropic bacteria captured by microscope	
	(Hirschler et al., 2003)	12
Figure 2.5	Genera and Species of yeasts	13
Figure 2.6	Image of yeast captured using microscope (Volkov, 2015)	13
Figure 2.7	Genera and Species for actinomycetes	14
Figure 2.8	Image of actinomycetes taken using microscope	
	(Tamura et al., 1994)	15 NAH
Figure 2.9	Serial dilution method for the isolation of bacteria (Kango, 201	
Figure 2.10	Viable count on the dilution plates (Kango, 2010)	16
Figure 2.11	The characteristic of colony morphology (Kango, 2010)	17
Figure 2.12	The shape of bacteria observation under microscope	
	(Kango, 2010)	18
Figure 2.13	Compressive strength of concrete specimens containing EM	
	(Isa et al., 2016)	21
Figure 2.14	Steel plate immersion in liquid with (a) and without	
	(b) EM after 30 days (Nobuyuki et al., 2004)	22
Figure 2.15	EPMA (a) with chloride ion (b) without chloride ion on	
	steel plate (Nobuyuki et al., 2004)	23
Figure 2.16	The formation of calcite and vaterite detected by X-Ray	
	Diffraction in microbed cement containing Sporosarcina	
	pasteurii (George et al., 2010)	25
Figure 2.17	XRD analysis of microbed concrete containing	
	Sporosarcina pasteurii (Navneet et al., 2012b)	26
Figure 2.18	XRD peaks of calcium carbonate crystals formed in	
	concrete specimens with and without bacteria (Kim et al., 2013) 26

Figure 2.19	XRD analysis on concrete (a) with Sporosarcina	
	pasteurii (b) without bacteria (Navneet and Rafat, 2013)	27
Figure 2.20	Peak of calcium hydroxide (Ca(OH)2) and silica dioxide	
	(SiO ₂) in cement paste containing Bacillus Subtilis	
	(Afifudin et al., 2011)	29
Figure 2.21	XRD pattern of control and microbed cement paste	
	containing Bacillus licheniformis (Thiyagarajan et al., 2016)	29
Figure 2.22	SEM micrograph of mortar containing Shewanella species	
	(Ghosh et. al., 2005)	30
Figure 2.23	SEM micrograph of mortar without microorganism	
	(Ghosh et al., 2005)	30
Figure 2.24	SEM micrograph on concrete (a) without bacteria and	
	(b) with Sporosarcina pasteurii containing silica fume	
	(Navneet et al., 2012b)	31
Figure 2.25	SEM micrograph on concrete (a) without bacteria and	
	(b) with Sporosarcina pasteurii containing silica fume and	
	fly ash (Navneet and Rafat 2013)	32
Figure 2.26	SEM micrograph on concrete (a) without bacteria and	
	(b) with Bacillus licheniformis (Krishnapriya et al., 2015)	32
Figure 2.27	SEM micrograph combining with EDS (Rong et al., 2012)	33
Figure 2.28	SEM image of control concrete substantiated with EDS	
	spectra at point 1 (c) (Kim et al., 2013)	34
Figure 2.29	SEM image of concrete containing Bacillus Sphaericus	
	combining with EDS spectra at point 1(b) (Kim et al., 2013)	34
Figure 2.30	SEM image (a) of control concrete substantiated with	
	(b) EDX (Jeong et al., 2017)	35
Figure 2.31	SEM image (a) of microbed concrete containing	
	Lysinibacillus sphaericus substantiated with (b) EDX	
	(Jeong et al., 2017)	35
Figure 2.32	TG/DTG curve of plain cement paste (Etuko et al., 2006)	37
Figure 2.33	TGA/DTG of cement mortar containing glass tube	
	(a) without bacteria and (b) with bacteria (Wang et al., 2012)	39
Figure 2.34	TG/DSC curve of cement paste with EM Non Liquid	
	inclusion at the age of 3 days of curing (Lee et al., 2013)	40

