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ABSTRACT

The Weibull, log-logistic and log-normal distributions represent the heavy-tailed
distributions that are often used in modelling time-to-event data. While the loglogistic
and log-normal distributions are mainly used for modelling unimodal hazard
functions, the Weibull distribution is well-known for modelling monotonic hazard
rates. The commonly applied estimation technique for this class of model is the
Maximum Likelihood Estimator (MLE). However, previous studies have established
the inadequacy of this technique for the exponentiated class of models, such as the
exponentiated-Weibull model. Thus, in this thesis, we revisited the parameter
estimation for the exponentiated-Weibull model class by introducing a new Bayesian
technique called Variational Bayes. We considered the case of accelerated failure time
(AFT) exponentiated-Weibull regression model with covariates. The AFT model was
developed using two comparative studies based on real-life Lung cancer and
simulated datasets. The AFT model parameters were estimated using the MLE,
Bayesian Metropolis-Hasting and Variational Bayes procedure. The data calibration
results showed that the exponentiated Weibull regression adequately describes the
time-toevent data. In addition, the Variational Bayesian procedure was found to be the

most efficient among the three estimation techniques considered.
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ABSTRAK

Pengagihan Weibull, log-logistik dan log-normal mewakil 1 taburan penghujung yang
sering digunakan dalam pemodelan data masa ke peristiwa. Walaupun taburan
log-logistik dan log-normal digunakan terutamanya untuk pemodelan fungsi bahaya
unimodal, taburan Weibull terkenal dengan pemodelan kadar bahaya monotonik.
Teknik anggaran yang biasa digunakan untuk kelas model ini ialah Estimator

Kemungkinan Maksimum (MLE). Walau bagaimanapun, kajian terdahulu telah
menubuhkan kekurangan teknik Ini untuk kelas model eksponen, seperti model
eksponen-Weibull. Oleh Ttil, dalam tesis ini, kami menyemak semula anggaran

parameter untuk kelas model eksponen-We Ibull dengan memperkenalkan teknik

Bayesian baru yang dipanggil Variational Bayes. Kami menganggap kes masa

kegagalan dipercepatkan (AFT) model irgres I eksponen-We Ibull dengan covariat.
Model AFT dibangunkan menggunakan dua kajian perbandingan berdasarkan kanser
paru-paru kehidupan sebenar dan set data simulasi. Parameter model AFT

dianggarkan menggunakan prosedur MLE, Bayesian Metropolis-Hasting dan
Variational Bayes. Hasil penentukuran data menunjukkan bahawa regres I Weibull

yang diekspasi menerangkan data masa ke acara dengan secukupnya. D I s amping I tu,
prosedur Variational Bayesian didapati paling cekap di antara liga teknik anggaran

yang dipertimbangkan.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

The Weibull, log-logistic and lognormal distributions are the most popular parametric
time-to-event models (Kalbfleisch and Prentice, 2011). Due to modelling simplicity
and common framework, these distributions are commonly applied in the time-to-
event analysis. Common framework implies that the distributions share a similar
log-location-scale family (Lawless, 2003) for statistical inference. Also, the ability
to model day-to-day commonly seen survival data is often considered. The primary
consideration is the ability to implement the procedures on standard off-shelf softwares
readily. The commonly applied distributions for unimodal hazard shapes are log-
logistic and log-normal, while the Weibull is often used when posed with monotone
hazard functions (Lawless, 2003). Prentice (1973) as shown in Table 1.1 presents a
typical structure of time-to-event data for the Lung cancer dataset; a full description of
variable names can be found in Appendix B.

Ghinolfi et al. (2014) discussed the several extensions of the Weibull and log-
logistic distributions that have been proposed for primarily fitting several forms of

flexible hazards shapes. An example of such extension is the Exponentiated Weibull



(EW) distribution which generalizes the Weibull by adding an extra shape parameter
(Mudholkar et al., 1995). The EW model simultaneously achieves flexibility and
simplicity by accommodating both monotone (increasing and decreasing) and non-
monotone (unimodal and bathtub shape) failure functions by introducing additional
shape parameters. As this is a generalized approach, it can be used to confirm
the adequacy of Weibull distribution, especially when the newly introduced shape

parameter approaches unity.

Table 1.1: Survival of Patients with Advanced Lung Cancer from North Central
Cancer Treatment Group (NCCTG) Minnesota, USA

Patientid inst time status age sex ph.ecog ph.karno patkarno meal.cal wtloss

1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0

6 12 1022 1 74 1 1 50 80 513 0

7 7 310 2 68 2 2 70 60 384 10
8 11 361 2 71 2 2 60 80 538 1

9 1 218 2 53 1 1 70 80 825 16
10 7 166 2 61 1 2 70 70 271 34

Table 1.1 presents a typical structure of time-to-event data for the Lung cancer
dataset according to Prentice (1973). The data were on survival of patients with
advanced lung cancer from the North Central Cancer Treatment Group (NCCTG),

Rochester, Minnesota, United States.

1.2 Problem statement

The three-parameter generalized gamma distribution (Stacy et al., 1962) can also be
used for modelling the four common types of hazard shapes. As suggested by Cox
and Matheson (2014), the EW distribution was found to be a promising substitute
to the generalized gamma distribution. Thus, an in-depth analysis of the distribution
was sought to explore its capability in modelling lifetime data. The early application

of EW distribution was made by Mudholkar ez al. (1995) in the analysis of survival



data, and Pewsey et al. (2012) described likelihood-based inference for the class of
power distributions that include the EW as a special case. The data sets on hazard
times do not typically include only observed information on the time-to-event (7") and
censoring status, but also on covariates. These in-turn posed the need to develop robust
regression models to understand the existing relationship between the response, 7', and
one or more covariates which may affect the distribution of 7. A Bayesian study of
EW distribution was first developed by Cancho et al. (1999), while a modification of
the Log-Exponentiated-Weibull regression model within the Bayesian framework was
proposed by Cancho et al. (2011) to specifically address cure rate.

