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ABSTRACT 

 

 

 

The mixing of fuel and air plays a major role in the spray and flame behaviour, 

hence, affects the combustion performance and emissions of the internal mixing air-

assisted atomizers. This research aims to determine the effects of multi-circular jet 

(MCJ) plates on the spray behavior and flame characteristics of air assisted 

atomizers. The MCJ plates provide the primary air entrance into the mixing chamber. 

The plates are represented by P1, P2, and P3 characterized by the difference in the 

open area ratio at 17.8, 18.4 and 18.9 respectively. Additionally, P1, P4, and P5 are 

represented by the jet-hole angles at 0o, 30o and 45o. In the experiments, the spray 

and flame images of all plates are captured at equivalence ratios of 0.8 to 1.2 using a 

Digital Single Lens Reflect camera. The flame temperatures are measured using the 

infra-red imaging technique while the emissions, burning chamber and stack 

temperature are also recorded using an emission gas analyzer and K-type 

thermocouples respectively. Then the computational work is conducted by using 

ANSYS Fluent to visualize the impact of plate geometry on the internal fluid flow 

and spray structure. Further analysis using both experiments and simulations have 

been carried out in order to compare between the P5 configuration and swirl. Results 

show that a decrease in open area ratio and jet-hole angle increases the flame 

temperature up to 11.4% and 13.8% respectively. The inclined jet-hole also increases 

the velocity up to 47.7% and turbulence kinetic energy up to 62.4% in the mixing 

chamber. In comparison between MCJ plate (P5) and swirl, P5 produces 33.8% 

lower backpressure but produces higher flame temperature at 4.3%. The result 

indicates that the MCJ plates are more effective in controlling the spray and flame 

characteristics of the atomizer. The outcome of this work provides a deeper 

understanding on the relations of geometry and fuel-air mixing to the characteristics 

of the internal mixing air-assisted atomizer which will lead to the improvement of 

burner systems in the future.  
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ABSTRAK 

 

 

 

Campuran udara dan bahanapi memainkan peranan yang penting terhadap ciri-ciri 

semburan dan pembakaran, seterusnya mempengaruhi prestasi pembakaran dan gas 

keluaran pengabut terbantu udara jenis campuran dalaman. Kajian ini menentukan 

kemampuan kawalan geometri plet pelbagai jet bulatan (MCJ) terhadap ciri-ciri 

semburan dan pembakaran sebuah pengabut terbantu udara. P1, P2 dan P3 mewakili 

nisbah kawasan terbuka iaitu 17.8, 18,4 dan 18.9.  P1, P4 dan P5 pula mewakili sudut 

condong kemasukan udara pada 0°, 30° dan 45°. Di dalam eksperimen, imej 

semburan dan api kesemua plet diperolehi pada nisbah kesetaraan dari 0.8 hingga 1.2 

menggunakan kamera Digital Lensa Tunggal Refleks. Suhu api diukur menggunakan 

kaedah pengimejan infra merah  manakala gas pelepasan, suhu kebuk pembakaran 

dan suhu pelepasan gas masing-masing menggunakan penganalisa gas pelepasan dan 

penyukat suhu jenis-K. Simulasi menggunakan perisian ANSYS Fluent digunakan 

untuk mendapatkan gambaran terperinci kesan perubahan geometri plet terhadap 

aliran bendalir dan struktur semburan. Seterusnya analisa menggunakan eksperimen 

dan simulasi dijalankan untuk membandingkan plet P5 dan pemusar. Keputusan 

menunjukkan pengurangan nisbah kawasan terbuka dan sudut lubang udara masing-

masing meningkatkan suhu api kepada 11.4% dan 13.8%. Sudut lubang udara pula 

dapat meningkatkan halaju sebanyak 47.7% dan tenaga kinetik gelora sebanyak 

62.4% di dalam kebuk campuran. Perbandingan antara plet MCJ (P5) dan pemusar 

menunjukkan P5 menghasilkan tekanan balik yang lebih rendah sebanyak 33.8% 

tetapi menghasilkan suhu api yang lebih tinggi sebanyak 4.3%. Ini  menunjukkan 

plet MCJ berkesan untuk mengawal ciri-ciri semburan dan api sesebuah pengabut. 

