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ABSTRACT 

Lung cancer has been recorded as the most common cancer globally, contributing 

12.2% of all new cases diagnosed in 2020, with the greatest mortality rate due to its 

late diagnosis and poor symptom detection. Nowadays, Malaysia has reached 4,319 

lung cancer deaths, accounting for 2.57 per cent of all deaths in 2020. Late diagnosis 

is the norm for lung cancer, which makes survival challenging and the likelihood of 

recovery low. Nevertheless, in Malaysia, most cases are discovered late, when the 

tumors have grown too far, or the disease has spread to other body parts that cannot be 

removed through surgery. This situation frequently occurs due to the lack of public 

knowledge among Malaysians regarding cancer-related signs and symptoms. 

Therefore, Malaysians must be aware of the high-risk symptoms of lung cancer to 

increase the survival rate and decrease the mortality rate. This study aims to compare 

multiple linear regression and fuzzy linear regression model using a triangular fuzzy 

number proposed by Tanaka. The H-value from 0.0 to 1.0 is adjusted to find the 

optimal value of an objective function to predict high-risk lung cancer symptoms in 

Malaysia. The secondary data is analyzed using the fuzzy linear regression model, 

which can reduce the interference of irrelevant information and improve the precision 

of the results. This research data was collected from patients with lung cancer at Al-

Sultan Abdullah Hospital (UiTM Hospital), Selangor. The data of 124 lung cancer 

patients were analyzed using Microsoft Excel and MATLAB. The study implemented 

measurement error of cross-validation technique, which is mean square error (MSE) 

and root mean square error (RMSE), to enhance data accuracy. The results show that 

haemoptysis and chest pain has been proven to be the highest risk, among other 

symptoms acquired from the data analysis. It has been determined that H-value of 0.0 

has the smallest measurement error, with MSE of 1.455 and RMSE of 1.206 as the 

multiple linear regression method has the MSE value of 306.257 while the RMSE has 

the value of 17.500.  
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ABSTRAK 

Kanser paru-paru telah direkodkan sebagai kanser yang paling biasa di seluruh dunia, 

menyumbang 12.2% daripada semua kes baharu yang didiagnosis pada 2020, dengan 

kadar kematian yang paling tinggi disebabkan diagnosis lewat dan pengesanan 

simptom yang lemah. Hari ini, Malaysia telah mencapai 4,319 kematian akibat kanser 

paru-paru, menyumbang 2.57 peratus daripada semua kematian pada 2020. Diagnosis 

lewat adalah norma bagi kanser paru-paru, yang menjadikan kelangsungan hidup 

mencabar dan kemungkinan pemulihan rendah. Namun begitu, di Malaysia, 

kebanyakan kes ditemui lewat, apabila tumor telah membesar terlalu jauh, atau 

penyakit itu telah merebak ke bahagian badan lain yang tidak boleh dibuang melalui 

pembedahan. Keadaan ini kerap berlaku kerana kurangnya pengetahuan masyarakat 

Malaysia mengenai tanda dan gejala berkaitan kanser. Oleh itu, rakyat Malaysia mesti 

sedar tentang simptom berisiko tinggi kanser paru-paru untuk meningkatkan kadar 

kelangsungan hidup dan mengurangkan kadar kematian. Kajian ini bertujuan untuk 

membandingkan model regresi linear berganda dan regresi linear kabur menggunakan 

nombor kabur segi tiga yang dicadangkan oleh Tanaka. Nilai H dari 0.0 hingga 1.0 

dilaraskan untuk mencari nilai optimum bagi fungsi objektif untuk meramalkan gejala 

kanser paru-paru berisiko tinggi di Malaysia. Data sekunder dianalisis menggunakan 

model regresi linear kabur, yang boleh mengurangkan gangguan maklumat yang tidak 

berkaitan dan meningkatkan ketepatan keputusan. Data kajian ini dikumpul daripada 

pesakit kanser paru-paru di Hospital Al-Sultan Abdullah (Hospital UiTM), Selangor. 