In recent times, Khan (2018) provided an in-depth analysis of Accelerated
Failure Time (AFT) EW regression models by using teh Maximum Likelihood
Estimation (MLE) approach and Bayesian Markov Chain Monte-Carlo (MCMC)
techniques. However, no study has evaluated the performance of the variational Bayes
approximation for the EW regression in comparison with the most used techniques
such as MLE and MCMC approaches. The variational Bayes approach is better than
MCMC techniques under mild regularity conditions Blei et al. (2017). In addition,
variational Bayes techniques are not limited in application to the Bayesian paradigm
alone i.e., one need not be a Bayesian expert before one can use variational Bayes.

Based on the aforementioned, we specifically focus on parametric regression
models that require a distributional assumption for 7" in the presence of covariates
vector x. We developed a variational Bayesian (VB) regression using the EW
distribution. The main reason for using EW relies on its generalizability to
accommodates both monotone and non-monotone hazard/failure functions, while
doing it an insignificant cost of only estimating one extra parameter. The performance
of the VB method is evaluated by comparing it with the MLE and Bayesian MCMC
(Metropolis-Hasting techniques) using simulation and Lung cancer datasets used in

Khan (2018).



1.3  Research objectives

The objectives of this research are to:
i develop the maximum likelihood estimation procedure for Accelerated Failure
Time (AFT) EW survival regression model.
ii develop Metropolis-Hastings posterior sampling procedure for Accelerated
Failure Time (AFT) EW survival regression model.
iii develop Variational Bayesian (VB) procedure for Accelerated Failure Time
(AFT) EW survival regression model.
v compare the performances of the procedure in objective 1 - 3 using simulated

and lung cancer survival data.

14 Significance of study

This study is significant in the application of Bayesian and frequentist techniques for
the estimation of monotone and non-monotone hazard functions of time to event data

using EW distribution.

1.5 Scope and limitation

This study covers the survival analysis of monotone and non-monotone hazard
functions of time-to-event data by using EW distribution. In addition, only right-
censored survival datasets were used to test the distribution fitness and efficiency

respectively.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents a brief intoduction to time-to-event data, reviewed the
exponential Weibull distribution regression model, Bayesian modelling and Bayesian

computational techniques.

2.2 Time-to-event data

Multi-state models describe how individuals move between a finite number of states.
The simplest example is the survival model with one transient state '0: alive’ and
one absorbing state *1: dead’. This model is characterized by the distribution of the
survival time 7', representing the time from a given origin (time 0) to the occurrence
of the event ’death’. The distribution of 7" may be characterized by the distribution
F(t) = Prob(T < t) or equivalently, by the Survival function S(t) = 1 — F(t) =
Prob(T < t). Itis seen that S(t) and F'(¢), respectively, correspond to the probabilities
of being in state 0 or 1 at time ¢. If every individual is assumed to be in state O at the
time 0 then F'(¢) is also the transition probability from state O to state 1 for the time

interval from 0 to ¢. In continuous time, the distribution of 7" may also be characterized



by the hazard rate function a(t) = —(dlog S(t))/dt, thatis, S(t) = exp(—A(t)) with
A(t) = [ a(u)du (Khan, 2018).

23 Exponential Weibull distribution regression model

The recent updates in modelling time-to-event data have focused on mixing two
distributions or adding extra parameters to the existing distribution. The commonly
applied models in the time-to-event analysis are exponential (Poisson), Weibull,
gamma, and lognormal. The approach of adding extra parameters adds to the flexibility
and has a better fit in modelling failure rates data (Pasari and Dikshit, 2015). The
majority of these distributions have originated either from the domain of reliability
engineering or biological sciences, where the specific interests are to estimate the
elapsed time (time elapsed since failure) and the residual time (time remaining to
failure) of a product.

(Pasari and Dikshit, 2018) reported that the Weibull distribution is the most
popular and general probability model used in the time-to-event analysis. The Weibull
distribution and its substitute distribution such as Gamma and Lognormal have been
applied in many time-to-event modelling tasks. However, even with the flexibility and
extensive application of the two-parameter or the three-parameter Weibull distribution,
it still does not offer the non-monotonical failure rate shapes often observed in (medical
sciences; survival analysis, cure rates etc.) or engineering (reliability, equipment
failures).

In lung cancer survival analysis, there are three major stages: stage 1 (tumour
development), stage 2 (organ damage or lung failure) and stage 3 (extension of tumour
to other body parts) (Khan, 2018). These stages or phases are similarly experienced in
engineering/human as early failure (infant mortality), intrinsic failure (random hazard)
and wear-out or late failure (ageing hazard). These hazard shapes are also regarded as
bath-tub failure shapes. Thus, monotonical hazard shape distribution is not adequate

for such data type. These main drawbacks were the main reason the EW (EW) was



proposed among several competing generalized distributions for modelling bath-tub
shape time-to-event data.

The earlier development of EW can be traced to Mudholkar and Srivastava
(1993) who introduced an extra shape parameter to the existing two-parameter Weibull
distribution. The strength of the EW family is its ability to accommodate monotonical
as well as non-monotonical failure functions, such as the unimodal-shaped and the
bathtub-shaped ones (Mudholkar et al., 1995). From the time it was proposed, the
EW and its several extended versions have been applied to a wide area of practical
applications, such as environmental flood data analysis (Nadarajah, 2009), bus motor
failure (Mudholkar et al., 1995), human mortality testing (Bebbington et al., 2007) as
well as survival analysis of head and neck cancer patients (Mudholkar et al., 1995).

More recently, Mansour et al. (2020) worked on the generalization of EW
distributions in Copula modelling. Their paper introduced and studied, a new flexible
version of the EW model. The new model generalizes many new and well-known
models. The new models were motivated through the introduction and studying of
its density, which exhibits various important shapes such as decreasing, unimodal,
bimodal, inverse-N shaped, right-skewed and left-skewed. The failure rate of the
proposed model is very attractive to define many special models with different types
of failure rates such as decreasing, increasing, unimodal, N-shaped and bathtub shaped
hazard rates. The maximum likelihood method was employed to estimate the unknown
parameters.

