PERFORMANCE EVALUATION OF ELECTRODE FABRICATED BY FUSED DEPOSITION MODELLING IN DIE-SINKING ELECTRICAL DISCHARGE MACHINING

NICOLAS NG YANG ZU

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Mechanical Engineering

> Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

> > DECEMBER 2022

For my beloved family, relatives and friends

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my honorary supervisor, Ts. Dr. Reazul Haq bin Abdul Haq for offering me a fantastic opportunity to pursue this research. This endeavor would not have been possible without his invaluable inspiration, insights and guidance.

I would like to express my deepest appreciation to the Research Management Centre (RMC) and Faculty of Mechanical and Manufacturing Engineering (FKMP) for providing financial support through the research grant Vot H643.

Words cannot express my sincere gratitude to the senior lecturer, Dr. Nur Azam bin Badarulzaman for sharing his knowledge on electroplating. I would like to extend my sincere thanks to the senior lecturers, Prof. Madya Dr. Mohammad Zulafif bin Rahim and Ts. Dr. Said bin Ahmad for their supportive remarks and careful review of my work.

I am extremely thankful to the assistant engineers such as Hj. Abu Bakar bin Ahmad Anuar bin Ismail, Hj. Azmi bin Md Salleh, Mohd Adib bin Ramzi Bohari bin Ismanqun, Fazlannuddin Hanur bin Harith, Mohamad Faizal bin Jasman and Hj. Mohd Tarmizi bin Nasir for their assistance and guidance in handling laboratory equipment.

Last but not least, I am deeply grateful to my family, relatives and friends for their continuous support and motivation.

ABSTRACT

An electrode is a vital transmission tool of electrical charges that erodes a workpiece surface in die-sinking electrical discharge machining (EDM). However, the demanding requirements of the geometrical complexity and accuracy of an electrode significantly affected its manufacturing cost and time. Therefore, rapid tooling (RT) was attempted to improve electrode manufacturing. This research aims to verify the application of the FDM electrode in die-sinking EDM. Furthermore, the metallization and the machining performance of the FDM electrode were also studied. Fused Deposition Modelling (FDM) was utilized to fabricate a cylindrical electrode core made of Polyethylene Terephthalate Glycol (PETG). In primary metallization, the electrode core was immersed in copper paint. Next, the coated PETG substrate was electroplated in secondary metallization at a current density of 0.023 A cm⁻² for 168 hours (7 days). The electrolyte consists of 80 g/ ℓ copper sulphate and 20 ml/ ℓ sulphuric acid. The machining performance of FDM electrode such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (SR) was benchmarked with a copper electrode. Copper coating with an average thickness of 334 µm was successfully electroplated on the surface of the FDM electrode. Additionally, the FDM electrode can machine the mild steel workpiece with 1 mm infit at a peak current of 16 A and pulse-on time of 50 µs without suffering premature electrode failures such as edge failure, delamination, distortion and rupturing. Lastly, the machining performance of the FDM electrode was comparable to the copper electrode in terms of MRR, EWR and SR.

ABSTRAK

Elektrod ialah alat penghantaran penting cas elektrik yang menghakis permukaan bahan kerja dalam acuan-tenggelam pemesinan nyahcas elektrik (EDM). Walau bagaimanapun, keperluan menuntut kerumitan geometri dan ketepatan elektrod mempengaruhi kos dan masa pembuatannya dengan ketara. Oleh itu, Penyepaduan Perkakasan Pantas (RT) telah dicuba untuk menambah baik pembuatan elektrod. Penyelidikan ini bertujuan untuk mengesahkan aplikasi elektrod FDM dalam acuantenggelam EDM. Tambahan pula, penyaduran dan prestasi pemesinan elektrod FDM turut dikaji. Pemodelan pemendapan pelakuran (FDM) telah digunakan untuk menghasilkan teras elektrod silinder yang diperbuat daripada Polyethylene Terephthalate Glycol (PETG). Dalam penyaduran primer, teras elektrod direndam dalam cat kuprum. Seterusnya, substrat PETG bersalut disadur dalam penyaduran sekunder pada ketumpatan arus 0.023 A cm⁻² selama 168 jam (7 hari). Elektrolit terdiri daripada 80 g/ ℓ kuprum sulfat dan 20 ml/ ℓ asid sulfurik. Prestasi pemesinan elektrod FDM seperti kadar penghakisan bahan (MRR), kadar kehausan elektrod (EWR) dan kekasaran permukaan (SR) telah ditanda aras dengan elektrod kuprum. Salutan kuprum dengan ketebalan purata 334 µm berjaya disadur pada permukaan elektrod FDM. Selain itu, elektrod FDM boleh memesin bahan kerja keluli lembut dengan kedalaman sebanyak 1 mm pada 16 A arus puncak dan 50 µs kadar pengaliran cas elektrik tanpa mengalami kegagalan elektrod pramatang seperti kegagalan penepian, delaminasi, herotan dan pepecahan. Akhir sekali, prestasi pemesinan elektrod FDM adalah setanding dengan elektrod kuprum dari segi MRR, EWR dan SR.

