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ABSTRACT 

 

 

 

 

Currently, there are different issues related to low thermal conductivity in the 

conventional heat transfer fluid, such as water, ethylene glycol and oil, in engineering 

electronic devices. Aiming to overcome this defect in conventional fluid, this research 

focuses on nanofluid. Furthermore, dust is considered because in real world, impurities 

exist and it may affect the flow. Therefore, this research studies the flow and heat 

transfer characteristics of a dusty nanofluid over a moving plate in the presence of 

magnetohydrodynamic (MHD). Three types of nanoparticles namely Copper Oxide 

( )CuO , Aluminium Oxide 2 3( )Al O  and Titanium Oxide 2( )TiO  are considered. The 

governing partial differential equations are converted into a system of non-linear 

ordinary differential equations using a similarity transformation, then the non-linear 

ordinary differential equations are solved using bvp4c program in MATLAB software. 

The influence of non-dimensional governing parameters such as magnetic parameters 

and nanoparticle volume fraction on the velocity and temperature profiles for fluid and 

dust phases of dusty nanofluids are discussed. Then, the results obtained are analysed 

by comparing two cases of boundary conditions, which are constant surface 

temperature and convective boundary condition in terms of efficiency. The results 

show that CuO  has the lowest velocity but highest heat transfer rate on both fluid and 

dust phase compared to 2 3Al O  and 2TiO . Besides, the flow with prescribed surface 

temperature has better heat transfer rate than the flow with convective boundary 

condition. 
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ABSTRAK 

 

 

 

 

Pada masa kini, terdapat pelbagai isu berkenaan dengan kekonduksian terma yang 

rendah dalam bendalir konvensional seperti air dan minyak yang terdapat di peralatan 

elektonik. Untuk mengatasi kekurangan dalam bendalir konvensional tersebut, kajian 

ini ditumpukan pada nanobendalir. Debu turut dipertimbangkan kerana bendasing 

wujud di dunia sebenar dan keadaan ini boleh menjejaskan aliran. Oleh itu, kajian ini 

dijalankan ke atas aliran dan pemindahan haba nanobendalir berdebu ke arah plat 

bergerak dengan kehadiran magnetohidrodinamik (MHD). Tiga jenis nanozarah iaitu 

Kuprum Oksida ( )CuO , Aluminium Oksida 2 3( )Al O  dan Titanium Oksida 2( )TiO  

dipertimbangkan. Persamaan pembezaan separa menakluk ditukarkan kepada sistem 

persamaan pembezaan biasa tak linear dengan menggunakan penjelmaan keserupaan, 

kemudian persamaan pembezaan biasa ini diselesaikan menggunakan program bvp4c 

di software MATLAB. Pengaruh parameter menakluk tanpa matra seperti parameter 

megnetik dan pecahan isipadu nanozarah pada profil halaju dan suhu untuk fasa 

bendalir dan debu bagi nanobendalir berdebu dibincangkan. Hasil yang diperoleh 

dianalisis dengan membandingkan dua kes syarat sempadan, iaitu suhu permukaan 

ditetapkan dan syarat sempadan olakan dari segi kecekapan. Keputusan menunjukkan 

CuO  mempunyai halaju terendah tetapi kadar pemindahan haba tertinggi pada kedua-

dua fasa bendalir dan debu berbanding dengan 2 3Al O  and 2TiO . Selain itu, aliran 

dengan suhu permukaan ditetapkan mempunyai kadar pemindahan haba yang lebih 

baik daripada aliran dengan syarat sempadan olakan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

Boundary layer is a thin layer adjacent to the surface of the body. The viscous effects 

in this thin layer cannot be ignored. Back in 1904, Ludwig Prandtl introduced a theory, 

which pointed out that the flow of liquid can be divided into two parts; the inviscid 

flow represents the main part, while the other part is viscous flow, which is a thin layer 

adjacent to the surface of the object. In this thin layer, the frictional force must be 

considered, whereas the frictional force in the areas outside this layer can be ignored 

since it is very small (Schlichting and Gersten, 2000). The thickness of the boundary 

layer is a function of the ratio between the inertial force and viscous force known as 

the Reynolds number. In the case of a low Reynolds number, the viscous force governs 

the entire boundary layer with laminar flow, while in the case of a high Reynolds 

number, the inertia forces allocate the boundary layer, making the fluid to become 

turbulent (Kakac et al., 2014). 

