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ABSTRACT 

The advancement in technology has resulted in large size of data, which then introduce 

challenges to labelling or classification tasks with high dimensional features. 

Specifically, in the case of text labelling problem, the existing classification models 

are challenged with a huge number of instances, millions number of features, and large 

number of categories. Such challenge requires a well-defined hierarchy structure and 

automated classification models to label the instances within the hierarchy, which can 

be referred to as Large-Scale Hierarchical Text Classification (LSHTC). Even with a 

well-defined hierarchy, the LSHTC problem is still facing a scalability issue. 

Therefore, this requires improvements in the dimensional reduction phase of the 

LSHTC framework that aim at constructing a subset of informative features. However, 

using the existing dimensionality reduction methods in LSHTC problem has the 

consequence of introducing bad collisions or results discrepancy limitations. 

Therefore, in this thesis, a Multi-stage Dimensional Reduction Method (MDRM) 

based on feature hashing and bi-strategy filter method is proposed for the LSHTC 

problem. In view of solving the aforementioned problems, a Modified Feature Hashing 

(MFH) based on term weight to minimize bad collisions rate is presented, whereas for 

dealing with results discrepancy, a new Bi-strategy Filtering Approach (BFA) is 

presented. Experimental results show that the proposed MFH outperformed the 

conventional features hashing approximately by 3%. BFA has achieved the highest 

average micro-f1 score of 53.38% and 55.58%, and the highest average macro-f1 score 

of 45.83% and 49.23% compare to the single strategy filtering methods. It also 

achieves highest hierarchical-f1 of 79.99%, 67.83%, and 67.95% compare to existing 

multi-strategy filtering approaches. Lastly, the MDRM has achieved the best 

performance in terms of average micro-f1 (58.47% and 54.77%) and average macro-

f1 (51.14% and 48.70%), respectively. In the case of running time, the MDRM has 

achieved 11% faster than the single stage reduction method and about 37% faster than 

baseline method.  
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ABSTRAK 

Kemajuan teknologi telah menghasilkan data bersaiz besar, lalu menyebabkan cabaran 

dalam melabel atau mengklasifikasi tugas yang mempunyai sifat dimensional yang 

tinggi.  Secara lebih spesifik, dalam masalah “text labelling”, model klasifikasi yang 

wujud sedang mendepani cabaran jumlah instances yang besar, jutaan features, dan 

jumlah kategori yang banyak. Cabaran ini memerlukan struktur hierarki yang jelas dan 

model klasifikasi automatik untuk melabel “instances” dalam hierarki, dan perkara ini 

dikenali sebagai masalah Large-Scale Hierarchical Text Classification (LSHTC). 

Walaupun hierarki adalah jelas, masalah LSHTC masih juga menghadapi isu 

skalabiliti. Masalah LSHTC ini memerlukan penambahbaikan dalam fasa 

pengurangan dimensional, yang bertujuan untuk membina sebuah subset yang 

mengandungi ciri-ciri bermaklumat. Oleh itu, dalam tesis ini, sebuah Multi-stage 

Dimensional Reduction Method (MDRM) berdasarkan ciri-ciri hashing dan kaedah 

penapisan dwi-strategi telah dicadangkan untuk menyelesaikan masalah LSHTC ini. 

Bagi menyelesaikan masalah yang telah dinyatakan, suatu Modified Feature Hashing 

(MFH) berdasarkan term weight telah diutarakan untuk meminimumkan kadar bad 

collisions. Selain itu, untuk menangani percanggahan results, Bi-strategy Filtering 

Approach (BFA) yang baharu telah dicadangkan. Hasil kajian menunjukkan bahawa 

MFH mempamerkan prestasi lebih baik berbanding features hashing konvensional 

sebanyak tiga peratus.BFA telah mencapai purata skor micro-f1 tertinggi iaitu 

sebanyak 53.38 and 55.58%, dan mencapai purata skor macro-f1 tertinggi sebanyak 

45.83% and 49.23%, berbanding dengan kaedah penapisan strategi yang sedia ada. 

