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ABSTRACT 

The advent of highly integrated electronic devices with digitalised architectures have 

paved the way for the innovation of numerous analogue-to-digital converter (ADC) 

iterations, such as the successive-approximation-register (SAR) analogue-to-digital 

converters which benefit from the downscaling in complementary metal-oxide-

semiconductor (CMOS) technology. In this project, emphasis was placed on the design 

and optimisation of the digital-to-analogue converter (DAC), as it poses an important 

block of the SAR ADC circuit. Research on previous DAC architectures have exposed 

several performance limitations in their designs which include low resolution levels, 

high power consumptions, as well as large differential non-linearity (DNL) errors that 

come as a result of poor conversion linearity. Therefore, the 14-bit DAC proposed in 

this project aims to bridge the research gap through the implementation of a differential 

hybrid design that has the objectives of achieving high resolution, optimum conversion 

linearity and low power consumption. The proposed circuit is comprised of two 

separate single-ended DACs that are designed and simulated in the Cadence Virtuoso 

software using the Silterra 0.18 µm CMOS process with a 2.1V voltage supply. Each 

of these single-ended blocks utilised a segmented 10-bit resistor DAC (RDAC) and a 

4-bit binary-weighted capacitor DAC (CDAC) to formulate the 14-bit hybrid 

architecture. Switching procedures were also applied to the sub-DAC circuits to ensure 

a low-power design was established. Detailed transient simulations implemented at the 

schematic and post-layout levels indicated that the DAC performed the required 

conversions at a 14-bit precision and maximum conversion frequency of 2.5 MS/s with 

peak DNL errors of –0.1612 and –0.8272, respectively. The circuit acquired peak 

power consumption and Signal-to-Noise Ratio (SNR) of 0.1496 mW and 68.94 dB 

respectively for the standard voltage supply of 2.1 V. Generally, the optimised circuit 

is capable of carrying out digital-to-analogue conversions at a 14-bit resolution level 

with low power consumption and DNL errors, thus verifying the high-performance 

levels of the proposed DAC. 
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ABSTRAK 

Kemunculan litar elektronik bersepadu dengan seni bina digital telah membuka jalan 

inovasi untuk pelbagai jenis penukar analog ke digital (ADC), seperti penganggaran 

penggantian berturut-turut (SAR) penukar analog ke digital terkini yang termanfaat 

dari pengurangan skala dalam teknologi semikonduktor-logam-oksida pelengkap 

(CMOS). Dalam projek ini, penekanan diberikan kepada reka bentuk dan 

pengoptimuman penukar digital ke analog (DAC) disebabkan ia adalah blok penting 

dalam litar SAR ADC. Penyelidikan mengenai seni bina DAC lama menunjukkan 

bahawa rekaan itu mempunyai kekurangan dari segi prestasi mereka yang merangkumi 

tahap resolusi yang rendah, penggunaan kuasa yang tinggi dan ralat pembezaan bukan 

linear (DNL) yang besar disebabkan oleh kelinearan penukaran yang lemah. Oleh itu, 

DAC 14-bit yang dicadangkan dalam project ini bertujuan untuk mengatasi jurang 

penyelidikan melalui pelaksanaan seni bina pembezaan hibrid yang mempunyai 

objektif untuk mencapai resolusi tinggi, kelinearan penukaran yang optimum dan 

penggunaan kuasa yang rendah. Litar yang dilaksanakan terdiri daripada dua DAC 

tunggal yang terpisah yang direka dan disimulasi dalam perisian Cadence Virtuoso 

menggunakan proses CMOS Silterra 0.18 µm dengan bekalan voltan 2.1 V. Setiap 

blok tunggal ini menggunakan satu rentetan perintang DAC (RDAC) 10-bit dan satu 

kapasitor binari berwajaran DAC (CDAC) 4-bit untuk membentuk seni bina hibrid. 

Prosedur penukaran juga diaplikasikan pada litar-litar sub-DAC untuk memastikan 

reka bentuk yang berkuasa rendah ditubuhkan. Simulasi sementara terperinci yang 

dilaksanakan pada tahap skematik dan pasca susun atur telah menunjukkan bahawa 

DAC melakukan penukaran yang diperlukan pada ketetapan 14-bit dan frekuensi 

penukaran 2.5 MS/s dengan ralat DNL tertinggi masing-masing sebanyak –0.1612 and 

–0.8272. Litar ini memperolehi penggunaan kuasa dan nisbah isyarat-ke-bunyi (SNR) 

bersamaan 0.1496 mW dan 68.94 dB masing-masing untuk bekalan voltan standard 

sebanyak 2.1 V. Secara amnya, litar yang dioptimumkan mampu melaksanakan 

penukaran digital ke analog pada tahap resolusi 14-bit dengan penggunaan kuasa dan 

