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ABSTRACT 
 
 
 
 
Text classification is applicable in various problem domains, including marketing, 

security, and biomedical. One of the potential text classifiers is the well-known 

associative classification approach. However, the existing associative classification 

approach is still prone to some limitations especially when dealing with the problem 

with too many rules in text classification problem. Some of the rules generated from 

the textual data may be irrelevant and redundant, result in low performance in 

imbalanced and class overlapping data. Therefore, this research has proposed an 

improved associative classification approach to enhance the performance and 

efficiency of the text classification by removing the irrelevant rules, reducing 

redundant rules, and handling the imbalanced and class overlapping issues in the 

textual data. The proposed associative classification approach consists of three stages: 

pre-processing, fuzzification and classification. In the classification stage primarily, 

this study proposed to integrating principles of fuzzy soft set theory into associative 

rules, therefore referred to as Class-Based Fuzzy Soft Associative (CBFSA) method. 

The experiments used 20 Newsgroup (balanced data) datasets and Reuter-25178 

(imbalanced) to evaluate the proposed model. It shows that CBFSA is successful in 

removing irrelevant and reducing redundant rules.  The CBFSA classifier applies 

smaller number of rules than Class Based Associative (CBA) and Class Based of 

Predictive Association Rule (CPAR). The CBFSA is also successful in dealing with 

imbalanced and class overlap data. The CBFSA performance is higher and faster than 

CBA and CPAR. Meanwhile, comparative analysis with some other non-associative 

based classifiers may achieve improved f1-measure between 6% to 32%. The 

processing time of CBFSA is faster than RNN and CNN but slightly slower than 

Decision Tree, k-NN, Naïve Bayes, Roccio, Bagging and Boosting.  
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 ABSTRAK 
 
 
 
 
Pengkelasan teks boleh diaplikasi dalam pelbagai domain masalah termasuklah 

pemasaran, keselamatan dan biomedical. Salah satu pengkelas teks yang diketahui 

berpotensi adalah pendekatan pengkelas kesatuan. Walau bagaimanapun, pendekatan 

pengkelas kesatuan sedia ada terdedah kepada beberapa kekangan terutamanya bila 

melibatkan bilangan peraturan yang banyak dalam masalah pengkelasan teks. 

Sebahagian peraturan mungkin tidak relevan dan bertindan, menghasilkan keputusan 

yang rendah dalam data yang tidak seimbang dan pertindanan data kelas. Oleh yang 

demikian, penyelidikan ini telah mencadangkan pendekatan pengkelasan kesatuan 

yang telah ditambahbaik untuk meningkatkan kemampuan dan kecekapan melabel 

teks dengan menyingkirkan peraturan tidak relevan, mengurangkan peraturan 

bertindan, dan menangani isu ketidakseimbangan dan pertindanan dalam data teks. 

Pendekatan pengkelasan kesatuan cadangan terdiri daripada tiga peringkat: pra-

pemprosesan, pengkaburan and pengkelasan. Dalam peringkat pengkelasan 

terutamanya, kami telah mencadangkan integrasi prinsip teori fuzzy soft set ke dalam 

peraturan kesatuan dan dirujuk sebagai kaedah Class-Based Fuzzy Soft Associative 

(CBFSA). Eksperimen dengan set data 20 Newsgroup (data seimbang) dan Reuter-

25178 (data tidak seimbang) untuk menilai model cadangan. Ia menunjukkan CBFSA 

berjaya menyingkirkan data tidak relevan dan mengurangkan peraturan bertindan. 