Data daripada 124 pesakit kanser paru-paru dianalisis menggunakan Microsoft Excel 

dan MATLAB. Kajian ini melaksanakan ralat pengukuran teknik pengesahan silang, 

iaitu ralat min kuasa dua (MSE) dan ralat min kuasa dua punca (RMSE), untuk 

meningkatkan ketepatan data. Keputusan menunjukkan bahawa hemoptisis dan sakit 

dada telah terbukti sebagai risiko tertinggi, antara gejala lain yang diperoleh daripada 

analisis data. Telah ditentukan bahawa nilai H 0.0 mempunyai ralat pengukuran 

terkecil, dengan MSE 1.455 dan RMSE 1.206 kerana kaedah regresi linear berganda 

mempunyai nilai MSE 306.257 manakala RMSE mempunyai nilai 17.500.
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter provides an overview of the research background of lung cancer, the 

introduction of fuzzy linear regression, problem statement, research questions 

and objectives, the scope and significance of the study. Finally, at the end of the chapter, 

there is a brief overview of the research organization. 

1.2 Research Background of Lung Cancer 

Cancer is a disease in which the body’s cells proliferate uncontrollably. Lung cancer 

occurs when cancer begins in the lungs and can spread to lymph nodes or other organs 

such as the brain. Cancer from other organs can spread to the lungs as well. In 2020, the 

American Cancer Society reported that lung cancer (both small and non-small cell) is the 

second most prevalent cancer in both men and women (excluding skin cancer). The 

incidence of this type of cancer is on the rise in several countries, especially in Asian 

countries, where the rate went up from 56% in 2012 to 58% in 2018 (Pakzad et al., 2015). 

Lung cancer is the most common cause of cancer-related death in Malaysia. The 

data of 2020 from the World Health Organization (WHO) showed that lung cancer is the 

leading cause of cancer mortalities with 1.80 million deaths, followed by colon and 

rectum cancer with 935 000 deaths, and liver cancer with 830 000 deaths. While according 

to the most recent WHO data published in 2020, Malaysia has reached a number of 4,319 

lung cancer deaths, accounting for 2.57 percent of all deaths. Malaysia is the 77th country 

in the world with an age-adjusted mortality rate of 15.25 per 100,000 population. The 

reported 5-year survival rate is only 9.0% (95% confidence interval: 8.4–9.7), however, 
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the relative 5-year survival rate is 11.0% (95% confidence interval: 10.3–11.1). As 

depicted in Chart A, the survival rate of lung cancer patients in Malaysia at 1 and 5 years 

is one of the lowest compared to other cancer types. Chart B displays the 1-year and 5-

year survival rates by stage (National Cancer Registry,2018). 

 

Figure 1.1: Relative survival of cancer patients in Malaysia 

Lung cancer can be diagnosed through symptoms or related signs such as 

coughing up blood, weakness, weight loss, fever or clubbing of the fingernails, my 

asthenia syndrome (muscle weakness), hypercalcemia, and metastases. At the same 

time, the most frequent clinical signs are coughing (including coughing of blood), 

weight loss, shortness of breath and chest pain. Early detection of lung cancer may be 

an effective strategy for improving patient care, resulting in a lowered mortality rate. 

Additionally, National Lung Screening Trial (NLST) reported that early screening 

reduced the mortality rate of lung cancer by 20% (Midthun, 2016).  The current 

approaches to lung cancer screening include X-rays and computed tomography  (CT). 

However, the reliability of these approaches is dubious, as the false positive rate in these 

trials exceeded about 15% (Knight et al., 2017). Thus, several alternative methods, such 

as metabolomic, transcriptomic, genomic, and proteomic for identifying cancerous 

biomarkers for the early detection of lung cancer have been studied recently (Jalal et 

al., 2021). 