Figure 2.35	The cross section of penetrometer in MIP (Micromeritics	
	Instrument Corporation)	41
Figure 2.36	Cumulative pore volume with different composition of	
	lime in cement paste (Arandigoyen and Alvarez, 2006)	42
Figure 2.37	Derivative of pore volume with respect to pore diameter of	
	different percentages of lime in cement paste	
	(Arandigoyen and Alvarez, 2006)	43
Figure 2.38	Total intrusion of pore volume against volume fraction	
	of fine aggregate with different w/c ratio (Shih, 2012)	44
Figure 2.39	Pore size distribution in pore volume against the pore diameter	
	for three (3) batches of biosandstone (Rong and Qian, 2012)	46
Figure 3.11	Grading curve of course aggregate	96
Figure 3.12	Modification factor between compressive strength and L/D	
	ratio of cylindrical specimens (U.S.Bureau of Reclamation,	
	1981)	103
Figure 3.13	Calibration curve in estimating the compressive strength of	
	concrete specimens using the rebound number	
	obtained from manufacturer's manual	105
Figure 5.1	Compressive strength of cement paste constituent six (6)	
	different molasses contents with fixed content of EM, 5%	125
Figure 5.2	Compressive strength and standard deviation of cement	
	paste containing different contents of molasses including the	
	control specimens	126
Figure 5.3	Compressive strength of cement paste in EM	
	optimisation incorporating four (4) methods	128
Figure 5.4	Potassium Thulium Chloride is traced in Bio-Booster	
	(EM No-1) product used in this present study	132
Figure 5.5	X-Ray diffraction (XRD) of cement paste with and without	
	Effective Microorganism (EM) at 3 days	134
Figure 5.6	X-Ray diffraction (XRD) of cement paste with and without	
	Effective Microorganism (EM) at 28 days	135
Figure 5.7	X-Ray diffraction (XRD) of cement paste with and without	
	Effective Microorganism (EM) at 60 days	135
Figure 5.8	X-Ray diffraction (XRD) of microbed cement paste at the	

	age of 3, 28 and 60 days	137
Figure 5.9	Evolution of cement hydration (Gartner et al., 2002)	146
Figure 5.10	TGA/DTG curves for (a) control and (b) microbed cement	
	paste at 3 days	147
Figure 5.11	TGA/DTG curves for (a) control and (b) microbed cement	
	paste at 28 days	147
Figure 5.12	TGA/DTG curves for (a) control and (b) microbed cement	
	paste at 60 days	148
Figure 5.13	TG profiles of control and microbed hydrated cement paste	
	for 3, 28 and 60 days	150
Figure 5.14	DTG profiles of control and microbed hydrated cement paste	
	for 3, 28 and 60 days	151
Figure 5.15	Pore size distribution profiles of control and microbed cement	
	paste at day 3 (a) Pore Volume vs Pore Diameter (b) Pore	
	Volume Accumulation vs Pore Diameter	152
Figure 5.16	Pore size distribution profiles of control and microbed cement	
	paste at day 28 (a) Pore Volume vs Pore Diameter (b) Pore	
	Volume Accumulation vs Pore Diameter	153
Figure 5.17	Pore size distribution profiles of control and microbed cement	
	paste at day 60 (a) Pore Volume vs Pore Diameter (b) Pore	
	Volume Accumulation vs Pore Diameter	154
Figure 5.18	Pore size distribution profiles of microbed cement paste at	
	day 3, 28 and 60	157
Figure 5.19	Relationship between compressive strength and total porosity	
	(%) by MIP for control and microbed cement paste	158
Figure 6.1	Compressive strength of three (3) concrete grades for control	
	and microbed specimens for one year	170
Figure 6.2	Splitting tensile strength of three (3) concrete grades for the	
	control and microbed specimens for one year	174
Figure 6.3	Correlation based on polynomial second order between	
	splitting tensile strength, f_{s} and compressive strength, f_{c} for the	
	control and microbed concrete specimens measured at the age	
	of 3, 7, 14, 28, 60, 90, 180 and 360 days	176

