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ABSTRACT 

Effective use of energy permits industrial and commercial facilities to cut down 

production costs, boost profits, and stay competitive. Also, the majority of electrical 

energy consumed in most industrial facilities is used to run electric motors. There has 

been a recent interest in flux switching motor (FSM) in which all flux sources are 

stalled in the stator that makes the rotor simple, robust, and brushless. Development of 

current research, particularly in conventional permanent magnet flux switching 

machine (PMFSM) has been with toothed rotor structures that employ permanent 

magnet at the stator that may manipulate the changes of paths for the stator teeth. Still 

this structure produces less torque and power. Hence, the use of multiple rotor 

structures has been developed, along with proposed PM configurations, which give 

significant gains. This research work  focused on a new design of PMFSM employing 

alternate circumferential and radial flux (AlCiRaF) permanent magnet over various 

rotor poles configuration, optimization based on deterministic method and 

performance investigation through 2D-FEA. In this work, four topologies have been 

proposed, such as 6S-10P PMFSM with salient type of rotor (SalR), 6S-10P PMFSM 

with span rotor (SpR), 6S-8P AlCiRaF PMFSM with segmental rotor (SegR AlCIRaF) 

and 6S-10P AlCiRaF PMFSM with salient rotor (SalR AlCiRaF) are modeled and 

simulated using 2D-FEA JMAG v. 14.1 for the initial performance investigation. 

Since, 6S-10P SalR AlCiRaF has shown higher tendency to achieve better 

performances compared to conventional design, the model is then undergo further 

refinement through deterministic optimization method by shifting modeling free 

parameters in rotor and stator part. Finally, 6S-10P AlCiRaF has achieved better 

torque, power, speed ranges and efficiency compared with conventional 12Slot-10Pole 

PMFSM. Besides the optimized 6S-10P AlCiRaF has improved approximately 

85.71% of maximum torque and 156% of maximum power than that of initial design 

machine proving their suitability towards efficient and reliable motors.    
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ABSTRAK 

Penggunaan tenaga yang berkesan membolehkan kemudahan perindustrian dan 

komersil untuk mengurangkan kos pengeluaran, meningkatkan keuntungan dan kekal 

berdaya saing. Di samping itu, kebanyakan tenaga elektrik yang digunakan di 

kebanyakan kemudahan perindustrian digunakan untuk menjalankan motor elektrik. 

Baru-baru ini, terdapat minat yang baru-baru ini dalam mesin pensuisan fluks (FSM) 

di mana semua sumber fluks di pemegun telah menjadikan pemutar lebih mudah, teguh 

dan tanpa berus. Pembangunan penyelidikan semasa terutamanya dalam mesin 

konvensional pensuisan fluks magnet (PMFSM) dengan struktur pemutar bergigi yang 

menggunakan magnet kekal di pemegun yang boleh memanipulasi perubahan laluan 

fluks pada gigi pemegun tetapi struktur ini menghasilkan kurang tork dan kuasa. Oleh 

itu, penggunaan pelbagai struktur pemutar telah dibangunkan, bersama-sama dengan 

konfigurasi magnet kekal (PM) yang dicadangkan dimana memberi kelebihan yang 

ketara. Kerja penyelidikan ini tertumpu pada rekaan baru PMFSM dengan 

menggunakan magnet tetap lilitan dan aliran fluks (AlCiRaF) terhadap pelbagai 

konfigurasi kutub rotor, pengoptimuman berdasarkan kaedah deterministik dan 

penyiasatan prestasi melalui 2D-FEA. Terdapat empat topologi yang dicadangkan, 6S-