 Heat transfer is a process that concentrates on temperature and heat flow; each 

indicates the movement of thermal energy from one site to another. Heat transfer is the 

energy change caused by the temperature difference inside a medium or between 

media. The heat transfer rate in a specific direction depends on the magnitude of the 

temperature gradient, which is known as the rate of temperature change in that specific 

direction. The greater the temperature gradient, the higher the rate of heat transfer. The 

variation of temperature may exist inside the fluid due to the temperature difference 

between the boundaries and the ambient fluid. Such variation also appears from several 

causes, such as radioactivity, absorption of thermal radiation and the release of latent 

heat (as the vapour of the fluid condenses). Heat transfer cannot be stopped but can be 
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slowed down. Three methods cause heat transfer, namely conduction, convection and 

radiation (Schlichting and Gersten, 2000). 

 Convection is the heat transfer that occurs between a surface and a moving 

fluid at different temperatures. The transfer of heat by convection affects the transfer 

of energy from the surface to the fluid on a molecular scale, while the volume mixing 

due to the fluid motion causes the diffusion of heat through the fluid. Unlike 

conduction, the current flow of liquid is greatly involved in the process of convection. 

This motion occurs in liquid and cannot take place in solid. In a solid, the molecules 

maintain their relative situations. As a result, the flow cannot occur, thus preventing 

convection. Convection occurs in two forms, which are natural convection and forced 

convection. 

 In natural convection, the fluid surrounding the heat source receives heat and 

becomes less dense and rises. The cooler fluid then moves to replace it and is 

subsequently heated. This process continues and forms a convection current. 

Buoyancy is the driving force of natural convection as the result of differences in fluid 

density in the presence of gravity or any type of acceleration in the system. Forced 

convection occurs when instruments are used to push the fluid and create an artificially 

induced convection current. Forced convection is sometimes referred to as heat 

advection. In certain systems of heat transfer, both natural and forced convection 

contribute significantly to the rate of heat transfer, which creates mixed convection. 

 Convective boundary condition corresponds to the presence of convection 

heating or cooling at the surface and is acquired from the surface energy balance. The 

equation of this condition is given by 

 

( )
T

k h T T
x




− = −


, (1.1) 

 

where /T x   is the temperature gradient at the surface; k  is the thermal conductivity 

of the material; T  is the surface temperature of the wall; T  is the temperature in the 

surrounding far away from the surface; h is the convective heat transfer coefficient. 

 Convective boundary condition is the most common boundary condition in 

practical settings since most heat transfer surfaces are exhibited to a convective 

environment at indicated parameters. In such conditions, the heat conduction at the 

surface of the material matches that at the surface in the same direction. Since the 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



3 

 

boundary cannot store energy, the net heat entering the surface from the convective 

side must leave the surface from the conduction side. 

 Nanofluid is a type of fluid that contains nanometre-sized particles, also known 

as nanoparticles. It comprises metals, oxides, carbides or carbon nanotubes. The fluids 

are designed for the colloidal suspension of nanoparticles in a base fluid. Water, 

ethylene, glycol and oil are some common examples of base fluids. Nanofluid has 

novel properties that make it widely useful in heat transfer since it exhibits enhanced 

thermal conductivity and convective heat transfer coefficient compared to the base 

fluid. 

 When base fluid is mixed with dust particles that contain millimetre-sized or 

micrometre-sized particles, it turns into dusty fluid. Dusty fluid aids in improving the 

thermal conductivity of the base fluid. Dusty fluid model flows have been a main part 

of special interest in recent studies owing to their two-phase nature. This phenomenon 

happens in fluid (liquid or gas) flows containing a distribution of solid particles. For 

example, the motion of the dusty air in fluidisation problems and the chemical process 

in which raindrops are formed by compounding small dust particles. Cosmic dust, 

which is formed due to the mixing of dust particles and gas, is the main guide for 

planetary systems. The production of tails of comet 238 is due to the discharge of 

ionised gas and dust particles from the comet's body. The application of the dusty fluid 

can also be pretended in processes such as nuclear reactor cooling, atmospheric fallout, 

powder technology, rain erosion, sedimentation, dust collection, acoustics, paint spray, 

performance of solid fuel rock nozzles, as well as guided missiles. These facts have 

boosted the consideration of solving, modelling and analysing the flow of dusty fluids.  