CBFSA mengaplikasi bilangan peraturan lebih kecil berbanding Class Based 

Associative (CBA) dan Class Based of Predictive Association Rule (CPAR). CBFSA 

juga berjaya dalam menghadapi data tidak seimbang dan bertindan kelas. CBFSA 

mencapai hasil yang lebih baik dan cepat berbanding dengan CBA dan CPAR. Analisa 

perbandingan dengan pengkelas bukan kesatuan, ukuran-f1 mencapai antara 6% 

hinggan 32%. Masa pemprosesan CBFSA lebih cepat daripada RNN dan CNN tetapi 

sedikit perlahan berbanding Decision Tree, k-NN, Naïve Bayes, Roccio, Bagging and 

Boosting. 
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CHAPTER 1 
 
 
 
 

1. INTRODUCTION 
 
 
 
 
This chapter presents the research background, problem statement, objectives, scope, 

research significance, and thesis organization. 

 

1.1 Research Background 

 

Textual data classification is one of the challenging tasks in many applications 

including news categorization (Hadi et al., 2018), spam filtering (Subramaniam et al., 

2010; Aski & Sourati, 2016; Dada et al., 2019), business review scrutinization (Fang 

& Zhan, 2015; Khan & Khalid, 2015; Prananda & Thalib, 2020; Rokade & Aruna 

Kumari, 2019), sentiment analysis (Pinto & Murari, 2008; Caetano et al., 2018; Ansari 

et al., 2020; Park et al., 2021), and medical records mining (Trieschnigg et al., 2009; 

Zhang et al., 2018). Indeed, in the presence of the Internet era, the growth of the textual 

data becomes very rapid (Kowsari et al., 2019). Textual data can easily be obtained 

from various resources such as electronic repositories, chat rooms, online news 

articles, digital libraries, online forums, email, and blog repositories. Thus, the 

availability of such resources facilitates collection, accessibility, and distribution of 

textual data for various purposes, including the possibility to developing of automated 

classification in text mining application.  

One of the well-known automated classification approaches in text mining 

applications is the associative classification (AC) (Gupta & Lehal, 2009; Sheydaei et 

al., 2015). Besides its application in textual data labeling tasks, AC is also studied for 

other variety of data such as continuous data (Nakamura, 2012; Subbulakshmi, 2016), 

image (Deshmukh & Bhosle, 2016), Boolean dataset (Mlakar et al., 2017; Park & Lim, 
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2021). Different from other data classification approaches such as  Bayesian classifiers  

(Jiang et al., 2016; Qu et al., 2018;), K-Nearest Neighbor classifiers (Samsudin & 

Bradley, 2010; Jiang et al., 2012), Decision Tree classifier (Zhou et al., 2017;  

Karabadji et al., 2017; Shaheen et al., 2020), Boosting classifier (Bickel et al., 2006; 

Bloehdorn & Hotho, 2006), Bagging Classifier (Geurts, 2000; Shinde et al., 2014), 

Convolutional Neural Network (CNN) (Jaderberg et al., 2016; Radhika et al., 2018; 

Alom et al., 2018; Junyi et al., 2020), Recurrent Neural Network (RNN) (Jing, 2019; 

El-Moneim et al., 2020; Caterini & Chang, 2018), AC is distinguishable in performing 

two major tasks in labeling the data: association rule mining (ARM)  and AC (Chen et 

al., 2014). While the association rule mining task shall find relationships in the data to 

generating rules, the classification task then shall label the data upon learning the 

generated rules (Chen et al., 2014). The existing studies of AC highlight the benefits 

of data mining applications in exploring data space for establishing efficient rules and 

selecting most relevant set of rules for class label decision (Almasi & Saniee Abadeh, 

2020). Besides, in some studies AC is also well-known for its capability to present 

simple output, achieve high accuracy, and maintain rules on the items in the data (Hadi 

et al., 2018).  