Figure 6.4	Relative error (%) for regression model of polynomial second	
	order between (a) control and (b) microbed concrete	
	specimens	177
Figure 6.5	Validation the relationship between splitting tensile strength	
	and compressive strength obtained from present study and	
	those reported by previous researchers	179
Figure 6.6	Relationship of ultrasonic pulse velocity between direct and	
	indirect measurement at 3, 28, 60 and 180 days for	
	all concrete grades	180
Figure 6.7	Relationship of ultrasonic pulse velocity between direct and	
	semi direct measurement at 3, 28, 60 and 180 days	
	for all concrete grades	180
Figure 6.8	Normal distribution curve of ultrasonic pulse velocity in direct	
	mode of transmission between the control and microbed	
	specimens	182
Figure 6.9	Normal distribution curve of ultrasonic pulse velocity in	
	indirect mode of transmission between the control and	
	microbed specimens	182
Figure 6.10	Normal distribution curve of ultrasonic pulse velocity in semi	
	direct mode of transmission between the control and microbed	
	specimens	183
Figure 6.11	Regression lines for linear model relating the direct and	
	indirect modes of ultrasonic pulse velocity transmission for the	
	present study and previous study by Turgut and Kucuk (2006)	183
Figure 6.12	Ultrasonic pulse velocity between the control and microbed	
	specimens within 180 days	184
Figure 6.13	Accuracy assessment of regression models for (a) control	
	and (b) microbed concrete specimens based on linear,	
	polynomial second order, exponential and power laws	185
Figure 6.14	Actual compressive strength against ultrasonic pulse velocity	
	of control and microbed concrete at 3, 28, 60 and	
	180 days	189
Figure 6.15	Regression models investigated by previous studies plotted	
	together with regression model obtained in this present study	189

Figure 6.16	The locations of rebound hammer tested on a flat concrete	
	cylindrical specimen	191
Figure 6.17	Relationship between median and average of rebound number	
	(RN) taken for all series of specimens	196
Figure 6.18	Normal distribution curve of rebound number between	
	control and microbed concrete specimens	196
Figure 6.19	Correlation based on linear regression between actual	
	compressive strength and actual rebound number (RN) for the	
	control and microbed concrete specimens at 3, 28,	
	60 and 180 days	198
Figure 6.20	Calibration chart between compressive strength and rebound	
	number (RN) for control and microbed concrete with	
	calibration line obtained from the manufacturer	199
Figure 6.21	Relative error distribution for (a) control and (b) microbed	
	concrete specimens	200
Figure 6.22	Comparison between compressive strength and rebound	
	number for concrete specimens in the present study with those	
	investigated by previous studies	201
Figure 6.23	Pore distribution profiles of (a) control and (b) microbed	
	concrete for Grade 20 at 3, 28, 60 and 180 days	202
Figure 6.24	Profile pore distribution of (a) control and (b) microbed	
	concrete for Grade 30 at 3, 28, 60 and 180 days	203
Figure 6.25	Profile pore distribution of (a) control and (b) microbed	
	concrete for Grade 40 at 3, 28, 60 and 180 days	205
Figure 6.26	Total porosity obtained from MIP test for the control and	
	microbed concrete at 3, 28, 60 and 180 days for	
	concrete grade (a) 20, (b) 30 and (c) 40	206
Figure 6.27	Relationship between compressive strength with UPV and	
	RN for (a) control and (b) microbed concrete specimens at	
	3, 28, 60 and 180 days	208
Figure 6.28	Regression input to generate equation using SURFER	
	developed by Golden Software	209
Figure 6.29	Relationship of actual compressive strength to pulse velocity	
	and rebound number for the control concrete specimens at the	

	age of 3, 28, 60 and 180 days	212
Figure 6.30	Relationship of actual compressive strength to pulse velocity	
	and rebound number for the microbed concrete specimens at	
	3, 28, 60 and 180 days	212