TABLE OF CONTENTS

TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SYMBOLS AND ABBREVIATIONS	xvii
LIST OF APPENDICES	XX
CHAPTER 1 INTRODUCTION	1
1.1 Background of Study	1
1.2 Background of Research Gap	4
PE 1.3 Problem Statement	5
1.4 Research Objectives	7
1.5 Research Scopes	7
CHAPTER 2 LITERATURE REVIEW	9
2.1 Introduction	9
2.2 Electrical Discharge Machining (EDM)	9
2.3 Die-Sinking Electrical Discharge Machining (EDM)	11
2.3.1 Working Principle	13
2.3.2 Machining Parameters	14
2.3.3 Machining Responses	15

	,	2.3.4	Dielectric Fluid	15
	2.4	Elect	rode	17
	2.5	Rapi	d Prototyping (RP)	18
	2.6	Addi	tive Manufacturing (AM)	21
	2.7	Fuse	d Deposition Modelling (FDM)	21
	,	2.7.1	Printing Parameters	23
	,	2.7.2	Thermoplastic Filaments	23
	,	2.7.3	Polyethylene Terephthalate Glycol (PETG)	
			Filament	25
	2.8	Rapi	d Tooling (RT)	25
	,	2.8.1	The application of RT for Electrode	
			Manufacturing in Die-Sinking EDM	25
	,	2.8.2	Direct Tooling for Conductive Electrode Core	
			Material	26
	:	2.8.3	Indirect Tooling for Non-Conductive	
			Electrode Core Material	27
		2.8.4	Metallization Process for Non-Conductive	
			Electrode Core Material	27
	2.9	Prim	ary Metallization for FDM Electrode	30
	2.10	Farac	lay's Law of Electrolysis	30
	2.11	Curre	ent Density	31
	2.12	Curre	ent Efficiency	32
	2.13	Critic	cal Review of Manufacturing Electrodes by	
		Using	g FDM	32
	2.14	Sumr	nary of Literature Review	47
СНАРТЕ	R 3	RESE.	ARCH METHODOLOGY	50
	3.1	Intro	duction	50

viii

3.2 Experimental Flowchart	50
3.3 Electrode Core Material	52
3.4 Metal Coating Material	53
3.5 Workpiece Material	54
3.6 Fabrication of Electrode Core by FDM	55
3.7 Metallization of Electrode Core	59
3.7.1 Primary Metallization	59
3.7.2 Secondary Metallization	63
3.7.2.1 Preparation of Electrolyte	63
3.7.2.2 Electroplating Setup	64
3.7.2.3 Decomposition Potential	66
3.8 Surface Finishing for FDM Electrode	67
3.9 Die-sinking EDM Machine	67
3.10 Verification Experiment of FDM Electrode in	
Die-Sinking EDM	68
3.11 Experimental Machining Test	69
3.12 Data Collection	70
3.12.1 Current Density	70
3.12.2 Electroplating Efficiency	72
3.12.3 FDM Electrode Dimensions	73
3.12.4 Material Removal Rate (MRR)	74
3.12.5 Electrode Wear Rate (EWR)	75
3.12.6 Surface Roughness (SR)	76
3.12.7 Analysis of Copper Coating on FDM Electrode	77
CHAPTER 4 RESULTS AND DISCUSSION	79
4.1 Introduction	79
4.2 Results for Primary Metallization	80

ix

	4.3	Resu	lts for Secondary Metallization	83
		4.3.1	Determining the Decomposition Potential	83
		4.3.2	Pilot Experiment for Electroplating	85
		4.3.3	Electroplating Defects	86
		4.3.4	Actual Electroplating Results	89
		4.3.5	Determine the Current Density	89
		4.3.6	Determine the Electroplating Efficiency	91
		4.3.7	Surface Finishing of FDM Electrode	91
		4.3.8	The Average Thickness of the Copper Coating	
			for FDM Electrode	92
		4.3.9	Determine the FDM Electrode Dimensions	95
		4.3.10	Surface Morphology of SEM and EDS on	
			the Copper Coating	96
	4.4	Anal	ysis of FDM Electrode in the Verification	
		Expe	eriment	98
	4.5	Anal	ysis of Electrode Surface and Workpiece	
		Cavi	ty in the the Verification Experiment	100
	4.6	Expe	rimental Machining Test Results	102
	4.7	Evalu	uation of Machining Performance for FDM	
		Elect	rode in Die-Sinking EDM	104
		4.7.1	Graphical Analysis of Results for MRR	104
		4.7.2	Graphical Analysis of Results for EWR	105
		4.7.3	Graphical Analysis of Results for SR	107
		4.7.4	Summary for the Analysis of Results	108
	4.8	Aver	age Thickness of Copper Coating for the FDM	
		Elect	rode after Machining	109
CHA	APTER 5	CONC	CLUSION AND RECOMMENDATION	110

x

5.1	Conclusion	110
5.2	Recommendations	112
REFERENCE		114
APPENDIX		123

xi

LIST OF TABLES

2.1	Machining parameters of die-sinking EDM	14
2.2	Machining responses of die-sinking EDM	15
2.3	Applications of RP	20
2.4	Different types of AM	21
2.5	Types of thermoplastic filament with different applications	24
2.6	Oxidation and reduction process of copper electroplating	29
2.7	Input parameters for the experiment	35
2.8	Input parameters for the experiment	36
2.9	Input parameters for the experiment	38
2.10	Input parameters for the experiment	40
2.11	Input parameters for the experiment	40
2.12	Input parameters for the experiment	42
2.13	Interaction effects between input parameters and response for	
	FDM electrode	42
2.14	Interaction effects between input parameters and response for	
	copper electrode	42
2.15	Input parameters for the experiment	43
2.16	Input parameters for the experiment	46
2.17	Compilation of published works related to FDM electrode in	
	die-sinking EDM	47
3.1	Comparison between PETG and ABS	52
3.2	Product specification of Magma PETG filament	53
3.3	Material properties of copper	54
3.4	The dimensions of the mild steel workpiece	54
3.5	Chemical composition of mild steel	55
3.6	Material properties of mild steel	55
3.7	Printing parameters of electrode core in IdeaMaker	57