According to American Lung Association (2021), lung cancer consists of two 

kinds of cells which are small cell lung cancer (SCLC) and non-small cell lung cancer 

(NSCLC). SCLC is delineated using two stages, namely limited and extensive. NSCLC 
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stages range from one to four, commonly denoted in Roman numerals (0 through IV). 

Stage 0 indicates cancer only in the top lining of the lung and has not spread.  Cancer 

has not spread to the lymph nodes or other parts of the body in Stage I, while the tumors 

may be larger than those in Stage I and/or have started to spread to nearby lymph nodes 

in Stage II. Stage III can be determined when cancer has spread to the mediastinum 

lymph nodes (the chest area between the lungs). In Stage IV, cancer has metastasized 

or spread in the lining of the lung or other body areas.  

In Malaysia, about 1 in 60 males and 1 in 138 females develop lung cancer, while 

the mean age for lung cancer is 70 years and above (range 15 to 90 years). However, 

most lung cancer cases were detected at a very late stage, Stage III and IV, which is 

above 90% for both sexes. Patients with lung cancer have two various ways of 

presentation for diagnosis; symptomatic and incidental. Most patients were diagnosed 

incidentally on chest X-rays and CT scans. While amongst the patients who had 

symptoms, the most frequently reported complaints that resulted in an imaging referral 

were the development of new cough or the incline of a previously manifested clinical 

picture suggestive of pneumonia and haemoptysis (Quadrelli et al., 2015).  

Figure 1.2 shows the tumor sites and Figure 1.3 displays the stages of lung cancer.  

 

Figure 1.2: Lung cancer sites 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4 

 

 

Figure 1. 3: Stages of lung cancer 

1.3 Introduction of Fuzzy Linear Regression Analysis 

Fuzzy linear regression analysis is an essential alternative to frequently used statistics-

based regression methods. An ample range of fuzzy linear models can be applied in fuzzy 

linear regression analysis to approximate a linear dependence based on a set of 

observations. Fuzzy regression consists of two types. Tanaka et al. (1982) developed 

‘possibilistic’ fuzzy regression, which is known as a linear programming method that 

seeks to reduce the system’s fuzziness. The second method is a fuzzy least-squares 

method, which seeks to minimize the distance between two fuzzy numbers. The 

approaches are designed to fit fuzzy data to meet a specific applicable requirement. (Khan 

& Valeo, 2015). 

Linear regression analysis with a fuzzy model was introduced by Tanaka et al. 

(1982). The structure is expressed by fuzzy sets as a fuzzy linear function. Zadeh’s 

extension principle proposed fuzzy linear functions. They used input and output data on 

property prices and a fuzzy linear regression model to analyze the data. Fuzzy linear 

functions were found to be a validated strategy for dealing with ambiguous occurrences 

when applied in the linear regression model. 

A fuzzy regression model is used to determine the functional relationship between 

the dependent and independent variables in a fuzzy environment. Numerous fuzzy 

regression models have been proposed in the literature and several approaches for 

estimating the models’ fuzzy parameters. The possibilistic approach and the fuzzy least 

squares model are the two most common methods in analyzing fuzzy regression models 

(Denoda et al., 2014).  
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Poleshchuk (2018) developed an output variable in a fuzzy linear regression 

model corresponding to confident intervals with a specified level of plausibility. The 

fuzzy regression analysis methods extend the classical regression analysis methods by 

solving various problems with fuzzy or incomplete initial data without resorting to the 

methods of probabilities. The proposed method opens up new potential for predicting 

fuzzy output variables. 

Gkountakou & Papadopoulos (2020) applied fuzzy linear regression to construct 

more effective fuzzy models for estimating cement’s 28-day compressive strength. The 

fuzzy linear regression approach is a powerful tool for defining the degree of fuzziness 

and calculating the effect of independent inputs on the dependent variable. It also 

establishes a standard equation for estimating output values through symmetric triangular 

fuzzy numbers and identifies the most critical component in enhancing compressive 

strength. It is proven that fuzzy linear regression is an appropriate strategy for engineering 

mathematical models through fuzzy logic. 