LIST OF PLATES

Plates	Title	Page
Plate 3.1	Process performed in preparing the agar plate, broth and slant	
	agar	54
Plate 3.2	Characteristic features of mixed colonies cultivated on the	
	agar plate	56
Plate 3.3	Apparatus used in the serial dilution	57
Plate 3.4	Serial dilution procedure on fermented EM	59
Plate 3.5	Heterotrophic colonies growth on the diluted agar plates	
	after 24 hours of incubation	60
Plate 3.6	Instrument prepared for streaking plate method from	
	cultured agar plate	61
Plate 3.7	Process performed in sub-culturing the mixed colonies from	
	diluted agar plate and transferring to new agar plate	62
Plate 3.8	Pure culture cultivated on agar plate in three (3) quadrant	
	streaking patterns	63
Plate 3.9	Process performed in conducting the gram staining technique	65
Plate 3.10	Process performed in identifying the single species of	
	bacteria in Effective Microorganism (EM)	67
Plate 3.11	EM Product used was named as Bio-Booster	69
Plate 3.12	Materials and sterilised used in the preparation of EMS	70
Plate 3.13	Preparation of EMS with autoclave sterilisation	74
Plate 3.14	Instruments set-up for pump filtration	75
Plate 3.15	The turbidity of EMS (a) before and (b) after filtration	76
Plate 3.16	The solid particles and might be smaller bacteria were	
	clogged on membrane during the filtration was blended using	
	distilled water with the amount prescribed	76
Plate 3.17	Vicat apparatus used to determine consistency and setting	
	time of cement paste accordance to BS EN 196-3(2005)	78
Plate 3.18	Effective Microorganism Solution (EMS) after fermentation	79
Plate 3.19	Vibrating table used to compact cement mixes	81

Plate 3.20	The moulded cement paste specimens with size 50 mm are		
	cured in air	81	
Plate 3.21	Micromeritics AutoPore IV instrument used for pore analysis	84	
Plate 3.22	X-Ray Fluorescence Spectrometer instrument to determine		
	the chemical composition of microbed cement	85	
Plate 3.23	The specimens grounded to produce fine powder as pellet		
	prior to XRF test	85	
Plate 3.24	Panalytical X'Pert Pro X-Ray Diffractometer (XRD)	86	
Plate 3.25	Apparatus required for preparing samples to determine the		
	chemical phases using XRD	87	
Plate 3.26	Sample preparation for XRD test	87	
Plate 3.27	Thermogravimetric Analyser	88	
Plate 3.28	Sample holder of specimens for SEM examination	89	
Plate 3.29	The control console of workstation for SEM examination test	90	
Plate 3.30	Apparatus required in conducting viability of EM bacteria in		
	cement paste	91	
Plate 3.31	Procedure survivability of EM bacteria in cement paste		
	performed to count viable cell	92	
Plate 3.32	Cylindrical moulds with and without capped were		
	prepared for testing of compressive and tensile splitting strength	1,	
	respectively of the concrete specimens	99	
Plate 3.33	The failure pattern with Type 3 observed in the specimens		
	after compressive strength test was performed	102	
Plate 3.34	The failure pattern with Type 5 observed in the specimens		
	after compressive strength test was performed	103	
Plate 3.35	Test set up for splitting tensile strength	104	
Plate 3.36	Modes of transmission in positioning the transducers on the		
	concrete surface	106	
Plate 4.1	Microplate detecting the metabolic fingerprint with 96		
	wells arranged from A-1 on the first left corner at the top of		
	plate to H-12 on the last right corner at the bottom of plate	110	
Plate 4.2	Colony morphology of isolated yeast found on surface		
	of petri dish	111	
Plate 4.3	Image of yeast captured using microscope	111	
	xxii		