3.8	Technical specification of Raise 3D N2 Plus	59
3.9	Apparatus and materials required for primary metallization	60
3.10	Product specifications of copper paint	60
3.11	The concentration of electrolyte used for the electroplating	63
3.12	Apparatus and materials required for electroplating	64
3.13	The technical specifications of CNC Sodick EDM die-sink	
	AQ55L	68
3.14	Machining parameters of die-sinking EDM in the experimental	
	machining test	69
3.15	Design layout of the experimental machining test	69
4.1	Average thickness of copper paint for the vertical cross-section	
	of coated PETG substrate	80
4.2	The data results for decomposition potential experiment	83
4.3	Factors that affect the quality of electroplating	85
4.4	Observations of electroplating for 7 days	87
4.5	Technical information on electroplating FDM electrodes	89
4.6	Average thickness of copper coating for the FDM electrode no.1	93
4.7	Comparison between FDM and copper electrode dimensions	96
4.8	Examination of FDM electrode for premature RT electrode	
	failures in die-sinking EDM	99
4.9	Comparison of the electrode surface and workpiece cavity	
	for FDM and copper electrodes	101
4.10	The experimental machining test results of FDM electrode in	
	die-sinking EDM	103
4.11	The experimental machining test results of copper electrode in	
	die-sinking EDM	103

LIST OF FIGURES

1.1	Electrode for die-sinking EDM	2	
1.2	Manufacturing of RT electrodes in die-sinking EDM	3	
1.3	Electrode fabricated by FDM	4	
1.4	Vertical cross-section of the FDM electrode	5	
1.5	ABS as the electrode core in the FDM electrode	5	
2.1	Classification of EDM	10	
2.2	EDM research areas	11	
2.3	Schematic diagram of die-sinking EDM	12	
2.4	Components of die-sinking EDM	12	
2.5	Phases of an EDM cycle	13	
2.6	Overview of the spark during the EDM process	14	
2.7	Types of dielectric fluids	16	
2.8	The required electrical conductivity of electrode for EDM	18	
2.9	RP reduces product development time and cost by more than		
	50 %	19	
2.10	Five-step RP process	20	
2.11	Schematic diagram of FDM	22	
2.12	Printing parameters that affect the characteristics of FDM parts	23	
2.13	Different RT techniques to fabricate electrodes in die-sinking		
	EDM	26	
2.14	Preliminary steps for electroless electroplating	27	
2.15	Schematic diagram for electroplating	28	
2.16	Different methods of primary metallization for RT electrode	29	
2.17	Different routes for primary metallization of FDM electrode	30	
2.18	The flowchart of the eco-friendly electroless copper plating for		
	the primary metallization of the FDM electrode	33	
2.19	Main effects plots for FDM electrode	36	

2.20	Response surface methodology graphs for copper and FDM	
	electrode	38
2.21	The graph for the comparison of MRR, EWR and SR for	
	copper and RP electrode	40
2.22	Response surface methodology graphs for solid and FDM	
	electrodes in 2.5 g/ ℓ powder concentration	44
2.23	Overview of the electrode fabrication	46
3.1	Experimental flow chart of the research	51
3.2	Flowchart for the fabrication of electrode core by FDM	55
3.3	The cylindrical electrode core in Solidworks 2020	56
3.4	Slicing software, IdeaMaker	57
3.5	FDM 3D printer, Raise 3D N2 Plus	58
3.6	Electrode core printed by FDM 3D printer	58
3.7	Flowchart for primary metallization	61
3.8	The electrode core was immersed in the copper paint	61
3.9	The electrode core was hung horizontally on a	
	retort stand for drying	62
3.10	The geometry of the PETG substrate deformed when hung	
	vertically on the retort stand	62
3.11	Schematic diagram of an electroplating setup	65
3.12	Actual diagram for electroplating setup	65
3.13	The experimental procedures to determine decomposition	
	potential	66
3.14	Lathe machine, Harrison M300	67
3.15	CNC Sodick EDM die-sink AQ55L	67
3.16	Machining of mild steel with FDM electrode in die-sinking	
	EDM	68
3.17	Cylindrical copper electrode	70
3.18	Schematic diagram for (a) vertical and (b) horizontal	
	cross-section of coated PETG substrate	71
3.19	Schematic diagram for (a) vertical and (b) horizontal	
	cross-section of FDM electrode	73
3.20	Analytical balance, Shimadzu AUW220D	75
3.21	Analytical balance, Mettler Toledo XS64	76

3.22	Surface roughness tester, Mitutoyo SJ-410	76	
3.23	Coping saw and bench vise	77	
3.24	Optical microscope, Nikon Eclipse LV150NL	77	
3.25	Scanning Electron Microscope (SEM), Hitachi SU-1510	78	
4.1	The PETG substrate was coated with copper paint	80	
4.2	Excess paint from the PETG substrate dripping toward		
	gravity when hung	82	
4.3	The slight deformation at the base geometry of the PETG		
	substrate when hung horizontally on the retort stand	82	
4.4	Graph of obtained current, I versus supplied voltage, V	84	
4.5	Hull Cell	86	
4.6	Electroplating defects of the FDM electrode	87	
4.7	The comparison of electroplating quality with (a) leveler and		
	(b) without leveler	88	
4.8	The FDM electrode no.1 before surface finishing	92	
4.9	The FDM electrode no.1 after surface finishing	92	
4.10	The vertical cross-section of FDM electrode no.1	93	
4.11	The SEM image of copper coating for FDM electrode no.1	97	
4.12	The SEM image for the scoured surface of copper electrode	97	
4.13	EDS spectra for copper coating of FDM electrode no.1	98	
4.14	Vertical cross-section of the FDM electrode no.1 after		
	machining	98	
4.15	Graph of MRR for FDM and copper electrodes	104	
4.16	Graph of EWR for FDM and copper electrodes	105	
4.17	Graph of SR for FDM and copper electrodes	107	
4.18	The microscopic view of copper coating for experimental		
	number 4	109	

