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ABSTRACT 

A coronary artery stent is a medical device used to treat coronary artery disease. In the 

long term, there is a chance of restenosis, or stent fracture. Stainless steel, which has 

excellent mechanical properties, is the most common material for conventional stents. 

Because of their high yield stress and ductility, stainless steel stents can be safely 

extended. Stainless steel stents are permanent in the body and can cause complications. 

These studies, however, address the behaviour of stents under single and combined 

loading in terms of stress and strain. A new stent is constructed and tested under this 

loading. Computational analysis can be used to determine mechanical performance, 

anticipate possible problems, and direct stent optimization. As a result, preliminary 

evaluation using numerical methods enables a more in-depth analysis of some aspects 

of mechanical performance. In this thesis, six different stent designs (Palmaz, AVE 

S660, Bx Velocity, Multilink, Express and NIR) were evaluated. Best stent design in 

term of stress would be selected and then structure of the stent would be optimized. In 

Explicit numerical analysis, the deformation of the designs was simulated using 

ANSYS under internal pressure. AVE S660 stent shown most reaction as it shrinks to 

the middle while the highest and lowest von Mises stress is 352MPa and 190MPa for 

NIR and Express stent, respectively. The mechanical performance of a new design 

stent based on the previous evaluations was investigated in this study under single and 

combined loading.  
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ABSTRAK 

Stent arteri koronari adalah alat perubatan yang digunakan untuk merawat penyakit 

arteri koronari. Untuk jangka masa panjang, terdapat kemungkinan akan berlaku 

restenosis atau keretakan pada stent. Keluli tahan karat, yang mempunyai sifat 

mekanikal yang sangat baik, adalah bahan yang selalu digunakan untuk stent 

konvensional. Kerana tekanan dan kemuluran hasil tinggi, stent keluli tahan karat 

dapat bertahan dengan selamat. Stent keluli tahan karat akan kekal di dalam badan dan 

boleh menyebabkan komplikasi. Analisis pengkomputeran dapat digunakan untuk 

menentukan prestasi mekanikal, mengantisipasi kemungkinan masalah, dan 

pengoptimuman stent secara langsung. Hasilnya, penilaian awal menggunakan kaedah 

berangka membolehkan analisis yang lebih mendalam dijalankan berkaitan prestasi 

mekanikal. Dalam tesis ini, enam reka bentuk stent yang berbeza (Palmaz, AVE S660, 

Bx Velocity, Multilink, Express dan NIR) diuji. Reka bentuk stent yang terbaik akan 

dipilih dan kemudian struktur stent akan dioptimumkan. Dalam analisis berangka 

menggunakan kaedah Explicit, pengembangan struktur disimulasikan menggunakan 

ANSYS di bawah tekanan. Stent AVE S660 menunjukkan reaksi paling ketara ketika 

ia menyusut ke tengah sementara tekanan von Mises tertinggi dan terendah masing-

masing adalah 352MPa dan 190MPa untuk stent NIR dan Express. Prestasi mekanikal 

untuk reka bentuk stent yang baru diuji dalam kajian ini di bawah beban tunggal dan 

gabungan. Stent di bawah lenturan dan kilasan dengan tekanan mempunyai tekanan 

tertinggi iaitu 483MPa. 
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

1.1 Background of Study  

Intravascular stent insertion has been a common practice in vascular disease treatment. 

There are over 100 different types of stents in the market and hospitals around the 

world (Stoeckel et al., 2002). Stents can be categorised into the cylinder, loop, and 

mesh types depending on their unique cell designs. To adapt to the performance and 

adaptability requirements, the geometric cells could be in closed or open instances. A 

stent is collapsed to a small width and placed over an inflatable catheter before 

deployment. The stent is then moved into the area of vein blockage and expanded by 

inflatable swelling. The structure of a stent involves considerable plastic distortion and 

nonlinear contacts from a mechanics standpoint. As a result, understanding the stresses 

and strains faced by a stent during operation is critical to effectively use stenting 

breakthrough. Finite element analysis (FEA) has been widely used in numerical 

investigations of mechanical behaviour (strains, stresses, deformation, stiffness, and 

flexibility).  