Plate 4.4	Colony morphology of isolated Pediococcus Pentosaceus	
	found on surface of petri dish	113
Plate 4.5	Image of Pediococcus Pentosaceus-coccus shape captured	
	using microscope	113
Plate 4.6	Colony morphology of isolated Microbacterium Flavescens	
	found on surface of petri dish	115
Plate 4.7	Image of Microbacterium Flavescens-rod shape captured	
	using microscope	116
Plate 4.8	Colony isolated Leuconostoc Fallax found on (a) surface	
	of petri dish and (b) image of Leoconostoc Fallax and the	
	cell shape was discovered as coccobacilli in twisted chains	
	and pairs	118
Plate 4.9	Colony morphology of isolated Achromobacter xylosoxidans	
	found on surface of petri dish	121
Plate 4.10	Image of Achromobacter xylosoxidans-rod shape captured	
	using microscope	121 NAH
Plate 5.1	Scanning Electron Micrograph of (a) control and (b) microbed	
	hardened cement paste at low magnification of 1000x at	
	3, 28 and 60 days, respectively	138
Plate 5.2	Micrograph image equipped with energy dispersive spectrum	
	in (a) control and (b) microbed cement paste specimen at	
	3 days	140
Plate 5.3	Micrograph image equipped with energy dispersive spectrum	
	in (a) control and (b) microbed cement paste specimen at	
	28 days	141
Plate 5.4	Micrograph image equipped with energy dispersive spectrum	
	in (a) control and (b) microbed cement paste specimen at	
	60 days	142
Plate 5.5	FESEM image of the microbed cement paste at high	
	magnification of 5000x for (a) 3, (b) 7, (c) 14,	
	(d) 28 and (e) 60 days	145
Plate 5.6	Decrement colony in quantity of viable bacteria on the nutrient	
	agar plate with dilution 1:1 after in contact with cement paste	
	corresponding to 1, 3, 7, 14 and 28 days 160	
	xxiii	

LIST OF SYMBOLS

Symbols

MPa Mega pascal

mL/g Milliliter per gram

μm Micrometer

°C Degree celcius

LIST OF ABBREVIATIONS

Abbreviations

EM	Effective Microorganism
UPV	Ultrasonic pulse velocity
RN	Rebound number
BS	British Standard
ASTM	American Society for Testings and Materials
MIP	Mercury Intrusion Porosimetry
DTG	Derivative thermogravimetric
TGA	Derivative thermogravimetric Thermogravimetric Analysis X-Ray Diffraction
XRD	X-Ray Diffraction
XRF	X-Ray Fluorescence
C-S-H	Calcium silicate hydrates
Ca(OH) ₂	Calcium hydroxide
CaCO ₃	Calcium carbonate
EMS	Effective Mixed Solution
SEM	Scanning Electron Microscope
FESEM	Field Emission Scanning Electron Microscope
EDX	Energy dispersive X-Ray spectroscopy

CHAPTER ONE INTRODUCTION

1.1 Research Background

Generally, Effective Microorganism (EM) is classified into two types namely EM Non Liquid and EM Liquid. EM Non Liquid is not in liquid form consists of only one pure bacteria species. The bacteria species that have been used in EM Non Liquid for cement based materials is *Bacillus* species (Ramachandran et al., 2001; Dick et al., 2006; De Muynck et al., 2008; Jonkers and Schlangen, 2009; Tittelboom et al., 2010; Arunachalam et al., 2010; Afifudin et al., 2011; Siddique and Kaur, 2011; Navneet, et al., 2012a and Navneet et al., 2012b, Srinivasa et al., 2013; Mondal et al., 2016 and Krishnapriya and Shahinrahman, 2017). The other types of bacteria are *Shawanella* species and *Escherichia Coli* (Ghosh et al., 2003, 2005, 2009 and Siddique and Kaur, 2011). However, EM Non Liquid is not the focus of the present study. Conversely, EM Liquid comes in liquid form consists of more than one bacteria species and widely used in agriculture (Higa, 1991; Szymanski and Petterson, 2003; Lee et al., 2008; Mayer et al., 2008; Karthick et al., 2011; Wolejko et al., 2016 and Kusznierewicz et al., 2017).

Originally, EM Liquid was developed in 1970's at the University of the Ryukyus, Okinawa, Japan by Dr. Teruo Higa, a horticultural Professor (Higa, 1991). The main ingredients of EM are categorised into three or more types of microorganisms namely lactic acid bacteria, photosynthetic bacteria, yeast and actinomyces (Higa, 1999 and Szymanski and Petterson, 2003). These microorganisms are blended with the molasses which is the sugar cane based product resulting from refining process in the factory and it is thick and blackstrap solution. The addition of molasses in EM Liquid as a nutrient medium to EM bacteria in order to promote the bacteria growth. This solution is maintained at a low pH ranges between 3.0 and 4.0 under ambient condition (Lee et al., 2008; Mayer et al., 2010) for the agriculture purposes.

