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ABSTRACT  

Lack of compaction may affect the interaction between the steel tube and the 

concrete, hence influence the behaviour of CFST column. Employing self-

compacting concrete (SCC) in CFST column as an infill concrete remove the 

necessity for compaction. However, higher volume of fine aggregate required in SCC 

makes SCC less preferable. The objective of this research was to investigate the 

behaviour of circular CFST column filled with SCC incorporating coal bottom ash 

(CBA) as fine aggregate replacement. In this research work, sand was replaced with 

CBA at 10%, 15%, 20%, 25%, and 30% of replacement levels. Tests for compressive 

strength, split tensile strength, flexural strength, and water absorption were 

performed on specimens at 7 and 28 days curing age. The testing results show that 

15% of CBA was the optimum percentage suitable used in SCC. In studying the 

behaviour of CFST columns, 18 CFST column specimens were tested to fail under 

the axial compression loading. From the experimental results, it can be concluded 

that the utilisation of SCC with CBA in the CFST column able to improve the 

behaviour of CFST column. From compression testing results, the strength of CFST 

column filled with SCC with CBA increased about 45-50%. The experimental results 

were also compared with the design standard of Eurocode 4 (EC4). From the 

comparison, the EC4 conservatively predicts the strength of the column specimens. 

For instance, EC4 conservatively predicted the column strength in series I by about 

21-31%. The finite element analysis (FEA) was conducted on the long column to 

verify the experimental results and from the FEA result, the predicted value for 

specimens with 140 mm diameter is 0.005% closer to the experimental results. These 

discoveries are significant as they showed that the utilization of CBA in SCC as an 

infill in CFST column able to provide the same strength as CFST with normal SCC. 

Besides, the use of CBA as partially replacement to the sand will help in more 

sustainable SCC production by lowering energy and raw material consumption.  
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ABSTRAK 

Kekurangan pemadatan boleh menjejaskan interaksi antara tiub keluli dan konkrit 

dan secara tidak langsung mempengaruhi sifat tiang CFST. Dengan menggunakan 

konkrit mampat sendiri (SCC) ke dalam tiang CFST sebagai konkrit pengisi 

membuang keperluan untuk pemadatan. Walau bagaimanapun, jumlah agregat halus 

yang tinggi di dalam SCC menjadikan SCC kurang diminati. Objektif penyelidikan 

ini adalah untuk mengkaji sifat tiang bulat CFST yang terdiri daripada SCC yang 

mengunakan abu arang batu (CBA) sebagai pengganti agregat halus. Dalam kajian 

ini, pasir telah digantikan dengan CBA pada paras penggantian 10%, 15%, 20%, 

25% dan 30%. Ujian-ujian kekuatan mampatan, kekuatan tegangan pemisahan, 

kekuatan lenturan dan penyerapan air dijalankan ke atas spesimen-spesimen sehingga 

akhir tempoh pengawetan iaitu selama 7 dan 28 hari. Hasil kajian menunjukkan 

bahawa 15% adalah peratusan optimum yang sesuai digunakan di dalam SCC.  

Dalam mengkaji sifat tiang CFST, sebanyak 18 spesimen tiang telah diuji hingga 

gagal fungsi apabila dibebankan dengan beban mampatan. Berdasarkan kajian, 

penggunaan SCC dengan CBA dalam tiang CSFT dapat mempertingkatkan sifat 

tiang CFST. Daripada keputusan ujian mampatan, kekuatan tiang CFST diisi dengan 

SCC and CBA meningkat sebanyak 45-50%. Keputusan kajian juga dibandingkan 

dengan standard reka bentuk Eurocode 4 (EC4). Daripada perbandingan, EC4 

konservatif dalam meramal kekuatan spesimen tiang. Sebagai contoh, EC4 secara 

konservatif meramalkan kekuatan tiang dalam Siri I kira-kira 21-31%. Analisis unsur 

terhingga (FEA) juga dijalankan di tiang panjang untuk mengesahkan keputusan 

kajian dan FEA, Nilai ramalan spesimen dengan diameter 140 mm adalah 0.005% 

lebih dekat dengan hasil kajian. Penemuan ini penting kerana ia menunjukkan 

bahawa penggunaan CBA di dalam SCC sebagai pengisi tiang CFST dapat 

memberikan kekuatan yang sama seperti CFST yang di isi dengan SCC biasa. Selain 

daripada itu, penggunaan CBA sebagai pengganti kepada pasir akan membantu 
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dalam pengeluaran SCC yang lebih lestari dengan menurunkan penggunaan tenaga 

dan juga bahan mentah. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of research 

The application of composite tubular columns or also known as concrete-filled steel 

tube (CFST) column is a structural system that offers advantages of both steel tube 

and concrete. The steel tube acts as permanent formwork while providing lateral 

confinement to the concrete whilst local buckling which commonly occurred on thin-

wall steel tube are delayed by concrete (Dundu, 2012). Due to these characteristics, 

CFST columns have widely used in structural application as it offered higher 

strength and ductility, higher torsional resistance capacity, and also the ability to 

dissipate energy (Abed, AlHamaydeh, & Abdalla, 2013; Han, Li, & Bjorhovde, 

2014) when compared to conventional reinforced concrete column and steel tube 

column.  