Fuzzy linear regression is an intriguing and potentially practical strategy for 

overcoming this gap. Additionally, this fuzzy methodology is capable of effectively 

dealing with the issue of multicollinearity. Pandit et al., (2021) indicated that fuzzy 

methodology clearly outperforms conventional regression methodology when many 

interconnected factors are required to forecast an outcome variable. It is also clearly 

demonstrated that fuzzy linear regression has a higher relative efficiency than simple and 

multiple linear regression methods. 

Fuzzy linear regression is well-suited for vague data in modeling. Clustering is 

applied to group or cluster data based on similarities, where fuzzy C-means is the best 

method. Fuzzy C-means clustering can be classified as the best method since it can handle 

big datasets and allows an item to belong to more than one cluster. Ramly et al., (2018) 

proved that fuzzy C-means and fuzzy linear regression models as the best techniques for 

predicting manufacturing income. This is because the improvisation model obtains the 

lowest mean square error (MSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE) than other models, such as multiple linear regression. 
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1.4 Problem Statement 

This research is carried out to predict the high-risk signs and symptoms of people who 

have early detection of lung cancer. Numerous research has been conducted on lung 

cancer (Yu, 2019). However, studies on the early detection of high-risk symptoms of lung 

cancer (stage I and II) remain inconclusive and unspecific. Currently, the Malaysian 

Health Technology Assessment Section reported that low dose computed tomography 

(LDCT) was used for lung cancer screening and improved lung cancer detection. 

However, it does not apply to high-risk lung cancer patients. Identifying the high-risk 

individual with screening outcomes is crucial since this increases the likelihood of 

detecting malignancy early and reduces lung cancer mortality (Wille et al., 2015). 

According to Sachithanandan & Badmanaban (2012), early-stage disease (I, II, 

and selected IIIa) is susceptible to curative surgery, providing the best chance of cure and 

disease-free survival in the long term. Nevertheless, in Malaysia, most cases are 

discovered late, when the tumors have grown too far or the disease has spread to other 

body parts that cannot be removed through surgery. This situation frequently occurs due 

to the significant gaps in the public’s knowledge of Malaysian people regarding cancer-

related signs, symptoms, and factors (Schliemann, 2020). The majority of patients 

(roughly 75 per cent) have an advanced illness at the time of diagnosis (stage III/IV). 

Despite substantial breakthroughs in late-stage lung cancer oncological care in latest 

years, survival remains low (Knight et al., 2017).  

Regression analysis is a statistical methodology applied to determine the 

relationship between two variables with a cause-and-effect relationship. Regression 

analysis can be a powerful tool for understanding (including predicting and explaining) 

the causal influence on a population outcome (Jihye, 2015). However, regression models 

are particularly sensitive to outliers. A data point that deviates greatly from the majority 

of other observations is called an outlier. Variability in measurement may cause an 

experimental error, while an outlier in regression analysis might create a significant 

problem. Regression analysis models also over-simplify the actual world data and 

problems as the data is rarely linearly separable.  

Moreover, Al-Sabri (2020) found that the fuzzy linear regression method is easier 

and clearer to calculate than the classical regression, and it does not differ significantly 

from the classical regression. These findings also lend support to the concept of fuzzy 
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linear regression prediction, particularly in relation to fuzzy data. The high-risk symptoms 

of lung cancer can be determined more accurately by applying the fuzzy linear regression 

method, as it can predict the uncertainty data clearer compared to regression analysis. 

1.5 Research Questions 

i. How to analyze the multiple linear regression and fuzzy linear regression model 

in predicting high-risk symptoms of lung cancer in Malaysia? 

ii. How does the performance of the multiple linear regression and fuzzy linear 

regression model be measured to determine the optimal model for predicting 

high-risk symptoms of lung cancer? 

iii. What is the highest-risk symptom that most significantly impacts lung cancer 

symptoms in terms of early detection? 