However, study on EM Liquid and its effect towards concrete properties is still new. Only a few studies have been reported (Nobuyuki et al., 2004; Jamaludin et al., 2009; Andrew et al., 2012 and Isa et al., 2016). The preliminary results revealed that the workability of fresh concrete improved and the initial strength increased when EM Liquid was added to concrete mix. The types of EM Liquid which have been used and found to have potential to improve concrete properties are EM-No.1 (Nobuyuki et al., 2004; Jamaludin et al., 2009, Andrew et al., 2012 and Isa et al., 2016), EM-No.3 (Nobuyuki et al., 2004), EM-X (Nobuyuki et al., 2004) and EM Ceramic (Nobuyuki et al., 2004). Nevertheless, their studies are limited to conclude the effectiveness of the EM Liquid in enhancing the properties in cement paste, mortar and concrete. Furthermore, the influence of incorporating EM Liquid to internal microstructure and profile of pore distribution of cement needs to be extensively evaluated. Conclusive findings about the influence of bacterial activity in EM Liquid towards phase identification of hydration products and also quantitative measurement of mass loss associated with the temperature are rarely published to understand the cement hydration of microbed cement based.

In this present study, the type of EM Liquid used is EM-No.1 with brand name Bio-Booster which is available from Farmer's Organisation Johor. The selection of Bio-Booster is based upon its affordable price and availability. The content of Bio-Booster is yeast, molasses, lactic acid bacteria and phototropic (photosynthetic) bacteria. The intention to determine the influence of incorporating EM.No-1:Bio-Booster to concrete properties and the mechanism underlies is becoming the primary interest in this study. Commonly, EM Liquid was mixed with molasses and distilled water to activate the bacteria content in EM. Based on the findings of Jamaludin et al., (2009), only one set percentage of activation EM Liquid namely 5% of EM.No-1, 5% of molasses and 90% of distilled water was adopted and mixed in concrete. This limited selected ratio is based upon the optimum percentage of each material used in agriculture purpose denoted by Lee et al., (2008). Contents of molasses and EM.No-1 were optimised in cementitious material looking into the influence towards high compressive strength of the resulting cement paste. Within the knowledge of the author, the optimum ratio of EM Liquid to be used in concrete and molasses has not been reported elsewhere. Therefore, it is the intention of the present study to explore the utilisation of EM Liquid in enhancing concrete properties after determining the optimum content of molasses and EM.No-1 of the EM solution.

1.2 Problem Statement

Generally, EM Liquid are able to improve the quality and quantity of plants and fruits (Priyardi et al., 2005; Khaliq et al., 2006; Mayer et al., 2008; Lee et al., 2008 and Muthaura et al., 2010; Alagakannan and Ashokkumar, 2015; Wolejko et al., 2016 and Kusznierewicz et al., 2017). Meanwhile, a few researchers (Nobuyuki et al., 2004; Jamaludin et al., 2009; Andrew et al., 2012 and Isa et al., 2016) were reported the potential of EM Liquid in enhancing the concrete properties using limited ratios of EM in concrete. Yet, no comprehensive study has been reported in determining the effect of adding various ratios of the constituents in EM towards concrete properties. Further, no study has confirmed the optimum of molasses content to be added into cement based material to give the most enhanced effect on its mechanical properties. Possibility, no additional molasses is required in the mixture of EM due to the contents of EM.No-1:Bio Booster already contained molasses. Therefore, the preliminary study was carried out to confirm the requirement of molasses in terms of compressive strength of the resulting cement paste.

Regarding the EM Liquid contents, Szymanski and Petterson (2003) reported that the bacteria species in Lactic acid bacteria can be *Lactobacillus plantarum*, *Lactobacillus casei, Streptoccus lactis*, Yeast (*Saccharomyces cerevisiae, Candida utilis*) and Photosynthetic bacteria (*Rhodopseudomonas palustrus, Rhodobacter spaeroides*). In the present study, isolation and characterisation of bacteria were carried out in order to identify the bacteria species contain in the Bio Booster: EM.No-1 which have not been identified in the previous works. Besides, no study was reported to evaluate the viability of EM in microbed cement based material. For that reason, the investigation was performed to examine the existence of bacteria species in EM Liquid and its viability when it is included in cement paste.