Serta mencapai hierarki-f1 tertinggi iaitu sebanyak 79.99%, 67.83%, dan 67.95% 

berbanding pendekatan penapisan pelbagai strategi sedia ada MDRM telah 

mempamerkan prestasi paling memberangsangkan, dari segi purata micro-f1 (58.47% 

and 54.77%), dan purata macro-f1 (51.14% and 48.70%).  Dari aspek running time, 

MDRM mencapai 11% lebih kelajuan berbanding kaedah pengurangan single stage, 

dan  lebih kurang 37% lebih laju berbanding kaedah baseline.  
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  CHAPTER 1 

INTRODUCTION 

 

1.1 Background of study 

Currently, data is growing more extensive not only in terms of size but also in the 

dimension of features and the number of classes, which are growing in the order of 

millions and thousands, respectively [1]. These kinds of data are often referred to as 

"large-scale datasets." Nowadays, several applications need to classify a data with an 

extremely large number of instances, features, and classes [2]. To effectively analyze 

and extract valuable information from such types of data, a structured taxonomy of the 

data must first be defined [2]. As the name implies, this taxonomy or hierarchy is a 

well-known approach for dealing with large-scale datasets in numerous real-world 

application domains [3][4]. Various large-scale categorization problems termed 

"Large-Scale Hierarchical Classification (LSHC)" spine around the HC problem, such 

as webpage classification [5], image classification  [6], music genre classification [7], 

gene sequence classification [8], and more importantly, document classification [9]. 

But this thesis focuses on applications that deal with text classification.  

Indeed, studies have shown that taxonomy is continually becoming more 

popular for structuring large-scale text documents. Large-Scale Hierarchical Text 

Classification (LSHTC) is one fruitful and essential area of research that has to do with 

the taxonomical classification of large-scale textual data. Moreover, LSHTC has been 

widely employed in PubMed document classification, international patent records, 

web document classification, and web directories. The massiveness of the text data not 

only causes complexity and heterogeneity in such domains but also results in diverse 

dimensionalities and classes [1][10][11]. Therefore, accompanying the text data and 

concept space growth results in billions of parameter vectors. This is why the 
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hierarchical classification of an instance among a large number of label classes has 

achieved significance predominantly in the perspective of large-scale classification 

[12][13][14][15][16][17]. Even though large-scale textual data with clearly defined 

inter-category dependency information is advantageous for improving Hierarchical 

Classification (HC) [3], the scalability problem severely affects the approach. This 

problem arises due to the high dimensionality produced by text datasets. Several 

research studies handle or improve the scalability issue by integrating suitable 

dimensional reduction approaches into the framework of LSHTC [4][18]. As the 

adoption of dimensionality reduction will enhance the scalability of the LSHTC 

problem, however, not all of the reduction techniques are efficient. Some drawbacks 

exist, especially with feature hashing and multi-strategy filtering approaches that 

inspired this research. 

The "Curse of dimensionality" is one of the research challenges and a common 

problem associated with LSHTC problems, especially when they involve a 

considerable number of features [19][20][21]. HC models face severe computational 

issues when dealing with such LSHTC tasks. As said earlier, the concept of 

“dimensional reduction” is a well-established approach usually used to overcome such 

a problem (by reducing the storage and processing time requirements) [22]. This 

technique scales up or improves the performance of HC models by reducing the 

dimensionality of features set generated in each node of the LSHTC taxonomy 

[20][23]. The technique, which is established based on machine learning, statistics, 

and applied fields [24], is used to eliminate those features that are noisy, irrelevant, 

and redundant. The existing dimensionality reduction techniques comprise different 

methods that take the original high-dimensional feature space and produce a lower-

dimensional feature space that preserves most of the necessary information [23]. These 

methods that generally keep important information are critical tools utilized as a pre-

processing step in various LSHTC problems. However, the existing dimensional 

reduction approaches (Feature Hashing (FH) and multi-strategy filtering methods) 

integrated into the LSHTC framework have drawbacks. For FH methods, collisions 

occur as multiple features are mapped into a single bucket while projecting the original 

elements into a lower index despite an unused number of buckets exist. In the case of 

multi-strategy filtering methods, result discrepancies occur when assigning a rank to 

each feature by the integrated filtering approaches. Both the problems mentioned 

above result in a critical information loss, consequently sacrificing the performance of 
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HC models, whose performance seriously depends on the original input dimension 

[25].  