El-Din et al. (2020) worked on Bayesian inference on progressive-stress
accelerated life testing for the EW distribution under progressive type-II censoring.
In their paper, a progressive-stress accelerated life test (ALT) under progressive type-
II censoring is considered. The cumulative exposure model is used when the lifetime
of test units follows the EW distribution (EW). Moreover, the maximum likelihood
estimates (MLEs) and Bayes Estimates (BEs) of the model parameters are obtained.
Furthermore, the estimators’ approximate and credible confidence intervals (Cls) are

derived. The accuracy of the MLEs and BEs for the model parameters is investigated



through simulation studies. Finally, the simulation studies are used to compare two
different designs of the progressive-stress test (simple ramp-stress test and multiple
ramp-stress test). In most cases, the BEs estimates were found to be more consistent
and efficient than MLEs.

Cheema and Aslam (2020) studied Bayesian analysis for the 3-component
mixture of EW distribution assuming non-informative priors. In their paper, Bayesian
analysis of 3-component mixture model, of EW distribution under type-I right
censoring scheme, is explored. With the help of non-informative (uniform and
Jeffreys) priors and loss functions (e.g., squared error loss function, quadratic loss
function, precautionary loss function and DeGroot loss function), Bayes estimators
and posterior risks are derived. The Bayes estimators and posterior risks are observed
as a function of the test termination time. A simulation study as well as a practical

example, is given in this study.

2.4  Review of Bayesian modelling

The general procedure for estimating unknown parameter 6 defined over a functional
model f about data D using Bayesian techniques involves the specification of the data
likelihood and prior (Gelman et al., 2013). The maximum likelihood method is a
frequentist-based procedure. Frequentist-based method of the opinion that unknown
parameters are fixed while the dataset to be used in estimating them is random. Thus,
it implies that the frequentists procedure focused on estimating the data likelihood
f(D), pretending that the parameter only depends on the data at hand.

Gelman et al. (2013) defined this type of probability p(D|0) as the likelihood of
the parameter after observing a set of random samples. On the other hand, the Bayesian
expert believes the parameter 6 is random while the data D is fixed. The important
probability in Bayesian inference is the posterior distribution defined as p(6|D). This

probability distribution is

p(o|D) = L2 2P @1



where p(6) is simply referred to as the prior distribution while p(D) is the observed
data samples (Lesaffre and Lawson, 2012). The denominator p(D) = [ p(D|0) x
p(0)dl is usually referred to as marginal probability or normalizing constant which
ensures [ p(6|D) = 1. This denominator is usually dropped in most Bayesian analysis
such that the proportionality constant subsumes the equality sign. Thus, p(0|D) is
obtained using:

p(0|D) o p(D|6) x p(6) (22)

Equation (2.2) shows that the p(6|D) can be expressed as the product data likelihood
and prior distribution (Gelman et al., 2013). In real-life analysis, Bayesian statistics
involves the combination of prior distribution and data likelihood when drawing

statistical inferences.

2.4.1 Prior distribution

According to Lesaffre and Lawson (2012), the prior distribution is regarded as
an essential aspect of Bayesian analysis and in fact the main distinction between
frequentist and Bayesian statistical inference. There are primarily two classes of prior
distributions namely informative and non-informative priors (Gelman et al., 2013;
Lesaffre and Lawson, 2012; Lee, 2012).

The on-informative prior distributions also known as flat or vague or diffuse,
contribute minimal information to posterior inference. According to Gelman et al.
(2013), posterior distributions are known to be responsive to the type of prior
distribution used. It was further recommended that non-informative should only be
used when prior information is difficult to be elicited. Non-informative priors are
sometimes known as objective Bayes (Rouder et al., 2009).

On the other hand, informative prior also known as the subjective Bayesian
approach is based on the process of elicitation of priors from related past data or expert
opinions. Informative priors play significant roles in posterior distribution estimation

and generally in Bayesian inference (Gelman e al., 2013).
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The conjugate prior, Jeffrey’s prior and data-induced prior are other commonly
prior in Bayesian inference (Gelman et al., 2013; Ibrahim et al., 2001). Robbins (1956)
introduced data-induced prior and it was defined as Empirical Bayes (EB) method.
The process of estimating the prior hyperparameters using the actual data is termed
EB (Lee, 2012). Generally, EB methods are usually classified into two; parametric and
non-parametric (Lee, 2012). The parametric EB techniques involves the estimation of
prior hyperparameters using the denominator of the posterior formula i.e., p(D).

Furthermore, within EW distribution, Ali and Kanani (2021) worked on
Bayesian Methods to Estimate the Parameters of EW Distribution. Their paper
introduced some properties of the EW distribution. Tierney and Lindely estimator
methods are proposed to estimate all the unknown parameters («, 5,7) of the EW
distribution. The simulation procedure is used to generate some sample sizes and mean
squares error (MSE) measure, and when we compared between the above two methods,
we found that Tierney method has the less (MSE).

Yoon-sik and Sang-hoon (2020) worked on Bayesian Estimation of Inverted
EW Distribution under Progressive Type 11 Censoring with Binomial Removal. Their
paper conducted the experiment to estimate the three parameters of the inverted EW
(IEW) distribution. The prior distribution of the model parameters is the gamma
distribution. The tests are carried out under progressive Type II censoring with
binomial removal.

Maximum likelihood estimates (MLEs), Bayes estimates are obtained by the
Newton-Raphson algorithm and the Bayes methods. Also, we take the survival
function and the hazard function of the IEW model. The Bayesian estimates
are derived by the hybrid Markov chain Monte Carlo (MCMC) method using
Gibbs sampling with Metropolis-Hastings algorithm and Tierney and Kadane (T-
K) approximation. Bayes procedures have loss functions such as the squared error
loss (SEL) and the balanced squared error loss (BSEL) function. To compare
the proposed method results, some simulation experiments are performed with the

different censoring schemes.
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2.4.2 Bayesian computation

The Bayesian analysis procedures involves sampling from the posterior distribution.
It is easy to achieve if the posterior distribution is easy to compute such that the
posterior distribution has a closed-form expression. This case often occurs if the prior
distribution is a conjugate of the posterior such that the prior and posterior distribution
belong to the same family of distribution. However, as observed in most medical and
engineering problems, posterior estimation is usually difficult to estimate. In most
situations, the resulting way out is to use the Markov Chain Monte Carlo (MCMC)
sampling algorithms (Lesaffre and Lawson, 2012; Lee, 2012). According to Lesaffre
and Lawson (2012), popular MCMC procedures are the Gibbs sampler and Metropolis-

Hastings algorithm.