The size of text data can be categorized into small size text data and large size 

text data. The small size text data consist of several words in text such as review 

products by the customer and short messages on social media like WhatsApp, Twitter, 

Facebook, and Instagram. In comparison, the large size text data has more than a 

hundred words in the document, such as news articles, short stories, and academic 

journals. On the other hand, the rules of associative-based text classifier are generated 

based on the number of words or terms presented in the textual data  (Sheydaei et al., 

2015). For instance, if there are a hundred different words in the textual data, the rules 

will consider the combination of a hundred words. Using the conventional associative 

classifiers such as Class-Base Associative (Liu et al., 1998), Classification based on 

Multiple-class Association Rule (CMAR) (Li et al., 2001), Classification based on 

Predictive Association Rules (CPAR) (Yin & Han, 2003) and its existing variations 

such as Fast Associative Classification Algorithm (FACA) (Hadi et al., 2016), 

Predictability-Based Class Collative Class Association Rules (PCAR) (Song & Lee, 

2017), Weighted Classification Based on Association rules (WCBA) (Alwidian et al., 

2018), Active Pruning Rules (APR) (Rajab, 2019), to label large size textual data is 

considerably difficult. The large size textual data classification task is challenging 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



3 
 

 

because using the existing associative classifiers will lead to high processing time and 

complexity (Alwidian et al., 2018). Besides, resulting large number rules but low 

accuracy that indicates the rules is inefficient. Consequently, the labeling output will 

present low classification accuracy. To automate the large size textual data 

classification, this study has proposed to improve existing AC approach by reducing 

number of generated rules and time complexity in the decision process, which 

eventually will increase the textual data labeling accuracy. 

 

1.2 Problem Statement 

 

Several earlier studies for text classification problem using the principles in AC 

approach can be found in (Liu et al., 1998; Yin & Han, 2003; Chen et al., 2005; Li et 

al., 2007; Mishra & Vishwakarma, 2017; Sheydaei et al., 2015; Yoon & Lee, 2007; 

Sokhangoee & Rezapour, 2022; Hadi et al., 2018). Note that, the existing AC for data 

labeling tasks consists of three main processes: generate rules, build classifier, and 

predict class label (Liu et al., 1998; Yin & Han, 2003; Thabtah et al., 2011; Sheydaei 

et al., 2015). Significant problems in the processes of the existing AC approach may 

arise when applying to labeling large size textual data, which are presented as follows:  

a. In existing AC, too many rules will be generated if the size of data is large 

(Sheydaei et al., 2015; Mlakar et al., 2017; Son et al., 2018; Li & Sheu, 2021). 

Consequently, some rules may be redundant  (Thabtah, 2007; Sheydaei et al., 

2015; Son et al., 2018;  Li & Sheu, 2021), while others may be irrelevant  (Son 

et al., 2018; Li & Sheu, 2021). Indeed, such rules are considerably 

inappropriate for classifier building and class label prediction in the associative 

classification-based text classification approach.  

b. Besides, building the classifiers and predicting the class label using the large 

number of rules will increase the time complexity. In the classifier building 

process, the set of rules produced from the rule generation process will be used. 

Some techniques CBA (Liu et al., 1998), FACA (Hadi et al., 2016), PCAR 

(Song & Lee, 2017), WCBA (Alwidian et al., 2018), and APR (Rajab, 2019)  

may be applicable to selecting relevant set of rules from the large number of 

generated rules using rules ranking and database coverage pruning. In the rules 

ranking technique, the parameters such as confidence, support, and cardinality 
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were used. In the case of large data sets, there are possibilities where many 

rules will result in same confidence and support values. In this case, the rules 

are selected randomly. Such problems may arise when the generated rules have 

same cardinality or when there is a conflicting cardinality between general and 

specific rules (Thabtah, 2007; Hadi et al., 2016; Alwidian et al., 2018). That 

condition leads to incorrectly selecting rules. Obviously, using the selected set 

of rules is considerably impractical for classifier building and class label 

prediction process. 

c. The text classification problems are often presented with randomly distributed 

data, due to imbalanced amount of data available between classes and 

occurrences of overlapping words with different frequencies in the classes 

(class overlap)  (Li et al., 2010; Vuttipittayamongkol et al., 2021). In addition, 

the text classification is naturally an instance of multiclass classification 

problem (Pintas et al., 2021). Using the existing AC, text classification problem 

seem to be simple with if-then rules representation  (Thabtah, 2007; Hadi et al., 

2016) and manual weight assignment for the features as recommended by 

experts (Alwidian et al., 2018). However, the if-then rules application and such 

manual weight assignment seems to be practical when dealing with small size 

textual data. Constructing such rule-based representation and applying manual 

weight are more challenging when dealing with the multiclass and randomly 

distributed large size textual data classification problem.  