Therefore, this thesis proposed an approach that reduces the size of the features 

in an LSHTC task to a much lower dimension by solving multiple issues in two stages, 

thus improving scalability and running time. In the first stage, an approach that 

enhances the hashing scheme of the existing feature hashing, [26][27] is proposed. It 

uses term weight to minimize the rates of destructive collisions associated with the 

existing methods. In the second stage, an improved ranking approach was proposed to 

address the issue of ranking mismatches associated with existing multi-filtering 

methods, [28][29][30][31][32]. 

In the following sections of this chapter, a brief description of the thesis, 

research problems, aim and objectives, the significance of the study, and the 

organization of the thesis will be presented.  

1.2 Problem statement  

Large-scale text data is considered the most critical and challenging issue in many real-

world application domains [33]. There has been a lot of interest in constructing LSHTC 

for large-scale text datasets comprising thousands of classes and millions of instances 

with high-dimensional features [34]. However, for HC models, due to a high number 

of generated features, the task is tedious, complicated, and takes a more prolonged 

processing time [35][6]. Data restructuring, feature representation, dimensional 

reduction, classification, and prediction have been highlighted as the phases of LSHTC 

research challenges. The dimensional reduction phase plays a vital role in improving 

the scalability and performance of the LSHTC framework. But the existing 

dimensional reduction approaches, FH and multi-strategy filtering methods integrated 

into the framework are unreliable due to bad collisions and result discrepancy. 

Nevertheless, bad collisions are an inherent problem present in current FH 

methods, these collisions occur in the process of hashing features into a lower hash 

space. This could lead to substantial information loss, mainly when collisions occur 

between features with different class distributions. Moreover, a single collision can 

significantly degrade the performance of the HC models. On the other hand, LSHTC 

has made filter methods complicated as they deal with many features during the feature 
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filtering process. While current approaches that integrate multiple filter methods, 

known as “multi-filtering approaches,” suffer from result discrepancy problem. The 

problem occurs due to the different rankings assigned to a single feature by the 

integrated filter methods [3]. This issue miss-lead the multi-strategy approaches to 

filter out highly contributory features in the process of features filtering. Nevertheless, 

using either of the approaches with domain applications that deal with LSHTC tasks, 

such as international patent records and web directories, could increase error rates in 

classifying documents. 

Therefore, this study focused on reducing each node's feature dimensions 

within the LSHTC taxonomy. This is done by removing those features that are helpless 

in discriminating between class labels (child nodes) in the dimensional reduction phase 

of the LSHTC framework, which consequently scales up HC model performance (by 

lowering processing time). Besides, the problem of poor performance that arises due 

to the problem of losing important information as a result of bad collisions and ranking 

mismatch was also addressed. The following research issues are addressed in this 

study: 

(i) How to effectively mitigate the occurrence of bad collisions 

Feature Hashing [28][30][31] is one of the dimensional reduction techniques 

effectively used in reducing high-dimensional features set. FH-based methods 

take the original input features space and project each feature into a lower 

defined index. This technique, which deals with sparse features efficiently, is 

widely used in scaling-up LSHTC tasks. Hash collision is the main problem 

associated with the methods based on this technique. A single collision could 

deteriorate the performance of an HC model. Given some particular value of k, 

such that k<< R, where R is the dimension of the input feature space and k is 

the smaller size of the hashed space. The hash scheme of the existing FH, 

[6][26][27] randomly maps original features k to a lower space R. Despite the 

presence of unused buckets, the methods end up bucketing multiple features 

with different class distributions into the same bucket. This may lead to some 

collisions, which result in significant information loss. However, reducing the 

number of unused buckets by avoiding distinct mapping feature into a single 

bucket will mitigate the rate of bad collisions, consequently improving 

prediction accuracy. Therefore, an approach that enhances the hashing scheme 
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of the existing FH by using a term-weight to minimize the rate of collisions 

was proposed in this study. 