DNL yang rendah, dengan itu mengesahkan ketinggian prestasi DAC ini.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

  The continuous advancement in the field of complementary metal-oxide-

semiconductor (CMOS) technology has led to the increased demand for low-power 

and area-efficient analogue-to-digital converters (ADC) for application in various 

highly integrated instruments as well as other wireless or portable electronic devices 

[1]. It is also an important feature in modern consumer electronics applications, as its 

function as a mixed-signal circuit is crucial in converting a continuous analogue input 

signal into a discrete digital output, which in turn would allow digitally encoded 

devices to process the analogue signals [2]. With various ADC architectures currently 

being developed in the modern world, the key area of focus for circuit designers is the 

implementation of a design that achieves an optimum balance between the trade-offs 

of speed, power and resolution [3].  

In this project, the main research contribution was focused on the design of the 

digital-to-analogue converter (DAC) component, which posed as an important subset 

of the full ADC circuit. The overall scheme of the DAC was created with the intention 

of achieving full compatibility with its corresponding ADC design. With this in mind, 

the implementation of the DAC was duly carried out in an effective manner, where 

certain advances in terms of resolution, conversion linearity and power consumption 

were expected to be made. Once the DAC design was fully completed, which was 

inclusive of its schematic and layout features, it was then simulated under real 

conditions in order to test and observe the performance levels of the circuit in regard 

to other state-of-the-art DAC designs. 
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The overall function of a DAC is to convert the digital bits of 1’s and 0’s sent 

from the ADC into its analogue equivalent value during each conversion cycle, which 

corresponds to the input voltage level. In other words, the discrete digital values are 

reformed together by the DAC into a continuous analogue waveform. This makes the 

DAC an instrumental feature in electronic devices, such as sound systems (explained 

in a later section), where the digitalised data within the system is required to be 

converted into an audible analogue output signal. Therefore, the benefits of 

incorporating high-resolution DACs within these devices provide them with a greater 

number of convertible digital bits, which leads to a more discrete and precise 

representation of the analogue waveform. 

  The implementation of the 14-bit high-resolution DAC in this project was 

realised via a hybrid architecture that was comprised of a 4-bit binary-weighted 

capacitor DAC (CDAC) and a 10-bit resistor DAC (RDAC) that was further 

subdivided into two parallel 5-bit strings. The selection of this 4+10 hybrid design 

paved the way for a segmented architecture that was capable of extending the DAC 

resolution by combining different types of sub-DACs (R and C) together. It is also 

important to note that the number of DAC components tend to increase exponentially 

with resolution without the presence of segmented circuit arrays [4], which makes the 

implementation of this feature even more pertinent in high-resolution designs. The 

work in [5] also supported the fact that a hybrid DAC structure has a proven prowess 

in its applicability in high-resolution SAR ADCs of 12 bits or greater, thereby making 

it an attractive feature in the realisation of this project. Moreover, the hybrid 

architecture has the unique advantage of allowing designers to introduce different 

types of methods to optimise each sub-DAC based on individual design requirements 

and other uncorrelated process parameters [4], thereby enabling the overall 

performance of the full DAC circuit to be adequately enhanced. 

1.2 Problem statement 

The growing popularity of wireless sensor networks in many modern-day 

electronic applications has led to the increase in the demand for high-resolution ADCs 

with superior conversion linearity and accuracy [6]. However, the limitation of low-

resolution circuits creates a bottleneck in the advancement of large-scale integrated 
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circuits and applications requiring high resolutions. Efforts made to enhance DAC 

resolution often entail a greater number of unity elements to be added to the design, 

which refers to the specific quantity of components required to achieve the stipulated 

resolution of the DAC circuitry (e.g., a 10-bit CDAC would require 1024 (210) 

capacitive unity elements to attain a resolution of 10 bits) [7]. This increase in unity 

elements results in stringent matching requirements being imposed on the DAC 

circuitry [4]. 