2.5  Metropolis-Hastings algorithm (MH)

The Metropolis-Hastings algorithm is a widely used Markov chain Monte Carlo
(MCMC) algorithm that allows generating samples from a target distribution that is
difficult or impossible to directly sample from. The algorithm was first proposed by
Nicholas Metropolis et al. in 1953 and later extended by Nicholas Hastings in 1970
(Hassan and Alharbi, 2023; Alexopoulos et al., 2023; Du et al., 2022; Wang and Nishi,
2022). The Metropolis-Hastings algorithm generates a sequence of samples from a
target distribution using a proposal distribution, which is a distribution that is easy to
sample from. The algorithm proceeds as follows:

1 Initialize the algorithm with an initial state x.

ii For each iteration ¢, generate a candidate sample y from the proposal

distribution ¢(y|x;_1).

iii Compute the acceptance probability a(x;_1,y), which is defined as:

(2.3)

(211, y) = min <17 p(y)a(zi-1ly) >

p(@e-1)q(y|zi-1)
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where p(x) is the target distribution and ¢(x|y) is the proposal distribution.

v Generate a uniform random variable u from the interval [0, 1] and accept the
candidate sample with probability «(x;_1,y) if u < a(x;_1,y). If the candidate

sample is rejected, set z; = z;_1; otherwise, set x; = y.

The algorithm generates a sequence of samples x4, s, ..., x,, which can be
used to estimate the moments of the target distribution. The algorithm is guaranteed to
converge to the target distribution as the number of iterations goes to infinity, provided
that the proposal distribution satisfies certain conditions (Alexopoulos et al., 2023; Du
et al., 2022; Wang and Nishi, 2022).

One important aspect of the algorithm is the choice of the proposal distribution.
A good proposal distribution should have a high acceptance rate, which can be
achieved by choosing a distribution that is similar to the target distribution. However,
it should also be easy to sample from, which can be achieved by choosing a simple
distribution that covers the support of the target distribution (Alexopoulos et al., 2023;

Du et al., 2022; Wang and Nishi, 2022).

2.6  Variational Bayesian approximation

The aim of proposing the variational Bayesian inference is to provide an approximate
approach for computing the conditional density of posterior parameters given the
observed random samples. The main procedure involves solving the tasks using an
optimization technique. Firstly, a family of distribution is defined for the desired
unknown parameters which are to be estimated. The next step involves using the
optimization procedure to determine the most plausibility values for the parameter set.
The Kullback-Leibler (KL) divergence is the optimization criteria which minimum is
sought when determining plausible values for the parameter of interest. The resulting
fitted variational Bayesian density is then used as a reference point for the desired
conditional density.

The earliest introduction of variational techniques for Bayesian inference

can be traced to two different originating tracks. Anderson and Peterson (1987)



13

is undoubtedly the first variational procedure developed for the neural network
technique. The paper alongside contributions from statistical mechanics gave birth
to different shades of variational inference procedures for other classes of models. In
another work by Hinton and Van Camp (1993), another form of variational Bayesian
inference was proposed for the neural network model. A significant linkage between
variational Bayes and the expectation-maximization approach (Dempster et al., 1977)
was established by Neal and Hinton (1998). This exploration led to the recent
development of several forms of variational Bayes algorithms for several models seen
today (Blei et al., 2017).

Recent studies on variational Bayesian inference focus on several aspects
which are: involving Bayesian inference tasks that includes Big data (Blei et al., 2017),
using hybrid optimization methods for solving Kullback-Leibler (KL) divergence
(which is usually subject to local minima); developing generic variational inference,
algorithms that are easy to apply to a wide class of models; and increasing the accuracy
of variational inference, e.g., by stretching the boundaries of () while managing

complexity in optimization .



3.1

CHAPTER 3

RESEARCH METHODOLOGY

Introduction

This chapter introduces the methodology presented in this thesis. These components

consist of the research process, research framework, the dataset to be used and

presentation of the variational Bayes procedure for estimating the parameters of

Exponentiated Weibull (EW) distribution.

3.2

Research process

The research process covers the following stages:

i

ii

iii

v

Literature review analysis.

Model design: presentation of maximum likelihood procedure, Metropolis-
Hastings approach and development of variational Bayes procedure for
estimating the parameters of Exponentiated Weibull (EW) distribution.
Implementation of the variational Bayesian method for estimating the
parameters of Exponentiated Weibull (EW) distribution.

Performance comparison between maximum likelihood, Metropolis-Hastings
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and variational Bayes procedure for estimating the parameters of Exponenti-

ated Weibull (EW) distribution.

33 Research framework

The research framework is a structure that constitutes the overall flow process of
the research as represented in Figure 3.1. The framework presents three essential
stages, namely; (1) modelling time to event data using EW distribution, (2) AFT
EW regression model parameter estimation using maximum likelihood estimator,
Metropolis-Hastings and Variational Bayes approach, and (3) simulation strategy, real-

life data application to lung cancer data and performance comparisons results.
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Figure 3.1: Research framework
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3.4  Data descriptions

3.4.1 Simulated data

In this study, we simulated two covariates using an AFT regression framework:
the first covariate will be continuous covariate (z;) which will follow the standard
normal distribution, and the other covariate (x5) will be a binary that will follow a
Bernoulli(m = 0.5) distribution. The regression coefficient values are set to mimic
the real-life dataset MLE estimated values for variables Karnofsky performance score
(100=good) and treatment is @ = [0* = (0 = 3.5742793,0; = 0.7547705,05 =
—0.1052200), 7 = 1/0.5868033, v = 3.0987992|. The parameter vector corresponds
to the covariate vector z = (1, x1, z3). The simulation process is made realistic using
different censoring proportions simulated from an Exponential distribution. Although,
the censoring proportion in the original dataset is 7%, we examine the behaviours of
the methods at varying censoring proportions. The following censoring proportions
10%, 20%, 30%, 40% and 50% which connote light to heavy censoring conditions are
used.