 Hardening of the blood vessel due to an atheromatous plaque called 

atherosclerosis would lead to the blockage or narrowing of the blood pathway inside a 

vessel (Li & Kleinstreuer, 2007). Imitating atherosclerosis causes the process to 

become slower after the development of the initial plaque.  When the arterial wall 

becomes weak, an aneurysm could be identified as the main reason that causes the 

enlargement of an artery. Although there are no symptoms at all, it could lead to fatal 

complications due to a ruptured aneurysm. An aneurysm is the weakness of the artery 

wall that causes the artery to bulge or swell up. Most cases of aneurysms do not show 
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symptoms and are not perilous. But, for a severe stage, without precaution, an 

aneurysm would rupture and lead to internal bleeding and is life-threatening. 

Individuals' chances of experiencing and rupturing an aneurysm differ from each other. 

The development of an aneurysm is due to an unhealthy lifestyle, particularly smoking. 

That is why rupture of aneurysm needs surgical treatment. Doctors take this as a 

serious case as they are life-threatening. 

1.2 Problem Statement 

Long-term fatigue failure might occur because of stent failure due to a high number of 

arterial dilations caused by cardiac pressure (Azaouzi et al., 2013). Because of the high 

plastic deformation during balloon expansion, damage or micro-cracks caused by 

stress concentration at surface irregularities are one of the key causes of fatigue failure 

of balloon-expandable stents. A wide range of research is needed to study the 

performance of stents during stent implantation to decrease the rates of stent failure. 

As the number of people dying from cardiovascular diseases rises, this study is critical. 

Many patients prefer stent operation to open-heart surgery because it is performed in 

safer conditions and could theoretically treat lethal vascular diseases. However, most 

of these studies use stent alone or inside the blood vessel to evaluate it clinically or 

numerically (Stoeckel et al., 2002; Li & Kleinstreuer, 2007; Azaouzi et al., 2013) 

 These studies, however, address the behaviour of stents under single and 

combined loading in terms of stress and strain. A new stent is constructed and tested 

under this loading. The stent must exert enough radial force on the diseased coronary 

artery's wall to restore the vessel lumen to a near-normal diameter while somehow 

scaffolding the vessel and avoiding artery collapse in the coming years. Low elastic 

recoil, conformability, high visibility, and ease of delivery are all desirable 

performance characteristics. The latter is a complicated parameter that is influenced 

by the stent's versatility. 
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1.3 Objectives 

The main objectives of this research are as follows: 

i. To compare the mechanical performance of existing designed stents. 

ii. To propose a new design of stent based on previous analysis of stent 

performance. 

iii. To investigate the stent mechanical behaviour under single and combined 

loading of new stents. 

1.4 Scope of Study 

The scope of this study is to use Finite Element Analysis (FEA) to compare the 

performance of various stent designs. The design is simulated using ANSYS software. 

Two different types of simulation methods are used, which are Implicit and Explicit. 

For the Implicit simulation method, selected previous research of stent under single 

loading is simulated, while for Explicit, a new stent is simulated to observe its fracture 

due to single and combined loading. The result is validated with the previous study. 

Lastly, a new design of stents is proposed based on the performance of the existing 

design. All these studies are based on the numerical analysis and there is no 

experimental works conducted.  