LIST OF SYMBOLS & ABBREVIATIONS

- Ampere А -A Surface Area -**Current Efficiency** CE-
- Centimeter cm -
- F Faraday Constant = 96485 C/mol -
- Height h -
- Hz Frequency -
- Ι Current _
- Peak Current I_p _
- AAN TUNKU TUN AMINA **Current Density** J_
- J Joule -
- Kilogram kg _
- L Length _
- Litre ł
- Mass m
- Molar mass Μ _
- Milligram mg -
- min Minute _
- Milliliter ml _
- Millimeter mm -
 - Number of Electrons Involved in the Deposition Reaction n
 - Diameter Ø -
- Pascal Pa -
- **Electrical Charge** Q -
- Radius r -
- Ra Roughness Average -

S	-	Second
t	-	Time
$T_{\rm off}$	-	Pulse-off Time
T_{on}	-	Pulse-on Time
V	-	Voltage
wt %	-	Weight Percentage
ρ	-	Density
τ	-	Duty Cycle
Ω	-	Ohm
%	-	Percentage
°C	-	Degree Celcius
μm	-	Micrometer
μs	-	Microsecond
ANOVA	-	Analysis of Variance
BBD	-	Box-Behnken Design
CAD	-	Computer-Aided Design
CH ₃ COOH	-	Acetic Acid
CuSO ₄	-	Copper (II) Sulphate
CuSO ₄ .5H ₂ O	-	Copper (II) Sulphate Pentahydrate
DA	-	Dimensional Accuracy
DC	7	Direct Current
DMLS	2	Direct Metal Laser Sintering
DOE	-	Design of Experiments
EDM	-	Electrical Discharge Machining
EDS	-	X-Ray Spectroscopy
EWR	-	Electrode Wear Rate
FCCD	-	Face Central Composite Design
FDM	-	Fused Deposition Modelling
H_2CrO_4	-	Chromic Acid
H_2O_2	-	Hydrogen Peroxide
H_2SO_4	-	Sulphuric Acid
H ₃ PO ₄	-	Phosphoric Acid
HAZ	-	Heat-Affected Zone

xviii

HCI	-	Hydrochloric Acid
HDPE	-	High-Density Poly Ethylene
HF	-	Hydrofluoric Acid
HIPS	-	High Impact Polystyrene
HNO ₃	-	Nitric Acid
IMLS	-	Indirect Metal Laser Sintering
KCA	-	Potassium Cyanide
LCD	-	Liquid Colour Display
LOM	-	Laminated Object Manufacturing
MRR	-	Material Removal Rate
Pd	-	Palladium
PET	-	Polyethylene Terephthalate
PETG	-	Polyethylene Terephthalate Glycol
pН	-	Potential of Hydrogen
PLA	-	Polylactic Acid
PPE	-	Personal Protective Equipment
PVA	-	Polyvinyl Alcohol
PVC	-	Polyvinyl Chloride
RP	-	Rapid Prototyping
RSM	-	Response Surface Methodology
RT	7	Rapid Tooling
SD	<u> </u>	Secure Digital
SEM	-	Scanning Electron Microscope
SLS	-	Selective Laser Sintering
SR	-	Surface Roughness
STL	-	Stereolithography
Ti-Al6-V4	-	Titanium Alloy Grade 5
TPE	-	Thermoplastic Elastomer
USB	-	Universal Serial Bus
UV	-	Ultraviolet
VOCs	-	Volatile Organic Compounds

xix

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Diagrams of FDM Electrodes	123
В	Machining Surface of the FDM Electrodes after Facing	
	and Machining	124
С	Cavities on the Mild Steel Workpiece after the	
	Experimental Runs	125

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Exploring new advanced materials in the past centuries, such as metal composites, ceramics, superalloys, and others, led to a safer and better quality of components and products in many applications (Shrivastava & Sarathe, 2014). However, most advanced materials are considered difficult-to-machine materials due to their stronger material properties than regular steel. The use of conventional machining such as grinding, milling, lathing, drilling and others has led to higher tool wear rate, machining and maintenance cost, and the inability to machine complex shapes.

Scientists and researchers invented Electrical Discharge Machining (EDM) in 1770 to reduce the maintenance and machining cost of high-hardness materials. EDM has been used to machine electrically conductive metals with high hardness regardless of their shape or geometry until today due to its high precision, better surface finish, good machining efficiency and lower machining cost. Die-sinking EDM is one of the popular variants of EDM used in many applications.

A tool electrode is essential for die-sinking EDM, as shown in Figure 1.1. An electrode's function was to transmit the sparks or electrical charges to erode the workpiece into the desired shape.

Figure 1.1: Electrode for die-sinking EDM (Amorim, Weingaertner & Bassani, 2010)

Electrode manufacturing accounts for more than 50 % of the die-sinking EDM operation's cost and time (Equbal, Equbal & Sood, 2019). The complexity and accuracy of geometry determine the time and cost of manufacturing the electrode. Therefore, researchers investigated alternatives to manufacture electrodes for diesinking EDM.

Additive manufacturing (AM) has provided the possibility to improve electrode manufacturing's cost and time for die-sinking EDM. Since 1991, researchers have applied the rapid tooling (RT) concept for electrode manufacturing.

According to Equbal, Equbal, Equbal, *et al.* (2019), there were three methods of applying RT in electrode manufacturing as shown in Figure 1.2. AM parts fabricated by AM technologies such as Direct Metal Laser Sintering (DMLS) and Indirect Metal Laser Sintering (IMLS) were categorized as the electrically conductive route. Therefore, they can be used directly as functional electrodes in EDM due to the sintering of fine metallic powder. However, AM parts fabricated by AM technologies such as Fused Deposition Modelling (FDM) and Stereolithography (SLA) were categorized as the non-electrically conductive route because of the insulating base materials such as thermoplastic and resin. Hence, they require an intermediate step, metallization, to fulfill EDM's conductivity and durability requirements.