The formula for the performance metrics of the various methods are as provided

below:

Bias =6 — 0 (3.1)

(3.2)

(3.3)
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I <é — Z0.025 X SE(@) < 9) ﬂ <é + ZO.975 X SE(@) > 0)
95%CP =y 7

i=1

(3.4)

where C'P is coverage probability, Z;_,/; is the quantile of standard normal
distribution at the desired significance level, I is the number of replication of each

simulation runs which is set as / = 200. The sample size n was fixed at n = 137.

3.4.2 Real life lung cancer dataset

Prentice (1973) originally described a randomized clinical trial that involved 137
advanced lung cancer patients treated with a standard chemotherapy agent or a
controlled drug (Khan, 2018). The time to event was recorded from the study inception
for each patient. Nine patients were censored as their event times were not known
till the end of the study. The specific objective was to determine the cure rate of
the chemotherapy on different tumour cell types. The four different tumour cells
are classified squamous, small, adeno and large. The other variables considered are
performance status, months between diagnosis and entry into the study, age, and a

history of previous therapy for lung cancer.

3.5  Exponentiated Weibull distribution

The Exponentiated Weibull distribution (EW) was developed by Mudholkar and
Srivastava (1993) as an extension to the two-parameter Weibull distribution. The
EW family distributions are designed to accommodate both non-monotonically and
monotonically hazards. In most lifetime data analysis applications, the bathtub shape
or downward bathtub shape hazard are often observed thus suggesting the EW’s
applicability for modelling hazards compared to standard Weibull distribution. This
is where the EW plays a significant role in hazard modelling. The EW has two shape

parameters and one scale parameter; thus, the probability density function (pdf) by
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Khan (2018) takes the form:

F(8) = apy (8" (1 — exp[=(88)°])" " exp[— (1)), (3.5)

and the cumulative distribution function by Khan (2018) is:
F(t) = (1 —exp[—(B)"])", (3.6)

where ¢t > 0 is the support of the distribution, and « > 0, § > O and v > 0
are parameters. Note that v = 1 reduces the exponentiated Weibull to the Weibull

distribution for which the probability density function is

J(t) = aB(Bt)* " exp[—(Bt)"], (3.7

The rth moment of the exponentiated Weibull distribution does not have a closed-form

expression. However, Khan (2018) derived the median survival time as:

M(t) = %[— log <1 - o.5i>] . (3.8)

The survivor function, hazard function and cumulative hazard function of the

exponentiated Weibull distribution are, respectively,

S(t) =1 — (1 —exp[=(51)")", (3.9)

apBy(BH) (1 — exp[—(81)7])" exp|—(81)°]
"= 1= (1 o= (°]) B

H(t) = —log{l - (1- exp[—(/ﬁt)a])”}, (3.11)

The hazard is (a) monotone increasing for « > 1 and ay > 1, (b) monotone decreasing
for « < 1 and ay < 1, (¢) unimodal for & < 1 and ay > 1, and (d) bathtub-shaped

for a > 1 and ary < 1 (Khan, 2018).
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3.6  Accelerate Failure Time exponentiated Weibull regression model

Consider an ordinary regression model for log survival time 7, of the form
Y =logT = 2'0 + oW, (3.12)

where © = (21,22 ....x,) is a column vector of p covariates, and § = (6,,6,,...,6,)
is the corresponding vector of regression coefficients, the error term W has a suitable
distribution, e.g., extreme value, generalized extreme value, normal or logistic. This
leads to Weibull, generalized gamma, log-normal or log-logistic models for 7". For
example, if IV is an extreme value, then 7" has a Weibull distribution with log A = 26
and p = % Note that A depends on the covariates. However, p is assumed the same for
everyone.

This model has an accelerated life interpretation. This formulation views the
error term oW as a standard or reference distribution that applies when x = 0. It
will be convenient to translate the reference distribution to the time scale by defining
To = exp{oW}.

For EW AFT regression models with Y = logT’, the corresponding density

and survival functions are:

Fly) = ;—V<1 _ exp{—exp [(y - u)} })W—lexp{(y;_“) — exp [(y_T“)] }

(3.13)
and
_ Y
Sy)=1- (1 — exp{—exp [u] }> (3.14)
T
where —co < y < oo, yt = —log 3 and 7 = a~!. In the AFT regression framework,

the assumption is that the probability of an individual (with covariates z) surviving to
time ¢ is the same as the probability of a reference individual (i.e., x = 0) surviving to
time ¢ exp(2'0) (Jibril er al., 2023). Formally, S(t;x) = Sy(t exp(z’0), where So(A)

1s the baseline survivor function. This formula refers to the fact that the covariates act
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multiplicatively on time so that their effect is to accelerate (or decelerate) the time to
failure (Jibril et al., 2023). If we start with the exponentiated Weibull baseline survivor

function, we get

S(t)=1— (1 —exp{—[Btexp(2'0)]*})" =1 — (1 —exp[-[8*t]*])"  (3.15)

which is also an exponentiated Weibull survivor function with f* = Sexp(x'f). It
shows that the exponentiated Weibull is closed under the AFT family. If we let 7, be
an exponentiated Weibull random variable corresponding to the lifetime when z = 0,
the survivor function of 7j is of the form Sy(.). Then, Ty = T exp(z’'6) trom (3.15).

By taking the logarithm of both sides of Equation (3.15), we get

Y =0, —2'0+71W; (3.16)

where 0y = —log 3, 7 = o~ ! and Y = logT" which follows (3.13) and a = 6, — 2’0

and W = (log Ty — 6y) /7 is the random error component which is distributed as

flw) =~[1—exp (- 6“')}7_1 exp (w —¢”), —o0 < w < 0. (3.17)

Now, if we rewrite 8* = (6y, —01,...,—6,) and ¥ = (1,2’)’, we get another simpler
regression model

Y = 270" + 7V, (3.18)

3.7  Maximum likelihood estimation of right-censored accelerated failure time

exponentiated Weibull regression model

Suppose we have a right-censored random sample consisting of data (y;, §;, x}), i =
1,2,...,n, where y; = logt; is a log-lifetime or log censoring time according to
whether §; = 1 (if the event occurred at ¢ = ¢y) or ; = O (if the event occurred

at t > tp), respectively. The log-likelihood function of the exponentiated Weibull
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regression model by Jibril ez al. (2023) can be written as

1(0) =rlogy—rlogT+ Z 3il(y— 1) log a; + (w; — e™)] + Z(l —0;)log(1 —a))
i=1 i=1

(3.19)

where 8 = (7,7,0"), r = 3" &, wi = (yi — 2%0*)/7 and a; = 1 — exp(—e™?).