Furthermore, the enforcement of strict matching or linearity requirements on 

high-resolution DACs often necessitate large devices to be implemented in the 

circuitry which leads to high power consumption. This is because DACs transistor-

based circuitries require larger dimensions (in terms of width and length) to overcome 

mismatch issues and optimize the circuit to achieve accurate matching and linearity 

[8]. This performance parameter is crucial in DAC designs to reduce noise levels and 

glitches in the output voltage, thereby preventing the voltage from distorting too far 

from its ideal value, which helps maintain it at an accurate level and increasing the 

signal-to-noise ratio (SNR) of the DAC [2,9]. The work in [10] also supports the 

concept of the fulfilment of the CDAC linearity requirements at the expense of a larger 

unit capacitance and higher power consumption. Based on this concept, it can be 

deduced that linearity performance and power consumption parameters are somewhat 

opposed to one another, where efforts made to enhance linearity performance comes 

with the drawback of increased component sizing, which inevitably leads to higher 

power consumption. Thus, the challenges faced in the design of the said DAC circuits 

have become relatively apparent, as their implementations require an optimal setting 

that leverages both linearity performance and power consumption parameters at a 

balanced point to be established [10].  

Upon consideration of the issues stated above, the proposed DAC circuit had 

the potential of achieving the desired high resolution and strong conversion accuracy 

criteria with the implementation of the 4+10 segmented hybrid architecture. The 

separation of the resolution bits across two distinct components via the segmented 

architecture ensured that fewer components were used in each sub-circuit, which 

reduced the total number of unity elements across the entire DAC. This feature also 

helped to relax the matching requirement of each sub-DAC, as the resolution load was 

not borne by a single component, thereby providing mutual benefits to both these sub-

circuits [11]. The improvement in device matching would thus enable the DAC to 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4 
 

acquire a fine balance between the trade-offs of linearity and power consumption, 

where the required linearity performance can be realistically attained without having 

to expend a large number of components or significant amounts of power within the 

design. Moreover, the introduction of a differential architecture that combined two 

single-ended DACs in a parallel structure had the potential to realize higher conversion 

linearity and voltage accuracy. This is proven in the works carried out in [1,2,12] where 

the implementation of a differential circuit enabled the reduction or removal of 

common mode noise between the two input volage pairs, which in turn increased the 

SNR and improved the precision of the output voltage. An additional advantage of the 

differential design is the increased input voltage range available to the circuit which is 

double than that of the single-ended counterpart [2]. 

1.3 Objectives 

This research embarked on the following objectives that were set prior to the 

commencement of the project with the intentions of achieving novelty and 

advancements in key areas of the conducted work: 

 

a) To design a 14-bit differential DAC for a SAR ADC using a hybrid segmented 

architecture that achieved milestones in several key parameters, which were 

high resolution, strong conversion linearity and low power consumption. 

 

b) To verify the precise functionality of the designed differential DAC in 

accordance with the requisite digital-to-analogue conversion operations. 

 

c) To analyse the overall performance of the differential DAC with respect to its 

achievements in the aforementioned key parameters. 

1.4 Scope of Study 

The scope of the research is as follows: 
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a) A Silterra 0.18µm CMOS hybrid differential DAC (without the operational 

amplifier) was developed to achieve 14-bit resolution and attain power 

consumption of less than 1.0 mW, with differential non-linearity (DNL) of ±1 

LSB across all critical input codes and Process, Voltage and Temperature 

(PVT) corners. These PVT corners comprised variations in the process speeds 

of the CMOS transistors and sub-DACs, voltage magnitudes ranging from 1.8–

3.3 V, as well as an operating temperature window of –40 ºC to 120 ºC. The 

PVT scope was determined and implemented as per the specifications set forth 

via consultation with the design engineers at MIMOS Berhad. The DAC was 

solely designed without the inclusion of the comparator due to the time 

constraints posed by the short attachment period at MIMOS Berhad. 

Furthermore, the efforts to attain a low-power consuming DAC were limited 

by the voltage as this parameter is directly proportional to the power. Thus, a 

low-voltage setting would be ideal to keep the power consumption to a 

minimum but dipping the voltage below 1.8V would lead to the DNL 

exceeding the stipulated value. Therefore, the optimum range to satisfy both 

the low-power and low-DNL requirements was between 1.8V and 2.1V. 

 

b) Functional simulations of the differential DAC architecture were conducted 

using transient simulations, including both schematic-level and post-layout 

simulations to validate the operability of the DAC circuit in performing the 

required digital-to-analogue conversions accurately. 

 

c) Detailed evaluations were conducted of all schematic-level and post-layout 

simulation results to check the fulfilment of the proposed DAC in correlation 

with key performance parameters. 

1.5 Research contribution 

The overall DAC circuit proposed in this research work is highlighted with 

several novelty features which have the contribution potential in the application of 

contemporary electronic devices that incorporate these superior traits. Firstly, the high-

resolution feature of the DAC is realized via the hybrid combination of two segmented 
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