Hasil dapatan kajian ini membolehkan pemahaman lebih mendalam antara hubungan 

geometri dan campuran udara bahanapi terhadap ciri-ciri pengabut terbantu udara 

jenis campuran dalaman yang boleh menyumbang kepada penambahbaikan sistem 

pembakaran pada masa hadapan.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background of study 

 

Combustion has been the foundation of the population and industrial growth around 

the world for the past centuries. There are six major uses for combustion in the 

industry which are petroleum refining, chemicals, iron and steel, smelting, pulp and 

paper, and cement.  The burning of fuel to produce heat or other forms of power 

produces combustion, which is part of the industrial processes. However, a trend 

related to the energy outlook around the world reveals that for the last 10 years, 

world energy consumption has shown a steady growth at an average of 1.7% growth. 

In 2019, energy consumption shows that the industrial sector is in the third highest 

energy requirement and will move to second place by 2025 (Figure 1.1(a)). In 

addition, petroleum oil ranks the highest in energy consumption from 2019 until 

2050. As a result, the growth in energy consumption contributes to the carbon 

dioxide emission which shows an average of 1.3% growth rate (Figure 1.1(b)) for the 

past 10 years and continues to increase in the future  (Energy Information 

Administration, 2020).  

 The global industrial burner industry is in a phase of transition to factory 

automation and integration of components. However,  the needs for improving 

operational efficiency and reducing the level of emissions remains a trend in 

developing countries (Persistent Market Research, 2019). Therefore, burners have 

been used as the integral parts of boilers and industrial heating systems. The key 

performance targets of a burner system are divided into three. First is the reduction of 

nitrogen oxides (NOx), carbon monoxide (CO) and particulate emissions (PM). 
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Second is to maximize system efficiency for reducing carbon dioxide (CO2) 

emissions. Last target is to reduce specific fuel consumption. In the burner system, 

atomizers are the most important component in mixing both the fuel and oxidizer. 

The atomizer transforms a certain volume of liquid into sprays or other types of 

dispersion into small drops in order to increase its surface area. It discharges the 

liquid at high velocity into a relatively slow-moving stream of air or 

gases (Mashayek & Ashgriz, 2011). 

 

       

                                

Figure 1.1: Energy outlook around the world (a) Energy consumption by sector and 

(b) Energy-related carbon dioxide emissions by sector (Energy Information 

Administration, 2020) 

 

Atomizers are categorized according to their working principles and typical 

applications. Basically, it requires a high relative velocity between the liquid and the 

(a) 

(b) 
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surrounding air or gases. The first technique involves a discharge of high-velocity 

liquid into a relatively slow movement of air or gas, i.e. pressure atomizer and rotary 

atomizer. The second technique involves the relatively slow-moving liquid exposed 

to high pressure or velocity of air; known as twin-fluid atomization (Figure 1.2). 

Typical atomizers are included air-blast, effervescent and air-assisted 

atomizers (Lefebvre & Ballal, 2010). 

Air-assisted atomizers are introduced in order to counter the low-pressure 

differential of a simplex nozzle, which reduces the atomization quality.  Inside the 

atomizer, pressurized air is used to augment the atomization process at the lowest 

flow rate. Currently, two configurations of air-assisted atomizers are available with 

different fuel-air mixing mechanism. In external mixing form, high-velocity gas or 

steam impinges on the liquid, at or outside the liquid discharge orifice; whereas in 

internal-mixing configurations, air or gas and liquid mix within the nozzle before 

discharged through the outlet orifice. The liquid and pressurized air sometimes are 

supplied through tangential slots to encourage fuel and air mixing, which influence 

the discharge pattern into a conical form, hence affects the combustion 

characteristics of the atomizer (Lefebvre & McDonell, 2017; Yatsufusa, Kidoguchi 

& Nakagawa, 2014). As additional, effects of the outlet shape on the spray angle of 

effervescent-swirl atomizer also has been determined previously. Results show that 

swirl atomizer produces widest spray angle for the profiled outlet (Ochowiak et al., 