Mechanism on how the EM Liquid densifies the internal cement microstructure has not been well explained in the literature. Besides, the inclusion of EM Non Liquid in cement paste (Jin et al., 2017), mortar (Ghosh et al., 2005) and concrete (Navneet et al., 2012a; 2012b; 2013 and George et al., 2010) showed the growth of fibrous filler material in the pores due to the existence of calcium carbonate crystals. Simultaneously, Kim et al., (2013) and Krishnapriya et al., (2015) proved that the internal microstructure of the concrete containing EM Non Liquid was denser and finer while the control concrete specimens was stacked like gravel and loosely

connected to each other. Therefore, the feeling of curiosity drives the attempt to investigate the influence of EM Liquid to the internal microstructure of cement by using Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques and substantiated with Electron Disperse X-Ray (EDX) together with thermal analysis using Thermogravimetric Analysis (TGA) and Derivative Thermogravimetric (DTG).

Generally, the smaller range size of pore diameter distribution and low porosity in cement based specimens is leading to high compressive strength (Odler and Rößler, 1985; Kumar and Bhattacharjee, 2003a; Kumar and Bhattacharjee, 2003b; Chen et al., 2014; Bu et al., 2016 and Wang et al., 2017) and it is indicated good durability of cement based materials. Seshagiri et al., (2014) concluded the pore diameter of microbed concrete was distributed in smaller range than the concrete specimens without EM Non Liquid. It can summarised, the incorporation of EM Non Liquid able to decrease the porosity of concrete. While, Ramachandran and Ramakrishnan (2001); Bang et al., (2001); Bachmeier et al., (2002); Skinner and Jahren (2004); Ghosh et al., (2005); DeJong et al., (2006); De Muynck et al., (2007); Jonkers et al., (2010); Kim et al., (2013) and Thiyagarajan et al., (2016) reported that high intensity of calcium carbonate (CaCO₃) were reported due to the process of nucleation on bacterial cell walls when EM Non Liquid added in the specimens. This process produced the compound of calcite (Ca) and vaterite (V) which were classified as hydration products. However, the influence of EM Liquid inclusion to the hydration products and pore size distribution of cement have not been published from the previous works. Therefore in this present study, X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis were carried out to verify the composition and morphology of cement hydration products due to the presence of calcium carbonate (CaCO₃) and calcium silicate hydrates (CSH). Whereas, Mercury Intrusion Porosimetry (MIP) test was adopted to investigate the influence of EM Liquid addition on the pore size distribution of microbed cement paste.

Within the limited scope of the existing literature, only destructive strength of microbed concrete had been investigated with the concrete grade of thirty (30) without the correlation. It has been established between destructive and non-destructive strength of concrete with various EM contents till the age of 28 days (Andrew et al., 2012). In addition, none of the published works was attempted to relate the splitting tensile strength and compressive strength of microbed concete as well as the

compressive strength and porosity. Therefore, in this present study non-destructive tests namely Rebound Hammer (RH) and Ultrasonic Pulse Velocity (UPV) were carried out on concrete specimens in order to correlate the compressive strength with these non-destructive tests. The concrete grades of 20 MPa, 30 MPa and 40 MPa were prepared to establish the correlation between compressive strength, splitting tensile strength, rebound number and UPV values with respect to different maturity day. Furthermore, pore distribution profiles of concrete was also established. The extensive study based on the previously mentioned testing is required to understand the effectiveness of EM Liquid in enhancing concrete properties and bring towards more added value to the existing knowledge with regards to the use of microorganisms in concrete.

1.3 Objectives

The objectives of this research are as follows;

- a) To determine the optimum percentage of constituent in molasses and EM to give the most enhanced effect to cement paste.
- b) To confirm the influence of EM on the microstructural, chemical, mineralogical, thermal and porosity change within cement matrix using full term of Field Emission Scanning Electron Microscope (FESEM) substantiated with Electron Dispersive X-Ray (EDX), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Mercury Intrusion Porosimetry (MIP).
- c) To identify the species of EM bacteria in order to investigate the survivability of EM bacteria in hardened cement paste.
- d) To establish the relationship of concrete strength obtained based on destructive and non-destructive testing methods for microbed concrete Grade of 20, 30 and 40.
- e) To establish the relationship between the compressive strength and porosity for microbed concrete Grades of 20, 30, and 40 with and without EM.