Besides that, the AM part fabricated by AM technologies was also used as the mold for the production of electrodes in the electrode manufacturing industry (Kechagias *et al.*, 2008).

Figure 1.2: Manufacturing of RT electrodes in die-sinking EDM (Equbal, Equbal, Equbal, *et al.*, 2019)

One of the most attractive types of AM, FDM was used for electrode manufacturing in die-sinking EDM, as shown in Figure 1.3. FDM was the cheapest among the types of AM in terms of raw materials and printer cost. The electrode manufacturing by FDM was categorized as indirect RT because it required a subsequent process, metallization.

Copper was generally used as the metal coating material for metallization in most works because it satisfied the electrode requirements for die-sinking EDM by having good durability, affordability, electrical and thermal conductivity (Czelusniak *et al.*, 2019).

Researchers speculated that FDM's electrode manufacturing could reduce its cost because it requires significantly less raw material than a conventional electrode. Hence, the weight of the FDM electrode was reduced, thereby improving the transportability and storage of the FDM electrodes (Danade, Londhe & Metkar, 2019). Besides that, the FDM electrode has the potential for reusability after machining due to metallization (Padhi *et al.*, 2018).

Figure 1.3: Electrode fabricated by FDM (Equbal et al., 2017)

The electrode manufacturing time was greatly reduced because Computer-Aided Design (CAD) software was utilized to reduce the product development time for the electrode design. In addition, complex electrode profiles which were not feasible in conventional electrode manufacturing could be fabricated.

1.2 Background of Research Gap

Few research gaps have been identified after reviewing the related works from Fefar Savan & Karajagikar (2014), Pawar *et al.* (2016), Padhi, Mahappatra & Das (2017), Danade *et al.* (2019), Saxena & Metkar (2019) and Equbal, Equbal & Sood (2019).

Many related works lacked comprehensive information on metallization techniques. Most research did not reveal and elaborate on the metallization techniques to fabricate the FDM electrode. Furthermore, the quality of metallization was also not reported in most research. Hence, the authenticity of the metallization techniques used in related works was disputable.

Most research did not report or explain the conditions of FDM electrodes after machining. Hence, the actual conditions and characteristics of the electrode core in the FDM electrode are unknown. The vertical cross-section of the FDM electrode after machining as shown in Figure 1.4 was not illustrated in any related works. Therefore, due to this case study's absence, most related works cannot fully justify whether the FDM electrode functions as intended.

Figure 1.4: Vertical cross-section of the FDM electrode

Over the past years, new FDM filaments such as nylon, wood, metal, ceramic, composite, water-soluble, conductive, carbon fiber, magnetic, and others have been developed for different applications (Plica, 2020). However, previous research typically only investigated the Acrylonitrile Butadiene Styrene (ABS) as the material for the electrode core, as shown in Figure 1.5. It showed a lack of studies on the variety of electrode core materials in the FDM electrode.

Figure 1.5: ABS as the electrode core in the FDM electrode

1.3 Problem Statement

Metallization is a crucial transitional process that coats the surface of the FDM electrode with a thin metal layer to ensure its proper functioning in die-sinking EDM (Kechagias *et al.*, 2008). Therefore, the metallization technique primarily influenced the quality of the copper coating on the surface of the FDM electrode. It was found that extensive data related to the quality of copper coating on the FDM electrode were disclosed in many related works. Consequently, it has caused uncertainty regarding

REFERENCE

- Airwolf. (2015). 3D Printing with PETG: Tips and Tricks. Retrieved on January 6, 2021, from https://airwolf3d.com/2015/12/05/3d-printing-with-petg-tips-andtricks/
- Alamro, T., Yunus, M., Alfattani, R., & Alnaser, I. A. (2021). Effect of a Rapid Tooling Technique in a 3D Printed Part for Developing an EDM Electrode. *International Journal of Polymer Science 2021, 2021*, 6616652.
- Amorim, F. L., Weingaertner, W. L., & Bassani, I. A. (2010). Aspects on the optimization of die-sinking EDM of tungsten carbide-cobalt. *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, 32(SPE), 496-502.
- Apmen. (2019). *EDM: Past, Present and Future*. Retrieved on November 16, 2020, from https://www.equipment-news.com/edm-past-present-and-future/
- Arthur, A., Dickens, P. M., & Cobb, R. C. (1996). Using rapid prototyping to produce electrical discharge machining electrodes. *Rapid Prototyping Journal*, 2(1), 4-12.
- Augustyn, A. (2020). *Electrolysis*. Retrieved on May 18, 2021, from https://www.britannica.com/science/electrolysis
- Azhar Equbal, M., Equbal, I., Sood, A. K., & Equbal, M. A. (2017). A Comparative Study on Electroplating of FDM Parts. *Mechanical Engineering*, 8(5), 930-938.
- Bokisa, G. S. (2013). Method for Comparison of Leveling in Decorative Acid Copper Plating. Retrieved on May 13, 2022, from https://www.pfonline.com/articles/method-for-comparison-of-leveling-indecorative-acid-copper-plating
- Cambridge, U. o. (2020). *Sample Preparation*. Retrieved on January 8, 2021, from https://www.doitpoms.ac.uk/tlplib/optical-microscopy/preparation.php