2015). In addition, the swirling motion assisting the fuel and air mixing by producing 

centrifugal forces will result in a vortex formation within the body (Vigueras-

Zuniga et al., 2014; Zhang et al., 2017; Wlodarczak, Ochowiak & Matuszak, 2018; 

Hreiz, Gentric & Midoux, 2011). 

 

 

Figure 1.2: Twin-fluid atomizers (Lefebvre & McDonell, 2017) 
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1.2 Problem statement 

 

Burner combustion in industrial applications is highly complex systems due to 

various complicating factors of heat transfer during combustion, non-uniform size of 

spray droplets and complex flow and mixing patterns in the mixing chamber or the 

combustion chamber. The mixing of fuel and oxidizer takes place in the burner 

chamber, where the mechanics of mixing process play an important role. The mixing 

is dependent on the geometry, spatial distribution, momentum of the air flow and 

influence of any flame stabilization devices such as turbulence generators. 

Swirl is a type of turbulence generators used in industrial combustion. It 

produces a predominant flow mechanism effective in controlling the flame stability 

and combustion intensity. It utilizes swirling motion to generate a recirculation zone 

for mixing the fuel and oxidizer and generate compact flame with much higher 

combustion intensity. It characterizes the size and strength of recirculation to 

determine effects on flame stability and combustion intensity.  

The complexity of the recirculation zone produces non-linear characteristics 

of flame. As a result, it elucidates the responsible basic process for initiating and 

sustaining combustion instabilities. The development of the passive and active 

control methodologies for combustion instabilities are substantial in a current 

research area  (Dunn-Rankin, 2008). In order to control the flame characteristics, it 

requires the controllability of fuel and air mixing by using the geometry of high 

blockage plates.   

Multi-circular jet (MCJ) plates have been identified as a turbulence 

generation system that yields large turbulent Reynolds numbers in a compact 

configuration. It allows highly turbulent and reasonably homogeneous flows inside 

the nozzle. Although numerous studies have been focused on turbulence generators 

and its effects on the spray and combustion, there is limited literature discussing 

alternative solutions on the geometry of primary air entrance particularly by using 

the MCJ plates in the mixing chamber.  It is anticipated that this approach has high 

potential for improving the fuel and air mixing in the atomizers, hence can assist in 

controlling the spray combustion from the burner (Coppola & Gomez, 2009). 
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1.3 Research questions 

 

In order to address the stated issues, the following questions needs to be resolved.  

(i) How significant is the effect of MCJ plate geometry on the spray and flame 

characteristics from internally mixed air assisted atomizer?  

(ii) How does the MCJ plate geometry influences the fuel and air mixing and how 

does it contributes to the spray formation?  

(iii) What the different between MCJ plate and swirl in terms of spray and flame 

characteristics? 

 

1.4 Aims 

This research aims to determine the effects of MCJ plates geometrical configurations 

of primary air entrance on the mixing induced by the two-phase flow of liquid fuel 

and air inside the mixing chamber of the internal mixing air-assisted atomizer. 

 

1.5 Objectives 

The specific objectives of this research are: 

(i) To determine the effects of MCJ plates on the geometrical configurations of 

spray and flame characteristics for the internally mixed air-assisted atomizer. 

(ii) To analyse the internal fluid flow inside the mixing chamber and its relation to 

the spray structure produced by the two-phase flow of fuel and air. 

(iii) To compare the spray and flame characteristics, together with the fluid flow 

mechanism and spray structure of one of the MCJ plates with swirl. 

 

1.6 Research scope 

 

The scope of the study as follows: 

(i) Internal mixing air-assisted atomizer is used in this study. 
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