In CFST column system, concrete plays an important roles in providing 

strength and stiffness. It not only delays local buckling and forces the steel to 

buckled inward, it also provide appropriate load capacity for CFST column when 

exposed to high temperature (Dai & Lam, 2012; Mohanraj, Kandasamy, & 

Rajaraman, 2010). In the past, there was numerous number of research studies were 

carried out on normal concrete filled in the CFST columns (Fam, Qie, & Rizkalla, 

2004; Han, Liu, & Yang, 2008b; Dundu, 2012; Chang, et al., 2013). Some of the 

literatures have been generally reviewed by Schneider (1998) and were completed 

for the purpose of “full” review on the literatures by Han (2002). However, a small 

number of research studies have been carried out on CFST columns with Self-

Compacting Concrete (SCC) used as infill. This was also reported by Domone 

(2006) in his study. Domone (2006) analysed 11 years of case studies from 1993 to 
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2003 which related to SCC and the main interest of the study was to observe the 

distribution and the types of SCC application in the structure-based element. Out of 

51 case studies, five cases involved with the use of SCC in a novel form of 

construction such as composite structure and thin section pre-cast units.  

 SCC can be defined as a flowing concrete that is able to consolidate fully 

under its self-weight without the tendency to segregate and bleeding. Its 

characteristic to flow within heavy reinforcement without the aid of vibration makes 

it favorable to the construction with complicated structures. Due to this 

characteristic, the use of SCC in the CFST column has begun to raise interest among 

researches. For instance, Han & Yao (2004), Tao, Han, & Wang( 2005), Yang & 

Han (2011), Yu, Ding, & Cai, (2007), Han, Hou, & Wang (2014), Hou, Han, & Zhao 

(2013), and Mirmomeni, et al., (2017) studied stub columns filled with SCC with 

concrete cubic strength ranged from 40 to 121 MPa. From the studies, the 

experimental results showed that the behaviour of CFST filled with SCC have 

similar behaviour as composite columns filled with normal concrete. This results 

implying that the strength predictions used in the existing design code developed for 

normal concrete filled columns is suitable used for SCC filled columns within the 

scope of tested concrete strength. However, the ductility for very high strength SCC 

filled steel tubes was found to be generally smaller than that for normal strength 

concrete. This probably due to the brittleness of high strength concrete as reported by 

Qing et al., (2008) and Jamaluddin, et al., (2013). The behaviour of high strength 

SCC filled stub columns when exposed to standard fire are also studied by Lu, Zhao, 

& Han, (2009). From their study, it was found out that the behaviour of CFST 

column fill with high strength SCC when exposed to standard fire is almost the same 

as the normal concrete filled columns.  

 The materials used in the SCC are the same as the materials used in the 

production of normal concrete. This includes the use of additive material from waste 

by-product such as fly ash, quarry dust, and silica fume. This material was added into 

the concrete as part of the total constituent system. The benefits of these additive 

materials come from its particle size distribution characteristic and pozzolanic 

activity. The utilisation of combustion by-products in the SCC had gained great 

attention among researchers lately. This is probably due to its similarity to the fine 

aggregate particle size. For example, Kurniawan (2008); Lachemi, (2001); Liu, 
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(2010); Pathak & Siddique, (2012) investigated the potential used of pulverised fly 

ash in SCC as a replacement of cement. While for CBA, the study about its 

suitability to replace sand in the concrete and mortar was reported by Wongkeo & 

Chaipanich, (2010); Balasubramaniam & Thirugnanam (2015), Cheng (2012), 

Govindarajan et al., (2014), Kim & Lee (2013) and Purushothaman & Nadu (2013). 

However, in the case of SCC, very limited research study can be found investigating 

its potential use as partial replacement material (Aswathy & Paul, 2015; Kadir, et al., 

2016; Kasemchaisiri & Tangtermsirikul, 2008; Siddique, Aggarwal, & Aggarwal, 

2012). 

Although the utilisation of SCC in the composite structure has begun to raise 

interest among the researchers, the use of SCC incorporating CBA as infill material 

is yet to be found. Apart from that, the use of the concrete incorporating CBA in the 

CFST column is seen able to reduce the potential of leachability of heavy metal such 

as arsenic in the concrete. This is due to the ability of the steel tube to confine the 

concrete. Owing to this advantage, the application of the CBA is suitable for this 

study. Therefore, the purpose of this research is to study the structural behaviour of 

CFST column containing SCC incorporating CBA as sand replacement material. 

Apart from that the use of Furthermore, a reliable finite element method (FEM) was 

developed to predict the bearing capacity of CFST column under axial load and then 

compared to the results obtained from the experimental works. 