- Carausu, C., Mazurchevici, A., Ciofu, C., & Mazurchevici, S. (2018). The 3D printing modelling of biodegradable material. *IOP Conf. Ser. Mater. Sci. Eng.* Constanta: IOP Publishing Ltd. pp. 042008.
- Carlota. (2019). All you need to know about PETG for 3D printing. Retrieved on January 6, 2021, from https://www.3dnatives.com/en/petg-3d-printing-guide-181220194/#!
- Caswell. (2022). *Caswell Copper Conductive Paint 4oz*. Retrieved on November 26, 2022, from https://caswellplating.com/copper-conductive-paint-4oz.html
- Chakraborty, S., Dey, V., & Ghosh, S. (2015). A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. *Precision Engineering*, 40, 1-6.
- Chakravorty, D. (2019). STL File Format (3D Printing) Simply Explained. Retrieved on November 16, 2020, from https://all3dp.com/what-is-stl-fileformat-extension-3d-printing/#pointone
- Chandramohan, D., & Marimuthu, K. (2011). Rapid prototyping/rapid tooling-a over view and its applications in orthopaedics. *Int J Adv Eng Tech, 2*(4), 435-448.
- Chen, B., Wang, A., Wu, S., & Wang, L. (2016). Polyquaternium-2: a new levelling agent for copper electroplating from acidic sulphate bath. *Electrochemistry*, 84(6), 414-419.
- Choudhary, S. K., & Jadoun, R. (2014). Current advanced research development of electric discharge machining (EDM): a review. *International Journal of Research in Advent Technology*, 2(3), 273-297.
- Clark, E. (2020). 18 3D Printer Filament Types And Uses Comparison Guide. Retrieved on December 22, 2020, from https://www.allthat3d.com/3d-printerfilament/
- Connor, N. (2021). *Mild Steel*. Retrieved on May 30, 2022, from https://materialproperties.org/mild-steel-density-strength-hardness-melting-point/
- Corrosionpedia. (2017). *Decomposition Potential*. Retrieved on May 17, 2021, from https://www.corrosionpedia.com/definition/2071/decomposition-potential
- Corrosionpedia. (2019). *Current Efficiency*. Retrieved on May 18, 2021, from https://www.corrosionpedia.com/definition/355/current-efficiency
- Czelusniak, T., Higa, C. F., Torres, R. D., Laurindo, C. A. H., de Paiva Júnior, J. M. F., Lohrengel, A., & Amorim, F. L. (2019). Materials used for sinking EDM

electrodes: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1), 14.

- Danade, U. A., Londhe, S. D., & Metkar, R. M. (2019). Machining performance of 3D-printed ABS electrode coated with copper in EDM. *Rapid Prototyping Journal*, 25(7), 1224-1231.
- Develve. (2020). Center Point. Retrieved on May 30, 2022, from https://develve.net/Center%20point.html
- Dey, A., & Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. *Journal of Manufacturing and Materials Processing*, 3(3), 64.
- Dhatrak, H., & Kamble, N. (2020). A Review on to Study the Performance of Fused Deposition Modelling Electrode for EDM Process with EN8 Material. *International Journal of Research in Engineering, Science and Management,* 3(2), 654-657.
- Ehl, R. G., & Ihde, A. J. (1954). Faraday's electrochemical laws and the determination of equivalent weights. *Journal of Chemical Education*, *31*(5), 226.
- Equbal, A., & Sood, A. K. (2013). Problems and Challenges in EDM Electrode Fabrication using RP: A Critical Review. World Applied Sciences Journal, 28(8), 1127-1133.
- Equbal, A., Equbal, A., & Sood, A. (2014). Metallization on FDM processed parts using electroless procedure. *Procedia materials science*, *6*, 1197-1206.
- Equbal, A., Sood, A. K., & Shamim, M. (2015). Rapid tooling: A major shift in tooling practice. *Manufacturing and Industrial Engineering*, 14(3-4).
- Equbal, A., Sood, A. K., Ansari, A. R., & Equbal, A. (2017). Optimization of process parameters of FDM part for minimizing its dimensional inaccuracy. *International Journal of Mechanical and Production Engineering Research and Development*, 7(2), 57-66.
- Equbal, A., Equbal, M. I., & Sood, A. K. (2019). An investigation on the feasibility of fused deposition modelling process in EDM electrode manufacturing. *CIRP Journal of Manufacturing Science and Technology*, 26, 10-25.
- Equbal, A., Equbal, M. I., Equbal, M. A., & Sood, A. K. (2019). An Insight on Current and Imminent Research Issues in EDM. Non-Conventional Machining in Modern Manufacturing Systems. India: IGI Global. pp. 33-54.

- Fan, H. (2017). What is electroplating? How does the electroplating process work? Retrieved on January 8, 2021, from https://insights.vecoprecision.com/whatis-electroplating-how-does-the-electroplating-process-work
- Fefar Savan, D., & Karajagikar, M. J. (2014). Study and Analysis of Metallized electrode fabricated with FDM Rapid Prototyping technique for Electro discharge machining (EDM). *AIMTDRC*. India: IIT Guwahati.
- Gordeev, E., Degtyareva, E., & Ananikov, V. (2016). Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. *Russian Chemical Bulletin*, 65(6), 1637-1643.
- Gostimirovic, M., Kovac, P., Sekulic, M., & Skoric, B. (2012). Influence of discharge energy on machining characteristics in EDM. *Journal of mechanical science and technology*, 26(1), 173-179.
- Hang, O. (2022a). H1 Leveling Agent 2 Mercaptothiazoline / 2 Thiazoline 2 Thiol For Acid Copper Baths. Retrieved on May 14, 2022, from https://www.acidcopperplatingbrighteners.com/sale-11775627-h1-levelingagent-2-mercaptothiazoline-2-thiazoline-2-thiol-for-acid-copper-baths.html
- Hang, O. (2022b). *Acid Copper Plating Brighteners*. Retrieved on May15, 2022, from https://www.acidcopperplatingbrighteners.com/supplier-342731-acidcopper-plating-brighteners
- Haq, R. H. A. (2009). Performance Evaluation of Different Types of Graphite Electrodes on Titanium (Ti-6A1-4V). Universiti Teknologi Malaysia, Malaysia.
- Harrison. (2020). *Ra & RMS: Calculating Surface Roughness*. Retrieved on January 19, 2021, from http://www.harrisonep.com/electropolishing-ra.html
- Ilani, M. A., & Khoshnevisan, M. (2020). Powder mixed-electrical discharge machining (EDM) with the electrode is made by fused deposition modeling (FDM) at Ti-6Al-4V machining procedure. *Multiscale and Multidisciplinary Modeling, Experiments and Design, 3*(3), 173-186.
- Jeevamalar, J., & Ramabalan, S. (2015). A Review on EDM Process Parameters. International Journal of Applied Engineering Research, 10(51), 2015.
- Jetguy, T. (2020). *RAISE3D N2 PLUS*. Retrieved on May 30, 2022, from https://www.pebblereka.com/product-page/raise3d-n2-plus