Suppose we let b; = (1 — a;) log(1 — a;) and define

9i = 8;5:? (3.20)

awl{;ﬂ 1)log a; + (w; — €® ]+Z (1—6)log(1 —a])} (321

— (1) (‘Z’ ) 46,1+ log(1 — a))] + 7[(1 _af")bi] <1 fz(ﬂ). (3.22)
Subsequently, the score functions of other parameters are

% - ‘£ A % :1 giw; (3.23)

%’f) = % + ; 5 log a; — g(l — ) (%) (3.24)

8(;25) = —% :1 9irij, ) =0,1,2,...,p. (3.25)

The score functions are then solved numerically using the Newton-Raphson procedure

to estimate the parameters accurately.

3.8  Metropolis-Hastings Approach for accelerated failure time exponentiated

Weibull regression model

In this section, we discussed the Bayesian estimation of the parameters of EW. We use
the uninformative Uniform (¢, d) prior since no prior information or elicitation may be
difficult. Also, since there are three parameters, we suggest three independent Uniform

(¢, d) distributions. The joint density function for the prior of the three parameters
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0 = (7.7,0*) can be defined as:

3
F(T,7,07)ex, du; e, da; s, ds) = [ [ (dk — ex) ™ (3.26)
k=1

where ¢y, dy; ¢a, do; c3, d3 are the prior hyperparameters for the parameters 7,7, 8" .
The posterior distribution of the three parameters 7, -y, 6*' for the EW model can be

defined as the product of the likelihood L(@) and the prior density which is:

f(8ly) = L) x [ [(dx — i)™ (3.27)

k=1

The posterior distribution in (3.27) does not have a closed-form as it is an approximate
distribution since the marginal distribution that ensures its scale to one has been
dropped. One of the ways of sampling from this distribution is by using the Metropolis-
Hastings algorithm (Jibril et al., 2023). The metropolis-hastings procedure for the
EWD AFT regression model is:
i Initialize ©° such that p(©°|y) > 0.
1 Fori=1,2,...
il Take a random sample © from a preferred proposal distribution (Preferably
lognormal distribution).
v Compute the accept/reject or moving probability by; taking a random sample
U ~ U(0,1) and computing
6 ifU <n(0),0);

@i+1 —
O if U > m(0,0).

3.9  Variational Bayes approach for accelerated failure time exponentiated

Weibull regression model

Suppose we let x = x1., represent a collection of observed variables and z = 2.,

represents collection of latent variables, with joint density function p(z,z). As
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explained earlier in chapter 2, the constant of proportionality can be omitted. The
inferential problem thus involves the computation of the conditional density for the
latent variables using the observations, p(z|z). Using conditional density, the point
and interval estimates of the latent variables can be estimated (Jibril et al., 2023). The

conditional density is often presented as

p(z|z) = (3.28)

The denominator part of p(z|x) is referred to as the marginal of the random
sample observed. It is usually calculated by integrating out the parameter of interest

from the joint density,

p(zr) = /p(z,x)dz. (3.29)

In most models, this marginal density is usually not available or computationally
expensive. The marginal density is required to calculate the conditional from the joint
density and thus the main reason variational inference is difficult (Jibril et al., 2023).

It is worthy of note that it is assumed that the unknown parameter values are
random. These parameters encompass all that covers the data as often done in other
Bayesian analyses. The parameters are also local to each observed data point (Jibril
etal., 2023).

Now in the case of the EW regression model, the desired posterior distribution

is
_ LBy, x)p(0)
[ L(6y, z)p(6)

p(Bly, ) de (3.30)

By variational inference, we want to approximate p(€|y, =) in 3.30 with a ¢(8)

by constructing the equality

L(0]y, x)p(0)

e (331
q(0) 53D

q(0)
do + / q(6) lnp

i [ 20l.20(0) = [ a(o)m 01y,
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Next, we define ¢(0) as the product of independent densities using the mean-

field assumption given as

q(0) = q(v)q(7)q(0") (3.32)

The variational objective L is then computed as:

L= /q(O) In L(8|y, x)dO — /q(@) Inq(0)do (3.33)

L= / <rlog~/—rlog7'—|—25[ —1)loga; + (w; — €™)]

=1

+Z (1—6)log(1 —d ))d'ydeG*

- / a)a(r)a8”) Ina()a(r)a(®” )i drdo”
(3.34)

Equation (3.34) is iterated until convergence is achieved (Jibril et al., 2023).



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, an empirical evaluation of the proposed method Variational Bayes
(VB), Maximum Likelihood Estimation (MLE) and Metropolis-Hastings (MH)
procedures was achieved using simulation and real-life dataset on Lung cancer
treatment. The estimation methods were compared based on Bias, Standard Error or

Standard Deviation, Mean Square Error and Coverage probability.

4.2 Simulation study results

This section presents the results of the simulation study described in chapter three.
Table 4.1 results show that the estimates returned using the VB method is more
consistent with the true value when compared to the other two methods. The estimates
using MH are better than MLE estimates in terms of bias and consistency. Overall, the
MLE estimate is inconsistent with the true value at high censoring proportions. Table
4.1 presents the simulation results for varying censoring proportions at fixed sample

size n and replication set to be 200.
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The results in Table 4.1 underscore the importance of choosing the appropriate
estimation method when dealing with censored data. The VB method stands out as a
robust and consistent choice, even under high censoring proportions. The MH method
also offers advantages over MLE, emphasizing its suitability in scenarios involving
incomplete data. These findings equip researchers with valuable insights into selecting
the most suitable estimation method based on the characteristics of their data, ensuring

the accuracy and reliability of their analyses.