1.2 Problem statement 

Compaction is an important process which involved expelling the entrapped air from 

the concrete via concrete compactor. According to Ravindrarajah, Farrokhzadi, & 

Lahoud (2003), lack of compaction not only influences the permeability of the 

concrete, it also reduce the durability of concrete structure. In the case of composite 

column, the lack of compaction not only affects the properties of the core concrete 

itself, but also may influence the interaction between the steel tube and its core 

concrete, and thus influences the behaviour of the composite columns. (Han & Yao, 

2003) 
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Compaction is one of the most crucial factor that affecting bearing capacity 

of CFST column. In the study conducted by Han (2000) and Han & Yang (2001), it 

was found out that better compaction of concrete may results in higher member 

capacities of CFST column with circular hollow section and higher sectional capacity 

of CFST column for square and rectangular hollow section. However, compacting 

concrete mix by vibration in the concrete filled steel sections cause difficulties and 

may produce number of effects which impair the quality of the elements.  Inserting 

an immersion vibrator into narrow spaces between a steel section and formwork 

entails the risk of vibrator coming into contact with the steel section which may leads 

to segregation in the bond formation area (Elzbieta & Woyciechowski, 2013). 

Therefore, in order to solve problem regarding compaction in composite column, the 

use of SCC mix is the right solution to be applied in the process of concreting 

composite column.  

As mentioned earlier, with the promising use of SCC, many researchers have 

studied the potential use of SCC in the CFST column (Alwash & Al-salih, 2013; 

Han, Yao, & Zhao, 2005; McCann, Gardner, & Qiu, 2015; Mirmomeni et al., 2017), 

including utilizing waste by-product in the process of making SCC mix. For instance, 

mineral additive such as fly ash, silica fume, and blast furnace slag was added in the 

SCC as the cement replacement (Han, Liu, & Yang, 2008a; Han, et al., 2006; Yang, 

Lam, & Gardner, 2008; Qing et al., 2008). However, none was found using waste 

by-product as replacement to the fine aggregate in the SCC as infill in the CFST 

column.  

Regarding the SCC composition, there is no significant difference between 

SCC and normal vibrated concrete except for higher volume of fine aggregate and 

the inclusion of chemical admixture. The use of higher volume of fine aggregate in 

the SCC is the main concern by many as it may cause depletion on the natural 

resources and eventually, may lead to the environmental issues. Therefore, there is an 

attempt to use waste by-product in the production of SCC as fine aggregate 

replacement (Jiang & Mei, 2008; Johnsirani & Kumar, 2013; Kumar, Suresh, & 

Naidu, (2016); Patil & Gurav, (2016) including CBA (Aswathy & Paul, (2015); 

Kadir, et al., 2016; Kasemchaisiri & Tangtermsirikul, 2008; Siddique, Aggarwal, & 

Aggarwal, 2012). CBA is waste by-product generated from coal-fired power plant. 

Unlike fly ash, which has been well accepted as pozzolanic material and commonly 
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used either as a component of blended Portland cement or mineral admixture in 

concrete (Ondova, Stevulova, & Meciarova, 2013), CBA is generally used in 

highway, embankment, subgrade, and subbases as reported by American Coal Ash 

Association (2008) or being deposited on the landfill without further use (Kadam & 

Patil, 2013; Kurama & Kaya, 2008; Singh & Siddique, 2014a).  

In Malaysia, electricity is mainly generated from coal-fired power plant. 

There are seven coal-fired power plants operate daily with total capacity of 8,500 

MW, which makes coal as one of Malaysia’s most important sources of energy.  As 

reported in The Star (2013), Malaysia consumes about 42 million tonnes of coal 

annually. The amount is devastated as it will produce tonnes of coal combustion by-

products include fly ash and CBA. With future planning on the newest construction 

of coal-fired power plant that expected to complete in 2019 (The Star, 2017) to 

uphold the current demand of electricity, the amounts of coal combustion by-product 

are expected to increase.  

 As cited in Kurama & Kaya, (2008), the recycling of CBA is about 5.28% in 

concrete compared to fly ash with recycling rate of 47% as reported by American 

Coal Ash Association, with the total CBA production of about 19.8 Mtonnes in 2002. 

Due to the lower rate of recycling of CBA, a number of researches have investigated 

the potential use of CBA as partial replacement of fine aggregate in the production of 

concrete in terms of its strength and durability. However, the outcome from the 

investigation shows that the incorporation of CBA in the concrete production as a 

substitution of fine aggregate does not improve its compressive strength due to its 

porous particle structure and high water absorption (Bai, Darcy, & Basheer, (2005); 

Ozkan, Yuksel, & Muratoglu, (2007); Yuksel, Bilir, & Ozkan, (2007). Moreover, the 

waste by-product from combustion contains heavy metals within their composition 

and these metals are toxic to the environment as well as to human health.  

According to Yahya et al.,  (2017), the metallic element in the CBA such as 

copper (Cu), nickel (Ni), chromium (Cr), zinc (Zn), and lead (Pb) resulting the 

classification of CBA in Malaysia under the Schedule Waste (SW 104) Environment 

Quality Act. In the study conducted by Kadir, et al., (2016), the concrete with 30% 

fly ash and CBA have the highest arsenic (As) leaching with 18.576 mg/L. Arsenic 

has gained considerable attention due to the fact that it is mobile throughout a wide 
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