1.5 Significance of Study 

Previous research has been conducted on stent designs to study their performance. The 

present study aims to prevent failure during the implantation of a stent to prevent 

restenosis. As the failure occurs, a second angioplasty or minor surgery is needed to 

open blocked arteries and restores normal blood flow. Aneurysm might also happen, 

weaken the artery wall, and cause an abnormally large bulge that results in rupture of 

the arteries and internal bleeding. The findings of this research are greatly beneficial 

to society considering that stent design and optimization play important roles in 

engineering and biomedical. The greater manufacturing and clinical demands with 

science and technology backgrounds justify the need for more effective and life-
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changing approaches for patients. Thus, the results of this study could be used as 

guidance for future research on what should be emphasized by engineers to improve 

stent performance. For researchers, this study could help them uncover critical areas 

in the biomedical field that many researchers have not been able to explore. Lastly, a 

new learning process might be discovered. 
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CHAPTER 2  
 

 

 

 

LITERATURE REVIEW 

2.1 Chapter Overview 

Significant technological advances have been created in the last 20 years, and new 

devices for coronary mediations have been reviewed. Stents, for example, have 

recently improved common procedures by offering a convincing and secure method in 

dealing with analyses that occur during inflatable angioplasty. Previous judicial studies 

have shown that open tubes, tempered steel, and balloon-expandable stents 

significantly reduce restenosis rates in specific sores (Negro et al., 1994). As a result 

of the multidisciplinary efforts put into stent science, new designs, as well as various 

materials and coatings, have been proposed to further improve the execution of these 

prostheses. Angioplasty with stenting, in which a balloon with a stent is inserted into 

the vessel, is one of the most common treatments for atherosclerosis (Rogers et al., 

1999). During the stent placement process, the plaque or artery could be damaged. To 

keep this occasion, a comprehension mechanical procedure is deemed required. 

2.2 Background of Stent Design 

Stents are tubular intravascular devices inserted into blood vessels to keep them 

structurally opened. Stents might be used to keep blood vessels open immediately 

following intravascular procedures, reducing the risk of restenosis (Negro et al., 1994). 

More than one million percutaneous surgeries are conducted each year around the 

world, and the use of coronary stents in interventional approaches has risen from 10% 

in 1994 to over 80% in current practices (Kandzari et al., 2002). Stent advancement 
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has increased steadily since the first generation of stents, with enhanced versatility and 

deliverability of stents extending the use of coronary stenting to a variety of injury 

morphologies and clinical settings (Kandzari et al., 2002). 

 Antonio Colombo presented the high-weight strategy for stent deployment in 

1993. It was the high-pressure deployment, and the antithrombotic treatment has 

fundamentally brought down the recurrence of thrombosis occurrences. This prompted 

a wide utilization of stents, and following quite a long while of examination, they 

ended up being the almost perfect answer for ischaemic coronary illness (Azaouzi et 

al., 2013). Early research show that stent-based drug conveyance for restenosis 

prevention has overwhelmingly positive results. The functions of these stents are 

influenced by the designs, delivery-vehicle materials, and drug properties. Coil or 

hybrid stent models are inferior to stainless steel stents with tubular and multicellular 

designs. Different stent structures have a significant impact on acute and chronic 

results. Other older designs combine coil and tubular devices, making them more 

versatile and suitable for tortuous vessels (Hara et al., 2006). 

 Bioceramic adipoyl or coated stents, radioactive stents, biodegradable stents, 

and drug-eluting stents are just a few of the latest revolutionary stent designs being 

developed (Kandzari et al., 2002). The investigation on the relationship between a stent 

and its matching equipment, especially the balloon of the stent itself extends, and other 

biomechanical behaviours, are, however, limited. Initially, several animal studies and 

clinical applications have shown that different stent designs have different clinical 

outcomes (Kastrati et al., 2000). 