10P PMFSM dengan jenis pemutar salient (SalR), 6S-10P PMFSM dengan rotor span 

(SpR), 6S-8P AlCiRaF PMFSM dengan rotor segmen (SegR AlCIRaF) dan 6S-10P 

AlCiRaF PMFSM pemutar (SalR AlCiRaF) dimodelkan dan disimulasikan 

menggunakan 2M-FEA JMAG v. 14.1 bagi penyiasatan prestasi awal. Oleh kerana 6S-

10P SalR AlCiRaF telah menunjukkan kecenderungan yang lebih tinggi untuk 

mencapai prestasi yang lebih baik berbanding dengan reka bentuk konvensional, 

model itu kemudian menjalani penambahbaikan selanjutnya melalui kaedah 

pengoptimalan deterministik dengan mengubahsuai parameter bebas pemodelan di 

bahagian pemutar dan pemegun. Akhirnya, 6S-10P AlCiRaF telah mencapai tork, 

kuasa, julat kelajuan dan kecekapan yang lebih baik berbanding mesin konsional 

12Slot-10Pole PMFSM. Di samping itu, 6S-10P AlCiRaF yang optimum telah 

meningkatkan kira-kira 85.71% tork maksimum dan 156% kuasa maksimum daripada 
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mesin reka bentuk awal membuktikan kesesuaian mereka terhadap motor yang cekap 

dan boleh dipercayai. 
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1CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Research Background 

The world in the 21st century today saw how the issue of global warming is a major 

concern by the public. Therefore, many extensive studies have been carried out by 

certain parties to prove that this is not an isolated issue that needs to underestimate but 

instead to come out with series of factor findings, promising proposals, and feasible 

solutions [1-5]. As reported in [1-2], one of the major factors in worsening global 

warming is the emission of human-made greenhouse gases (GHGs). Where carbon 

dioxide (CO2) is identified as one of the major GHG released into the atmosphere by 

the combustion of fossil fuel [3]. 

The conventional internal combustion engine (ICE) has been used in vehicles 

for personal transportation for more than 100 years already. Currently, demand for 

private vehicles are increasing due to the rapidly rising rates of the world population. 

Among the main problems related to critical increased use of private vehicles is 

emission, whereby this  has been a significant contributor to global warming, which 

has become an acute issue that must be faced by everyone. As a result, the government 

and related agencies have come up with more stringent standards to curb the problem 

of emissions and fuel efficiency.  To obtain a wide-range full-performance high-

efficiency vehicle while eliminating pollutant emissions, the most workable solution 

at present is the electric vehicle (EV), which driven by battery-based electric motor 

[6]-[10]. 

Generally, there are multiples important steps and attention requirements  to 

make a selection of electric motor for EV propulsion systems, and the automotive 
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 2 

industry is still hunting for the most appropriate one. In this case, the key features are 

efficiency, reliability, and cost. The process of selecting the appropriate electric 

propulsion systems should be carried out at the system level. Mainly, the choice of 

electric-propulsion systems for EV depends on three factors; driver’s expectation, 

vehicle design constraints, and energy source. With these considerations,  the specific 

motor operating points are difficult to define [11]. Hence, selecting the most 

appropriate electric-propulsion system for the EV is always a challenging task. At 

present, the major type of electric motors for EVs is the Flux Switching Machine 

(FSM) which has recently become a accessible and attractive design of machine type 

due to its numerous advantages such as high torque density and efficiency [12-16]. 

In 1955, FSM was first introduced as a single-phase alternator by Rauch and 

Johnson, consisting an only permanent magnet as the single magnetic flux source [17]. 

FSM has been receiving significant attention afterward, especially in electric 

propulsion system application and meanwhile, the first three-phase system was later 

developed in 1997 by E. Hoang et al [18]. Firstly, the invented permanent magnet flux 

switching machine (PMFSM), which is a permanent magnet (PM) single-phase limited 

angle actuator, or more well known as Laws relay, with four stator slots and four rotor 

poles was developed. It is extended into a single-phase generator with four stator slots 

and four or six rotor poles. FSM comprises all flux sources in the stator. Besides the 

advantage of brushless machine type, FSM also has a single piece of iron rotor 

structure that is robust and applicable for high-speed applications [19]. Over the past 

ten years, many new FSM topologies have been developed for various applications, 

ranging from low-cost domestic appliances, automotive, wind power, aerospace, and 

others [20]. 