(ii) How to efficiently avoid the possibility of filtering out highly informative 

features 

Irrelevant features are naturally present in an input features set, and they are 

unwanted features that do not contribute to the discrimination between classes 

[36][37]. These features generate a lot of problems for the HC models because 

their presence increases the dimension of feature space by order of a million. 

As a result, several issues arise, including very high processing time, high 

memory utilization, and a high risk of over-fitting [11][38][39]. These issues 

become more and more complex when they are encountered with LSHTC 

problems. Numerous FS approaches for reducing the feature dimensions have 

been integrated into the LSHTC framework to overcome the challenges 

mentioned above. Among the approaches, multi-strategy filtering approaches 

have shown to be more effective than single strategy approaches but suffer 

from the problem of result discrepancy. Due to this problem, the existing multi-

strategy methods, [28][29][30][31][32] fail to select those features that are 

highly informative (those features that are ranked highest by one method and 

the other merged method fails to rank them higher) when two filter methods 

are integrated. This increases the error rate for class prediction of any incoming 

new instance. Therefore, in this study, an improved ranking for the multi-

strategy approach has been proposed. This efficiently avoids losing those 

informative features by considering each feature's vector magnitude score and 

ranking produced by the integrated filter methods. This will significantly 

contribute to discriminating among the large number of classes in the LSHTC 

task. 

(iii) How to efficiently improve the scalability of LSHTC problem  

LSHTC is often considered a dataset comprising thousands of number 

categories and a disproportionately large number of instances with high-

dimensional sparse features presentation. Training HC models in the original 

features space of the LSHTC to discriminate between large numbers of classes 

falls into scalability problem due to high processing time. In this study, 

scalability is defined as: 
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Definition 1 “The ability of a model to successfully execute or handle an 

increasing large amount of textual data that produces millions of parameter 

vectors by reducing processing time and at the same time improving or 

maintaining its performance” [4][3][26][40]. 

 

Now, consider a multi-class classification problem with a linear 

classifier; given a training dataset {x, y} with m instances and ℓ label classes 

presented in a d-dimensional feature space, where 𝑥 ∈ 𝑅𝑑 , 𝑦 ∈ ℓ, 𝑎𝑛𝑑|𝑦| = ℓ. 

Therefore, each document (instance) will result in ℓ𝑑 parameters to train. Let 

Γ(𝑥, 𝑦) = 𝑣𝑦⊗𝑥 be the join input-output mapping, where Γ(𝑥, 𝑦) ∈ 𝑅ℓ𝑑 is the 

tensor product of training instances x and vector 𝑣𝑦 ∈ 𝑅
ℓ𝑑, and all entries of 

𝑣𝑦 are zero except the 𝑦𝑡ℎ entry. By learning a parameter vector 𝑤 ∈ 𝑅ℓ𝑑, a 

learning classifier is achieved, such that the class prediction for every input 

document x is given by: 

 

𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑤
𝑇Γ(𝑥, 𝑦)                                               (1.1) 

  

The parameters size can be enormous (in billions) for the LSHTC 

problem. Moreover, storing and processing such a large number of parameters 

in a given memory and within possible lower time could be a complex and 

challenging problem. However, the current dimensional reduction approaches, 

[3][27][41][42] integrated into the LSHTC problem sacrifice the performance 

of HC models due to their difficulties of losing essential features. Reducing 

features size to a much lower dimension and at the same time maintaining 

important features will lower processing time and improve performance, thus 

improving scalability. Therefore, this study proposed an approach based on 

multi-stage dimensional reduction. The approach integrates efficient FH 

method and multi-filtering approach into the LSHTC framework. This will 

improve the scalability of LSHTC problems and, at the same time, avoids 

losing those features that will significantly contribute to discriminating among 

a large number of classes. 
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1.3 Research aim and objectives 

This research aims to improve the scalability and performance of HC models by 

sequentially solving a couple of issues in the dimension reduction phase of the LSHTC 

problem.  To achieve this goal, we focus on the following objectives: 

1. To propose a Modified Feature Hashing approach (MFH) that uses term weight 

to eliminate the bad collisions between dissimilar features.  