Table 4.1: Simulation results for the estimates and bias over various censoring
proportions p.

Censoring Estimates Bias
TRUE MLE MH VB MLE MH VB

05 3.574 3438 3361 3.634 -0.137 -0.213 0.060
7 0755 0747 0.742 0.752 -0.008 -0.013 -0.003
p=01 063 -0.105 -0.094 -0.106 -0.086 0.011 0.000 0.020
o 0587 0.606 0553 0.595 0.019 -0.034 0.008
v 3.099 4729 4127 3.242 1.630 1.028 0.143

; 3574 3441 3451 3736 -0.133 -0.123 0.162
6r 0755 0747 0745 0750 -0.008 -0.010 -0.005
p=02 g 0105 -0.096 -0.084 -0.091 0009 0022 0.014
a 0587 0593 0551 0583 0006 -0.036 -0.004
N 3099 5032 4103 3247 1933  1.004 0.148

6; 3574 3467 3.624 3816 -0.108 0.049 0.241
6: 0755 0750 0759 0.754 -0.005 0.004 -0.001
p=03 g 0105 -0091 -0.065 -0.076 0014 0.041 0.029
a 0587 0581 0569 0562 -0.006 -0.018 -0.025
Ny 3099 5319 3954 3287 2220 0.855 0.188

05 3.574 3445 3757 3942 -0.129 0.183  0.367
07 0755 0745 0.755 0.749 -0.010 0.000 -0.006
p=04 05 -0.105 -0.089 -0.066 -0.080 0.016 0.040 0.026
a 0587 0559 0540 0.547 -0.028 -0.047 -0.040
v 3.09 5796 3939 3318 2697 0.841 0.219

6; 3574 3.192 3943 4.052 -0383 0368 0477
6; 0755 0756 0.781 0.762 0001 0.026 0.007
p=05 g 0105 -0.103 -0.089 -0.094 0.003 0016 0.011
a 0587 0505 0562 0518 -0.082 -0.025 -0.069
N 3099 7.024 3990 3421 3.925 0.891 0.323
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Table 4.2 presents the three methods’ standard error/ standard deviation and
Mean Square Error (MSE). These metrics were used to assess the efficiency of the
methods. The various results over the different censoring proportions show that the
VB estimates are the most efficient. The MLE estimates are mostly inefficient for the
parameter y across the various censoring proportion. Table 4.2 results emphasize that
the VB method stands out as the most efficient choice for estimating the parameter ~y

across varying levels of data censoring.

Table 4.2: Simulation results for the standard error (SE) and mean square error (MSE)
over various censoring proportions p.

Censoring Standard Error MSE
MLE MH VB MLE MH VB

0 1.074 0508 0345 1.165 0302 0.122
% 0.108 0.127 0.098 0012 0016 0.010
p=01 05 0195 0259 0.94 0038 0067 0.038
a 0178 0.104 0.090 0032 0012 0.008
v 6328 1289 0.622 42501 2710 0.405

g; 1216 0531 0356 1488 0296 0.152
g7 0119 0.138 0.109 0014 0019 0.012
p=02" g 0208 0273 0204 0043 0074 0.042
a 0199 0189 0.099 0039 0037 0.010
v 6059 1295 0.618 40262 2.677 0.402

;5 1339 0538 0329 1796 0291 0.166
67 0120 0.137 0.108 0014 0019 0.012
p=03 9 0229 0280 0237 0053 0080 0.057
a 0221 0289 0.087 0048 0.084 0.008
v 5883 1.225 0.559 39360 2224 0.346

;5 1491 0525 0369 2228 0307 0.271
07 0132 0.156 0.119 0017 0024 0.014
p=04" 9= 0243 0302 0239 0059 0092 0.057
a 0238 0230 0.097 0057 0055 0.011
v 5955 1.179 0567 42.558 2.090 0.367

;5 1.605 0545 0310 2709 0432 0.323
07 0144 0.170 0.138 0021 0029 0.019
p=05 g 0260 0339 0258 0067 0.115 0.066
a 0264 0421 0.077 0076 0.177 0.011
v 6623 1.166 0457 59.050 2.147 0.312
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Figure 4.1: Average Bias of the estimates at varying censoring proportion.

Figure 4.1 shows that increasing the censoring proportion increases the
biasedness of the estimates especially for MLE. While the VB and MH exhibited some
form of robustness to increase in censoring proportion, the MLE estimates are not
robust, which suggests that they should not be used with high censored data. Similarly,
Figure 4.2 shows that the MLE estimates are inefficient for low to high censoring
proportions. The two Bayesian approaches MH and VB are highly efficient and
robust to low through high censoring proportion. The combined effects of consistency
and efficiency were measured using MSE. Similar behaviours as in variance of the

estimates were observed for MSE in Figure 4.3. Again, the most efficient, consistent
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and robust estimates are VB estimates. Robustness is determined based on the ability
of the estimator to withstand some level censoring by maintaining the same efficiency.
The maximum reasonable censoring is 0.5, becuase censoring implies missing data, if

censoring is greater than 0.5, it implies more than 50% of the data is missing. Thus,

the standadrd maximum threshold for censoring is 0.5.
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Figure 4.2: Average variance of the estimates at varying censoring proportions.
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Figure 4.3: Average Mean Square Error of the estimates at varying censoring
proportions.

Figure 4.4 presents the result for the 95% coverage probability. The expected
behaviour is that the estimates returned values that fall within the 95% confidence or
credible intervals 95% of time. The MLE estimates exhibited robustness to censoring
proportion here. While the coverage probability of MH increases with an increase in
censoring proportion until 0.4 before a sharp decline is observed, the VB exhibited
a downward trend from low to high censoring proportion. Although the estimated
coverage probability for MH and VB varies between 90% to 98%, the coverage
probability of MLE converges between 93% to 97%. It implies that approximately

95% of time MLE produces estimates that conform with nominal or target values while
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the estimates of MH and VB are less than the target by an error of 5% and more than

the target by an error of 3% on the average.
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Figure 4.4: Average Coverage Probability at varying censoring proportions.