1.4 Scope of Work and Limitations

This research however is subjected to several limitations. The incorporation of molasses and EM.No-1 in cement paste were limited to 25% due to the adverse contribution of the former. While, 10% EM.No-1 was incorporated in concrete specimens which based on the optimum content of EM.No-1 resulting high compressive strength in cement paste. Three (3) major stages were performed to accomplish the objectives of this present study and it was further explained in Chapter 3. The first stage represents the activities conducted in identifying the bacteria species contained in the EM Liquid with brand name of Bio-Booster. The single species of bacteria for each group of lactic acid and photosynthetic bacteria including yeast and actinomyces were revealed by isolating and sub-culturing the mixed colonies to obtain the pure culture of single species. The culture media of nutrient agar, nutrient broth and slant agar were prepared prior to the process of isolation and sub-culture begin. The proportions of 10% EM.No-1 and 90% distilled water was adopted to ferment and process the isolation and sub-culturing the EM solution begin. Upon the completion of fermentation periods, the serial dilution technique was conducted to isolate the mixed colony in EM Liquid. The process of isolation and subculture was conducted by transferring the mixed colony to other new media using four (4) general applications from solid to solid media, solid to liquid media, liquid to solid media and liquid to liquid media. The pure species was identified using Biolog Microbial Identification System (BMIS) by culturing in microplate. After determining the pure species, the macroscopic and cellular morphology characteristics of colony was also observed.

The second stage concludes the activities performed in incorporating the EM Liquid in cement paste. Molasses and EM.No-1 contents were optimised in cement paste through several designated series representing different contents of molasses and EM.No-1. The selection of optimum contents was made based on the highest compressive strength of the resulting cement paste. Further investigation was carried out in determining the characteristics of microbed cement paste containing EM Liquid in terms of oxide composition and cement hydration products by implementing X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) analysis, respectively. The phase identification of calcium silicate hydrates (CSH), calcium hydroxide Ca(OH)₂ and calcium carbonate (CaCO₃) was also performed by conducting thermogravimetric analysis (TGA). The influence of EM Liquid to the pore size distribution and porosity

6

was performed using Mercury Intrusion Porosimetry (MIP). Simultaneously, the densification of the internal structure of microbed cement paste matrix was captured to compare the internal structure of cement paste with and without EM using Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-Ray (EDX). Eventually, the viability of the EM bacteria was conducted to examine the survival period of bacteria in cement paste by implementing viable count and captured of bacteria by serial dilution and microscope, respectively.

Lastly, the third stage involved concludes the activities conducted in incorporating the EM Liquid in three (3) concrete grades namely Grade 20, 30 and 40 which was designated as M20, M30 and M40, respectively. Ten percent (10%) amount of EM from the total amount of water used was fermented for seven (7) days prior to the addition in the concrete specimens. Testing of aggregate includes tests for sieve analysis and specific gravity. The mix design of all concrete grades was finalised prior to the testing of aggregate. The testing of compressive strength, tensile splitting strength including the non-destructive testing via rebound hammer (RH) and ultrasonic pulse velocity (UPV) were carried out on the cylindrical specimens with size of 150 mm in diameter and 300 mm in length. Subsequently, the testing of Mercury Intrusion Porosimetry (MIP) was conducted to analyse the pore size distribution of low, normal and high concrete grade with and without EM. Eventually, the correlation between strength based on destructive and non-destructive testings was established by plotting these three (3) parameters on the three dimensional graph.

1.5 Significance of Study

Effective Microorganism (EM) liquid is classified as the sustainable material based on the environmental friendly application. It is non-toxic, harmless microorganism and beneficial for animal health, plants, food processing, environmental protection, biological fertiliser and pesticides as well as human consumption. In addition, this microbial technology has shown promising findings in many areas of application such as in agriculture and waste water treatment. However, EM has not been widely used in concrete application. With the promising findings in this present study proved the capability of local product of EM in concrete technology and able to contribute to human, benefit to environmental, economy and the country.