In general, FSM can be broken down into three major clusters namely 

permanent magnet flux switching motor [PMFSM], field excitation flux switching 

motor [FEFSM], and hybrid excitation flux switching motor [HEFSM]. Both PMFSM 

and FEFSM have only one single main excitation flux source, respectively induced by 

permanent magnet and field excitation coil [FEC], whereas both  PM and FECs are 

being used to generate flux in HEFSM. On the other hand, the armature winding and 

permanent magnet are both stationary in PMFSM but magnetic flux linkage can be 

altered either positive or negative polarity depends on the position of the rotating part. 

The concept of FSM is actually involved changing the polarity of the flux linking the 

armature winding by the motion of the rotor [21]. Finally, the excitation flux produced 
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 3 

by permanent magnet flows from stator to rotor and oppositely from the rotor to the 

stator to accomplish one complete cycle. Similarly, this particular operation and 

principle take place for the rest of FEFSM and HEFSM as well.  

However, in FEFSM the excitation source used is FE, which has lower flux 

strengthening as compared to PMs and hence, causes the less production of torque 

density. Besides, due to the usage of FEC the copper losses and copper cost is 

increased. On the other hand HEFSM combines the both sources to produce the torque 

however, due the flux cancellation effects HEFSM has complexities to produce torque.  

Therefore, this research mainly focuses on the PMFSM implementing inner 

rotor structure along with various directions of PMs.  

1.2 Problem Statements 

Figure 1.1 shows a conventional 12S-10P three-phase PMFSM in which stator core 

consists of modular U-shaped laminated segments arranged next to each other with 

PMs slotted in between them. For flux switching operation principles, the PM 

magnetization polarity is being reversed from one magnet to another [22-24]. Stator 

armature winding consists of concentrated coils and each coil being wound around the 

stator tooth formed by two adjacent laminated segments and a magnet and it is 

however, inherits the disadvantage of high PM volume. Hence, variety of PMFSM 

designs have been reported since then.  To reduce the consumption of PM, the stator 

 

Figure 1.1: 12S-10P Conventional PMFSM Topologies 
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poles are replaced alternately by a simple stator tooth and therefore the new E-core is 

developed [24]. The stator core is merged to form an E-Core PMFSM stator and half 

of the PM volume in [18] is removed. The E-Core configuration is also presented in 

[25-27] with a combination arrangement between horizontal, and vertical of low-

coercive force (LCF) magnets. The horizontal magnets are alternately attached to the 

stator teeth tips, and the vertical magnets remain identical as the conventional design. 

Moreover, the middle E-stator teeth can be removed to enlarge the slot area, and 

consequently, the new C-core PMFSM is introduced [28-29]. On top of these 

topologies, the main constraints are magnetic flux leakage at the outermost tips PM 

which limits the distribution of flux and also their separated stator from one segment 

to another that is hard to manufacture and assemble. 

Therefore, to address all the shortcomings in existing PMFSMs including high 

PM volume, flux leakage, limited distribution of flux and manufacturing issues, new 

configurations of PMFSM implementing inner rotor structures are proposed in this 

research, such as 6S-10P salient rotor (SalR), 6S-8P spin rotor (SpR), 6S-8P segmental 

rotor (SegR) AlCiRaF, and 6S-10P SalR AlCiRaF are presented to execute 

comprehensive investigations over multiple design possibilities. 

1.3 Objectives of the Study 

The main objective of this research is to propose a new structure of a 3-phase 

permanent magnet flux switching machine using inner rotor configuration for light 

electric vehicles. In achieving the main objective, there are some specific objectives 

that must be fulfilled:  

(i) To design and investigate the new structure model of three-phase PMFSM 

implementing inner rotor configurations for high torque density. 

(ii) To analyse the performance of the proposed machines under various armature 

current densities for flux linkage, back-emf, cogging torque, torque speed 

characteristics, iron losses, copper losses of windings and efficiency. 

(iii) To optimize the proposed inner rotor PMFSM and compare the simulation 

results with conventional PMFSM for optimum performance. 
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