4.3

Lung cancer survival data analysis

This section presents the analysis of the lung cancer dataset described in chapter three.

There were a total of 137 patiemts in the dataset. The time to event was recorded from

the study inception for each patient. Nine patients were censored as their event times

were not known till the end of the study. The specific objective was to determine the
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cure rate of the chemotherapy on different tumour cell types. The four different tumour
cells are classified squamous, small, adeno and large. The other variables considered
are performance status (karno), months between diagnosis and entry into the study

(diagtime), age, and a history of previous therapy for lung cancer (prior).

Table 4.3: Real-life data results for the various methods.

VB MLE MH

Estimate SD  Estimate SE Estimate  SD

(Intercept) 0.810 0.641 2787 0818 1.767  0.006
trt -0.170  0.202 -0.229 0.191 -0.237 0.091
celltypesmallcell  -0.838  0.235 -0311 0.255 -0.529 0.002
celltypeadeno -0.984  0.269 -0.657 0283 -0.641 0.063
celltypelarge -0.193  0.156 -0.123 0.262 0.160  0.066
karno 0.036  0.005 0.033 0.005 0.018 0.016
diagtime 0.002  0.010 -0.002 0.009 0.033 0.031
age 0.013  0.008 0.008 0.009 0.033 0.018
prior -0.011  0.025 0.002  0.022 0.039 0.049
a 0498 0.045 0975 0.161 1.937  0.058
0 4525 0822 1.136 0329  2.060 0.055

Table 4.4: 95% credible and confidence intervals for the estimates

VB MLE MH
25%LB 97.5%UB 2.5%LB 97.5%UB 2.5%LB 97.5%UB
(Intercept) -0.471 2.091 1.184 4.390 1.761 1.774
trt -0.574 0.233 -0.602 0.145 -0.321 -0.139
celltypesmallcell ~ -1.309 -0.367 -0.811 0.189 -0.531 -0.526
celltypeadeno -1.522 -0.446 -1.211 -0.103 -0.700 -0.573
celltypelarge -0.506 0.120 -0.636 0.390 0.099 0.231
karno 0.026 0.046 0.023 0.043 0.003 0.034
diagtime -0.019 0.023 -0.019 0.015 0.000 0.062
age -0.004 0.029 -0.009 0.026 0.014 0.050
prior -0.061 0.038 -0.041 0.044 -0.014 0.084
o 0.407 0.589 0.659 1.290 1.883 2.000
vy 2.881 6.170 0.490 1.781 2.000 2.110

Table 4.3 presents the three methods’ estimates and standard deviation (SD) or
error (SE). The two Bayesian methods (VB and MH) were found to be more stable

(efficient: lower standard deviation) than the MLE. In addition, the interval estimates
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presented in Table 4.4 showed that VB and MH methods returned more significant

estimates than MLE at 5% level of significance.

4.4 Chapter summary

In this chapter, the Variational Bayesian (VB) inference was developed for the
Exponentiated Weibull (EW) right-censored survival data. The Accelerated Failure
Time (AFT) model was used to determine the likelihood function. The MLE and
MCMC estimate proposed in Khan (2018) was compared to the VB estimate using
simulated and real-life data. Simulated results revealed that the VB estimates are more
efficient than MLE and MH procedures. However, the coverage probabilities of VB
estimates are less precise than the MLE estimates. The efficient estimate results were

replicated using the real-life Lung cancer dataset.



CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Research summary

This thesis specifically focused on parametric regression models requiring a
distributional assumption for 7" in the presence of covariates vector x. It was aimed to
develop a maximum likelihood estimator (MLE), metropolis-hastings (MH) algorithm
and variational Bayesian (VB) for the Exponentiated Weibull (EW) accelerated failure
time regression methodology. The EW distribution was used based on its apriori
generalizability in accommodating both monotone and non-monotone hazard/failure
functions while doing it an insignificant cost of only estimating one extra parameter.
Thus, the objectives were to evaluate the efficiency and consistency performances of
Maximum Likelihood Estimation (MLE) and Bayesian Markov Chain Monte-Carlo
(MCMC) via the Metropolis-Hastings (MH) algorithm. In addition, the performance
of the VB method is evaluated by comparing it with MLE and Bayesian MH using
simulated and lung cancer datasets.

The main objectives were to develop MLE, MH and VB methods to estimate
the parameters of the AFT EW regression model. The consistency and efficiency

evaluation performance results using both the simulated and real-life datasets revealed
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that the MLE procedure is less efficient and consistent when compared to the VB and
MH, especially at high censoring proportions. These results are replicated using the
real-life Lung cancer dataset.

Based on the objective to evaluate the MH procedure in terms of consistency
and efficiency using both simulated and real-life datasets, different results revealed that
the MH is less efficient and consistent when compared to the VB, though better than
MLE for the simulated dataset. However, the MH procedure competes favourably with

the VB for the real-life Lung cancer dataset.

5.2 Research contribution

The following are the significant contribution of this research to the field of statistics
and survival analysis;

1 With right-censored data, a new consistent and efficient Bayesian estimation
technique was developed for the accelerated failure time exponentiated Weibull
regression survival model.

11 The new method named Variational Bayesian (VB) was tested on both
simulated and real-life right-censored datasets.

iii The approach is flexible as one does not need to be a Bayesian expert to use it.

5.3 Future work

The VB procedure is flexible, but we observed some flaws while estimating categorical
predictors such as treatment type and type of cancer. Thus, a re-examination of the
strength of VB should be thoroughly conducted to identify the low efficiency in the

estimation of categorical predictors.
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54 Conclusion

The various analyses conducted in the thesis have established the applicability of the
VB approach for estimating the parameters of the EW distribution with the right-
censored dataset. In conclusion, the VB procedure presented in this thesis has been
found to competes favourably with the existing methods in both simulated and real-
life right-censored datasets. The technique was found to be better than the competing
Bayesian MCMC (MH) procedure as well as the frequentist MLE method. The main
strength of VB is in the estimation of shape parameters of the exponentiated Weibull

distribution.
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