2.3 Classifications of Stent 

The method of expansion (self-expanding or balloon-expandable), the composition 

(stainless steel, cobalt-based alloy, tantalum, nitinol, inert coating, active coating, or 

biodegradable), and the configuration of stents are all categorized as mesh structure, 

coil, slotted tube, ring, multi-design, or custom design. 
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2.3.1 Material of Stent 

Metallic, mass, and surface properties, structure, and science are all extremely 

important factors to consider when creating an ideal stent. Self-extending stents must 

be set up from metals with adequate flexibility so they could be compacted and 

extended and held adequate spiral band quality to avoid vessel force or conclusion 

once set up (Burns et al., 2009). Based on Table 2.1, stainless steel is much weaker 

than Co-Cr. Radial strength against the plaque of the artery is maintained due to the 

stent struts as Co-Cr has better density. A stent’s capability needs to be considered 

when designing the stents to meet the attributes. Table 2.2 indicates that Cobalt alloys 

are more capable in terms of having higher strength, visibility in medical imaging, and 

flexibility. However, stainless steel stents are more capable to minimize the recoiling 

of stent struts. 

 

Table 2.1: Comparison of CoCr stents versus 316L stainless steel stent (Wu & 

McCarthy, 2012) 

Advantage  Material (CoCr)  Material (316L SS)  Reason of preference  

Strength  Stronger  Lower strength  
Maintain good radial 

strength  

Density  Denser  Smaller density  
Design thin stent struts 

with good radiopacity  

MRI-

compatible  

More MRI-

compatible  
Not MRI-compatible  

Material is non-

ferromagnetic, has good 

biocompatibility  

 

2.3.2 Balloon Expandable Stent 

A balloon-expandable stent is a tubular, mesh-like tube that is extended within a 

diseased (stenosis) artery fragment to restore blood flow and hold the vessel open after 

angioplasty (Azaouzi et al., 2013). The designs of balloon-expandable stents have two 

major constituents, categorised as ring components and interfacing components or 

bridges as shown in Figure 2.1. Most balloon-expandable stents are delivered using 

treated steel material that plastically deforms during the construction of an inflatable 

balloon. After being delivered, balloon-expandable stents experience up to 20%–30% 
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plastic strain. Except for a small backfire caused by the adaptable piece of the 

distortion, the stent maintains its form after the inflatable balloon is crumpled. 

 

Table 2.2: Comparison of physical and mechanical properties of selected biomaterials 

(AL-Mangour, Mongrain, & Yue, 2013) 

Required 

attribute 

1st Generation 

Alloy 
2nd Generation Alloy 

Stainless Steel 

(316L) 

Cobalt 

Chromium(L605) 
Cobalt Nickel (MP35N) 

Visibility  Capable More Capable More Capable 

Strength  Capable Capable Capable 

Minimized 

Recoil  
More Capable Less Capable Less Capable 

Flexibility  Capable Capable Capable 

 

 
 

(a) A 2-dimensional stent layout (b) Stent design 

 

(c) Bridge of stent 

Figure 2.1: Balloon expandable stent design and bridge (Azaouzi et al., 2013) 
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2.3.3 Self-Expanding Stent 

Self-expanding stents are widely used to treat occlusions in endovascular arterial 

lumens, such as blood vessel narrowing caused by cholesterol plaque build-up. Figures 

2.2 and 2.3 display self-expanding stents made of nickel-titanium alloy with mesh-like 

tube structures (Nitinol). Biocompatible and fatigue properties along with the super 

elastic and shape memory properties of Nitinol are the reasons why it has been 

extensively used in medical applications (Azaouzi et al., 2012). During an operation, 

Nitinol is very useful as its properties help to reduce stent damage. 

 

 

Figure 2.2: Self-expanding stent (Azaouzi et al., 2012) 

 

 
 

(a) Self-expanding Nitinol stent (b) Ring unit cell model 

Figure 2.3: Nickel-titanium alloy self-expanding stents (Azaouzi et al., 2012) 

2.3.4 Raw Material Form of Stents 

As shown in Table 2.3, stents could be made of sheet, wire (round or flat), or tube. 

Wire or tube has been used to make most balloon-expandable and self-expanding 

stents. The BSC/Medinol ‘NIR,' the Navius ‘ZR1,' the EndoTex ‘ratcheting' stent, and 
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