1.6 Research Objectives 

The objectives of this research are;  

i. To analyze fuzzy linear regression model by adjusting H-value in predicting 

high-risk symptoms of lung cancer in Malaysia. 

ii. To measure the performance of fuzzy linear regression and multiple linear 

regression models using statistical measurement errors such as mean square 

error (MSE) and root mean square error (RMSE).  

iii. To determine which symptoms have the most significant impact on the 

symptoms of lung cancer using fuzzy linear regression method. 
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1.7 The Scope of Study 

The scope of the study will be elucidated in two parts; the data scope and the model scope. 

1.7.1 Data Scope 

This research will cover the respondents, types of data obtained and the fuzzy linear 

regression model. The study population will consist of patients diagnosed with lung 

cancer at all stages who attend a respiratory appointment at Hospital Al-Sultan Abdullah 

(UiTM Hospital) in Malaysia. This research mainly will focus on the multiple linear 

regression and fuzzy linear regression model to prove that fuzzy linear regression has the 

least measurement error in predicting high-risk symptoms of lung cancer. Secondary data 

will be used in this research, where the real data on lung cancer were acquired from 

Hospital Al-Sultan Abdullah (UiTM Hospital), Selangor. The respondents with lung 

cancer involved 124 patients, and the data were collected and recorded by doctors and 

nurses using cluster sampling. As continuous data, the dependent variable and 

independent variable are included. The dependent variable is the tumor size, while the 

independent variables are the symptoms of lung cancer, namely cough, haemoptysis, 

weight loss, loss of appetite, chest pain, smoking habit and comorbidity as continuous 

and categorical data included. SPSS, MATLAB and Microsoft Excel are potential soft 

computing software that will be applied to provide precise results. 

1.7.2 Model Scope 

Tanaka et al. (1982) developed fuzzy linear regression, which utilizes fuzzy parameters 

to model the vague and inaccurate relationship between dependent and independent 

variables. The main benefit of the Tanaka model is its simplicity in computation. This 

research proposed the multiple linear regression and fuzzy linear regression with H-values of 

0.0 until 1.0 to compare both models in terms of error values. By applying this model in 

the medical field, it is anticipated to predict high-risk symptoms of lung cancer at any 

stage more accurately. This application model consists of several procedures, which will 

be discussed in further detail in Chapter 3 of the study. 
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1.7.3 Variables of the Study 

The dependent variable is tumor size. The examined tumor ranges in size from 30 mm to 

100 mm. The medical doctors asked the feedback about the patient’s health and received 

responses promptly during the appointment session. Tumor size is chosen as the 

dependent variable since it can determine a patient's lung cancer stage from stage I until 

IV. The symptoms of lung cancer are likely to appear more when the stage is higher. 

While symptoms listed below have been chosen based on the cluster sampling method by 

doctors and nurses in UiTM Hospital which clustered the information from all types of 

cancer, such as colorectal, lung, and breast cancer. The questions addressed eleven factors 

except for cancer stages. Not only have the symptoms been faced by most lung cancer 

patients in the data collection, but they also mainly were stated by past researchers that 

studied the symptoms of lung cancer. The study of past researchers' findings on the chosen 

lung cancer symptoms will be elaborated more in Chapter 2.  

Table 1.1: Description of data 

No Variable name Variable Type Note 

1 Tumor size Quantitative discrete with 

Minimum size = 30mm and 

Maximum size = 100mm 

Size of tumor by patient 

2 Gender Qualitative binary with Female 

and Male 

Gender of patient 

3 Age Quantitative discrete with 

Minimum age = 47 and 

Maximum age = 95 

Age of patient 

4 Ethnic Qualitative categories with 

Malay, Chinese, Indian and 

Non-citizen 

Ethnic of patient 

5 Cough Qualitative binary with Yes and 

No 

Symptom faced by patient 

6 Haemoptysis Qualitative binary with Yes and 

No 

Patient who suffers from 

coughing up blood from the 

lungs or bronchial tubes 
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