- Joo, M. W., Lee, Y.-S., Chung, Y.-G., & Lee, H. K. (2022). Sarcomas in Teachers Using Three-Dimensional Printers: A Report of Three Patients and Literature Review. *Clinics in Orthopedic Surgery*, 14(2), 310.
- Kabra, S. (2015). What is conventional machining process? Retrieved on November 16, 2020, from https://www.quora.com/What-is-conventional-machiningprocess
- Kechagias, J., Iakovakis, V., Katsanos, M., & Maropoulos, S. (2008). EDM electrode manufacture using rapid tooling: a review. *Journal of Materials Science*, 43(8), 2522-2535.
- Khan, A. A., Ndaliman, M. B., Ali, M. Y., Lawal, S. A., Sulong, N. F. B., & Mohamad,
 U. A. K. B. (2013). Effect of Electrical Parameters on Performance of Cu-TiC
 Mixed Ceramic Compact Electrode in EDM Process. *ICMAAE*. Kuala Lumpur.
- Khan, I., & Shaikh, D. A. (2014). A Review of FDM Based Parts to Act as Rapid Tooling. *International Journal Of Modern Engineering Research ISSN*, 2249-6645.
- Khan, M. Y., Rao, P. S., & Pabla, B. (2020). Investigations on the feasibility of Jatropha curcas oil based biodiesel for sustainable dielectric fluid in EDM process. *Materials Today: Proceedings*, 26, 335-340.
- Kolli, M., & Kumar, A. (2015). Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method. *Engineering Science and Technology, an International Journal, 18*(4), 524-535.
- Kondo, H. (2019). PETG vs ABS: The Differences Simply Explained. Retrieved on January 19, 2021, from https://all3dp.com/2/petg-vs-abs-3d-printingfilaments-compared/
- Lima, F., Mescheder, U., & Reinecke, H. (2012). Simulation of current density for electroplating on silicon using a Hull cell. *solar cells*, 6, 7.
- Lobovsky, M. (2022). *Guide to Rapid Tooling*. Retrieved on May 28, 2022, from https://formlabs.com/asia/blog/rapid-tooling/
- Locker, A. (2020). 2020 PETG Filament Buyer's Guide. Retrieved on January 6, 2021, from https://all3dp.com/1/petg-filament-3d-printing/

Lowenheim, F. A. (1942). Modern Electroplating: John Wiley & Sons.

- Lužanin, O., Movrin, D., & Plančak, M. (2013). Experimental investigation of extrusion speed and temperature effects on arithmetic mean surface roughness in FDM built specimens. *Journal for Technology of Plasticity*, 38(2), 179-190.
- Magma. (2020). *Magma PETG* Retrieved on December 23, 2020, from http://magma3dp.com/100-magma-petg
- Mandaloi, G., Singh, S., Kumar, P., & Pal, K. (2016). Effect on crystalline structure of AISI M2 steel using tungsten-thorium electrode through MRR, EWR, and surface finish. *Measurement*, 90, 74-84.
- Matta, A., Raju, D. R., & Suman, K. (2015). The integration of CAD/CAM and rapid prototyping in product development: a review. *Materials Today: Proceedings*, 2(4-5), 3438-3445.
- Mittal, V. (2020). *Electroplating*. Retrieved on May 16, 2021, from https://chem.libretexts.org/@go/page/272
- Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. *Advances in Manufacturing*, 3(1), 42-53.
- Mohanty, S. D., Mohanty, R. C., & Mahapatra, S. S. (2017). Study on performance of EDM electrodes produced through rapid tooling route. *Journal of Advanced Manufacturing Systems*, 16(04), 357-374.
- Niamat, M., Sarfraz, S., Ahmad, W., Shehab, E., & Salonitis, K. (2019). Parametric modelling and multi-objective optimization of electro discharge machining process parameters for sustainable production. *Energies*, *13*(1), 38.
- Nouri, H. (2022). MBFA algorithm based optimization of tungsten carbide alloy wire cut machining process. *International Journal on Interactive Design and Manufacturing (IJIDeM)*, 1-23.
- Ogino, Y., Hirata, Y., Kihana, S., & Nitta, N. (2018). Numerical simulation of freeflight transfer by a 3D metal transfer model. *QJ Jpn Weld Soc*, *36*(1), 94-103.
- Padhi, S. K., Mahappatra, S., & Das, H. C. (2017). Performance of a Copper Electroplated Plastic Electrical Discharge Machining Electrode Compared to a Copper Electrode. *International Journal of Pure and Applied Mathematics*, 114(7), 459-469.
- Padhi, S. K., Mahapatra, S., Padhi, R., & Das, H. C. (2018). Performance analysis of a thick copper-electroplated FDM ABS plastic rapid tool EDM electrode. *Advances in Manufacturing*, 6(4), 442-456.