Therefore, this study has proposed an improved AC approach by reducing the rules 

generated and processing time complexity in classifier building and increasing the 

class label prediction efficiency that is applicable for text classification problem. The 

proposed associative classification approach eventually shall increase accuracy of the 

text labeling results and exhibit lower processing time complexity. 

 

1.3 Research Aim and Objectives 

 

The research aims to improve the existing associative classifier by reducing number of 

generated rules and time complexity in labeling large size textual data set. To achieve 

the aim, the following objectives are to be satisfied: 
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a. To improve the associative classifier-based text classification approach with 

association rule mining technique and fuzzy soft set concept in generating 

reduced number of rules for the large size data. 

b. To use the reduced number of rules generated in objective a) and implement 

fuzzy parameterized soft set-based decision in building the classifier. 

c. To implement a new weighted parameter of fuzzy soft set and weighted rule 

techniques in predicting the textual data class membership. 

 

1.4 Research Scope 

 

This study focuses on improving text classification performance by extending an AC 

approach. The existing AC approach is well-known for various textual data labeling 

applications (Mishra &Vishwakarma, 2017; Sheydaei et al., 2015; Yoon & Lee, 2007; 

Sokhangoee & Rezapour, 2022; Hadi et al., 2018). However, in this study, an 

improved AC approach was proposed for labelling a large data. The proposed AC 

approach will be evaluated in experiments with benchmark data sets: the 20 

Newsgroups and the Reuter-25178 datasets. 

The performance of the proposed AC approach is compared to variations of 

existing textual data classifiers, including Class-Based Associative (CBA) (Liu et al., 

1998), and classification based on Predictive Association Rules (CPAR) (Yin & Han, 

2003). CBA and CPAR are chosen based on the research showing that CBA and CPAR 

exist as associative classifiers suitable for Big Data applications (Padillo et al., 2019). 

The methods for Big Data applications are also ideal for large textual datasets. The 

CBA has excellent accuracy and CPAR has the fastest processing time (Padillo et al., 

2019). Besides, this research also compares the proposed AC approach against 

standard textual data classifiers namely Naïve Bayes, k-Nearest Neighbor (k-NN), and 

decision trees. Besides, bagging and boosting are also chosen in the comparative 

analysis to represent Ensemble Learning. Finally, this research also compares the 

performance of the proposed classifier with Deep Learning models:  Convolutional 

Neural Network (CNN) (Alom et al., 2018) and Recurrent Neural Network (RNN) 

(Caterini & Chang, 2018). 
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1.5  Research Significance 

 

This study establishes a new approach of association rule-based classifier to improve 

the performance of text classification. The improvement will consider the benefit of 

integrating a fuzzy soft set theory into associative classifier. The proposed approach 

produces the optimal classifier and less complexity (redundant rules may be 

eliminated, irrelevant rules may be removed). The proposed approach able to eliminate 

the randomly selection rule process, deal with imbalanced and class overlap data. In 

essence, the proposed approach could increase the performance of text classification 

problem. Therefore, it can use to classify a text document such as article, news 

document, the journal, text medical report, and academic report. The proposed 

approach able to handle large size textual data. 

 

1.6 Thesis Organization 

 

The discussion in this thesis is divided into five different chapters as follows: 

Chapter 1 Describes the research background, problem statement, research aim, 

research objective, research scope, significance, and thesis organization.  

Chapter 2 Presents a taxonomy of text classification including application of text 

classification, review of text classification method, Design of text 

classification and performance evaluation.  

Chapter 3 Explains the proposed association-rule-based classifier that is applicable 

to text classification problem. The explanation includes association rule, 

fuzzy set-based decision-making problem, extended fuzzy soft set 

association rule, fuzzy soft set approach for associative classifier and the 

experiment methodology.  