2. To propose a Bi-strategy Filtering Approach (BFA) that uses feature vector 

magnitude score to minimize the problem of result discrepancy which avoid the 

problem of losing highly informative features. 

3. To propose a Multi-stage Dimensional Reduction method (MDRM) for LSHTC 

which will improve the scalability of HC models by integrating the approaches 

proposed in objectives (1) and (2). 

1.4 Research scope 

Considering the numerous challenges associated with each phase of the LSHTC 

problem, this research work focuses only on improving the dimensionality reduction 

phase in the LSHTC framework. Among the various issues related to dimensionality 

reduction approaches, this study will focus on minimising the collision rate associated 

with FH approaches and improving the ranking mismatch associated with multi-

filtering approaches.  

HC task can be divided into two (2) major approaches: single-label (every child 

node has only a single parent within the tree taxonomy) and multi-label (child nodes 

could have multiple parents within the tree taxonomy). Thus, the single-label approach 

(multi-class classification) was the only one considered in this study.   

Moreover, regarding the experimental datasets, this study considers only 

secondary datasets with their information organized in hierarchies (parent-child 

relationship), which include 20NewsGroup (20NG) [43], International Patent 

Classification (IPC) [44], and Directories Mozilla (DMOZ-small) datasets  [45]. The 

nature and properties of the datasets are illustrated in Table 3.1 (in Chapter 3). These 

datasets are believed to be large-scale with diverse classes, high-dimensional, and 

sparse. The study measured the effectiveness of the proposed approaches by focusing 
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on some selected evaluation metrics, including micro-fi, macro-f1, hierarchical-f1, 

hierarchical-error, and running time.  

The proposed methods in this study are limited to handling only text 

classification with defined hierarchies. Finally, the performance evaluation of the 

proposed methods will be recorded concerning dimensionality reduction only. 

1.5 Significance of the study 

LSHTC task has become the most efficient way of classifying large-scale text datasets 

in recent years. The task has grown in popularity to organize text documents in various 

application domains, such as web document classification, web directories, and 

international patent classification. However, the exponential growth of documents 

size, the number of features, and the number of classes have raised difficulties for the 

applications mentioned above when classifying new instances [46]. As a result, this 

requires an improved scalable approach to overcome the challenges associated with 

the LSHTC problem. It is crucial to reduce the feature dimensions to enhance the 

scalability and prediction performance of the LSHTC framework [47][48][49], even 

though existing studies reduce the number of features by using different 

dimensionality reduction approaches and techniques. However, the state-of-art 

approaches proposed in [6][3] are still inadequate for LSHTC problem. Besides, 

inefficient dimensional reduction may lead to poor document predictions and 

sometimes long processing time. For addressing these problems, two main approaches 

have been previously used within the LSHTC framework in different settings (single-

stage [27][6][3][29] and multi-stage [50][28][28]). Both the existing single-stage 

approaches (specifically based on FH technique) and the multi-stage approaches 

(specifically based on multi-strategy filtering technique) are inadequate for LSHTC 

problem. For the existing CFH [6] and HFS [3] approach, when a user issues a query 

request, the framework utilizes either of the approaches to reduce the input features 

into a lower space before classification. Therefore, for straight-forward solutions:  

 The framework uses the FH method in place of the feature vectorization in the 

dimensional reduction phase of LSHTC to reduce the input feature dimensions: 

The method directly uses bag-of-words to map each feature in the input space 

into a lower index dimension. 
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