- Pandey, P. M. (2012). On the Rapid Prototyping Technologies and Applications in Product Design and Manufacturing. *Materials Science Forum*. Switzerland: Trans Tech Publications Ltd. pp. 101-109.
- Pawar, P., Anasane, S., Ballav, R., & Kumar, A. (2016). Experimental study of electroless copper coated on ABS material used for tooling in EDM machining process. J. Prod. Eng, 19(2), 27-32.
- Petrov, P., Agzamova, D., Pustovalov, V., Zhikhareva, E., Saprykin, B., Chmutin, I., & Shmakova, N. (2021). Research into the effect of the 3D-printing mode on changing the properties of PETG transparent plastic. *4th International Conference on Material Forming*. Belgium: Unviersity of Liège.
- Phull, G. S., Kumar, S., Walia, R. S., & Singh, H. (2020). Copper Electroforming Optimization for Fused Deposition Modeling Produced ABS Components for Indirect Tooling Applications. *Journal of Advanced Manufacturing Systems*, 19(01), 15-29.
- Plating, S. (2017). *Electroplating Defects and Issues*. Retrieved on May 21, 2022, from https://www.sharrettsplating.com/blog/electroplating-defects-issues/
- Plica, M. (2020). 2020 3D Printer Filament Buyer's Guide. Retrieved on November 18, 2020, from https://all3dp.com/1/3d-printer-filament-types-3d-printing-3d-filament/
- Rajesh, R., & Anand, M. D. (2012). The optimization of the electro-discharge machining process using response surface methodology and genetic algorithms. *Procedia Engineering*, 38, 3941-3950.
- Raveendran, B. (2021). *What is Electroplating*? Retrieved on January 8, 2021, from https://byjus.com/chemistry/electroplating-process/
- Reddy, L., Krishna, L., Kumar, S., & Reddy, P. (2018). Estimation of electrical conductivity of ABS and PLA based EDM electrode fabricated by using FDM 3D-Printing process. *Int. J. Mod. Eng. Res. Technol, 5*, 332-338.
- Sahoo, S. K., Sahu, A. K., & Mahapatra, S. S. (2017). Environmental friendly electroless copper metallization on FDM build ABS parts. *International Journal of Plastics Technology*, 21(2), 297-312.
- Sahu, A. K., & Mahapatra, S. S. (2020). Performance analysis of tool electrode prepared through laser sintering process during electrical discharge machining of titanium. *The International Journal of Advanced Manufacturing Technology*, 106(3-4), 1017-1041.

- Satyanarayana, B., & Prakash, K. J. (2015). Component replication using 3D printing technology. *Procedia Materials Science*, 10, 263-269.
- Saxena, P., & Metkar, R. (2019). Development of electrical discharge machining (EDM) electrode using fused deposition modeling (FDM). 3D Printing and Additive Manufacturing Technologies. Singapore: Springer. pp. 257-268.

Schlesinger, M., Paunovic, M., & Society, E. (2000). Modern Electroplating: Wiley.

- Shrivastava, S. M., & Sarathe, A. (2014). Influence of process parameters and electrode shape configuration on material removal rate, surface roughness and electrode wear in die sinking EDM: a review. *International Journal of Emerging Technology and Advanced Engineering*, 4(4), 138-145.
- Singh, A. K., Mahajan, R., Tiwari, A., Kumar, D., & Ghadai, R. (2018). Effect of dielectric on electrical discharge machining: a review. *J Mater Sci Eng*, 377, 012184.
- Sood, A. K., & Equbal, A. (2020). Feasibility of FDM-electroplating process for EDM electrode fabrication. *Materials Today: Proceedings, 28*, 1154-1157.
- Sturges, S. (2020). ABS vs PETG: Which is Best For 3D Printing? Retrieved on January 19, 2021, from https://3dsourced.com/3d-printer-materials/abs-vspetg/
- Sultan, T., Kumar, A., & Gupta, R. D. (2014). Material removal rate, electrode wear rate, and surface roughness evaluation in die sinking EDM with hollow tool through response surface methodology. *International Journal of Manufacturing Engineering 2014*, 259129.
- Taher, B. Y. (2016). Which chemicals removes the copper oxide (black)layer effectively ? Retrieved on May 19, 2021, from https://www.researchgate.net/post/Which-chemicals-removes-the-copperoxide-blacklayer-effectively
- Thakur, A. (2020). Which chemicals removes the copper oxide (black)layer effectively
 ? Retrieved on May 19, 2021, from https://www.researchgate.net/post/Which-chemicals-removes-the-copper-oxide-blacklayer-effectively
- Ubaid, A. M., Dweiri, F. T., Aghdeab, S. H., & Abdullah Al-Juboori, L. (2018). Optimization of electro discharge machining process parameters with fuzzy logic for stainless steel 304 (ASTM A240). *Journal of Manufacturing Science* and Engineering, 140(1).

- Velling, A. (2020). *Mild Steel All You Need to Know*. Retrieved on August 2, 2022, from https://fractory.com/what-is-mild-steel/
- Wei, L. (2016). Copper Electroplating Fundamentals. Retrieved on May 15, 2022, from https://www.dupont.com/electronic-materials/blogs/knowledge/copperelectroplating-fundamentals.html
- Wire, A. (2020). Early History of Wire EDM. Retrieved on November 16, 2020, from https://prototype-shortrun.com/american-wire-edm/history-of-edmmachining/
- Wu, Q.-X., Wu, M.-C., Hu, C.-C., Hsu, C.-Y., Chang, T.-L., & Tsao, C.-C. (2020). Study on the fabricated feasibility of electrodes in EDM using rapid prototyping (RP) and investment casting technology. *The International Journal of Advanced Manufacturing Technology*, 109(1), 377-384.