Chapter 4 Presents the performance of proposed method in the text classification 

problem against existing classifiers are presented: CBA, CPAR, Naïve 

Bayes, K-NN, Decision Tree, Class-Based Associative, Bagging, 

Boosting, Convolutional Neural Network, and Recurrent Neural Network.  

Chapter 5 Presents the conclusions of the study and recommends some future works.  

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



 
 

 

 
 
 
 
 

CHAPTER 2 
 
 
 
 

2. A TAXONOMY OF TEXT CLASSIFICATION 
 
 
 
 
This section discusses a text classification taxonomy. The discussions include text 

classification application, notion of text classification, review of text classification 

method, text classification design, and metric performance for text classification. 

 

2.1 Applications of Text Classification 

 

Textual data classification is one of important tasks in many applications including 

business, medical, politics, and spam filtering. Some of the applications are reviewed 

here to justify the importance to automating such classification tasks. 

 

Business: A text classification application to track customer sentiment about the 

company, this application is called sentiment analysis. This application can inform 

customers' negative or positive impressions through online customer review analysis 

from social media, interaction with Call Center, or other data sources (Fang & Zhan, 

2015; Khan & Khalid, 2015; Prananda & Thalib, 2020; Rokade & Aruna Kumari, 

2019). 

 
Medical: In the medical field, text classification is used to diagnose a patient's disease 

and medical conditions based on data reported from data mining results. Data mining 

is conducted on medical records, medicine receipts that patients and laboratory 

documents have consumed (Trieschnigg et al., 2009; Zhang et al., 2018; Banerjee et 

al., 2018). 
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Politics: During presidential election campaigns, thriving teams of candidates often 

use social media to rally support from voters. Voter support for a candidate can be 

analyzed using sentiment analysis. From comments on social media made by potential 

voters to a candidate, sentiment analysis can predict the number of voters who support 

him. Aside from presidential elections, the sentiment analysis is also used to see how 

much support for political parties or government policies (Caetano et al., 2018; Ansari 

et al., 2020; Park et al., 2021; Ankit & Saleena, 2018; Abdi et al., 2019). 

 

Spam Filtering: Today, most people have an email account because email is an 

effective and efficient way of communicating. However, email owners often receive 

spam. One of the problems that spam brings is that it may be used as an entry point of 

virus.  In this case, text classification can be implemented to construct active spam 

filtering (Subramaniam et al., 2010; Aski & Sourati, 2016; Dada et al., 2019). 

 

2.2 Text Classification 

 

Textual data set is presented with a collection of sentences, and a sentence is a 

collection of words. Therefore, textual data can be regarded as a collection of words. 

Formally, a textual data set can be written as a document set D = {𝑑 , 𝑑 , . . . , 𝑑 } where 

𝑑  refers to a textual data point (i.e., document, text segment), it has sentences, so that 

each sentence includes 𝑤  words/terms with 𝑙  letters. Each textual data point is 

labelled with a class value from a set of k different discrete value indices. Therefore, 

text classification can be defined as the process of assigning unseen textual data using 

predetermined class label. The feature of the textual data set is the terms/words that 

appear in textual documents. Considering that the number of words in a document is 

very large, the textual document needs to be converted into a vector space matrix 

(Handaga & Deris, 2013; Qureshi et al., 2015; Pintas et al., 2021). In this way, a 

document can be expressed as a vector word (word feature).  

There are existing works on the use of machine learning techniques to 

automating the textual data classification tasks. Some common textual data classifiers 

are  associative classifier (Liu et al., 1998; Li et al., 2001; Hadi et al., 2016; 

Sokhangoee & Rezapour, 2022), Naïve Bayes (Kolluri & Razia, 2020), K-Nears 

Neighbor (Heng et al., 2012; Bilal et al., 2016), Decision Tree (Wenlong Li & Xing, 
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