 Moving plate has a motion consisting of buoyancy forces generated by their 

thickness variations according to the distribution and size of their deduced parts. The 

pattern of motion may be dominated by different types of heat transfer. The torque 

balance is maintained by steady plate motion and heat transfer over a long time. The 

movements may be divergent, convergent, or parallel. The detailed structure and 

progress of all these aspects depend on a wide variety of specific parameters that differ 

according to the speed of relative motion. 

 Magnetohydrodynamic (MHD) is an academic discipline that concentrates on 

the macroscopic interactions of electrically conducting fluids within a magnetic field. 

Hannes Alfvén introduced MHD back in 1942, for which he received the Nobel Prize 

in Physics in 1970 (Jacob et al., 2012). The idea of MHD is that magnetic fields can 
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induce currents in a moving conductive fluid, which then create forces on the fluid and 

change the magnetic field. When a conducting fluid moves through a magnetic field, 

a Lorentz force acts on the fluid and modifies the motion. Nevertheless, when the 

nanofluid is under the influence of a magnetic field, a retarding force acts on the flow. 

This force moves in the opposite direction of the flow and decelerates the velocity of 

the fluid motion. 

 Many natural phenomena and engineering issues are subject to the analysis of 

MHD. Since the magnetic field exists all around the world, phenomena related to 

MHD occur whenever the conducting fluids are accessible. Electrically conducting 

fluids are plentiful although their conductivities change greatly. MHD has special 

technical significance owing to its regular occurrence in many industrial applications, 

such as MHD generators, plasma confinement, pumps, geothermal energy extractors, 

thermal insulators, nuclear waste disposal, heat exchangers, liquid-metal cooling of 

nuclear reactors, petroleum and polymer technologies, as well as heat transfer 

involving metallurgical processes. 

 

1.2 Problem statement 

 

Many applications involve fluid flow and heat transfer towards the moving plate in 

industrial and engineering areas. Currently, there are different issues related to low 

thermal conductivity in the conventional heat transfer fluid, such as water, ethylene 

glycol and oil, in engineering electronic devices. Aiming to overcome this defect in 

conventional fluid, studies have focused on mixing nanometre-sized particles in base 

fluid, creating nanofluid. Besides, other studies have attempted mixing millimetre-

sized or micrometre-sized conducting dust particles in the base fluid, creating dusty 

fluid. These methods help to enhance the thermal conductivity of the base fluid. 

Nanofluid without impurities has been the focus of numerous studies. However, 

realistically, the presence of impurities affects the flow toward the moving plate 

including heat dissipation to the ambient surroundings, which reduces their efficiency, 

pressure of the flow and the temperature differential that will not transfer energy. 

Besides,  

 As a result, studies have focused on exploring the flow and heat transfer 

behaviour of either nanofluid or dusty fluid (Sastry et al., 2016). MHD is also 

considered due to the exerted magnetic field that controls the suspended particles and 
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rearranges their concentration in the fluid, which extremely changes the heat transfer 

characteristics of the flow. Based on the argument, this current study develops a 

mixture of millimetre-sized or micrometre-sized conducting dust particles in nanofluid 

in the presence of magnetic field, which is termed MHD dusty nanofluid, to analyse 

its flow and heat transfer characteristics. 

 

1.3 Research questions 

 

The research is to identify the following problems: 

i. What is the mathematical model that best describes the flow of MHD dusty 

nanofluid towards a moving plate? 

ii. What is the method used to solve the mathematical model numerically? 

iii. How do magnetic parameter and nanoparticle volume fraction affect velocity 

profile, temperature profile, skin friction coefficient and Nusselt number? 

 

1.4 Objectives of study 

 

The specific objectives of this study are presented in the following: 

i. To develop a mathematical model for the flow of MHD dusty nanofluid 

towards a moving plate with constant surface temperature and convective 

boundary condition. 

ii. To solve the mathematical model numerically using MATLAB boundary value 

problem solver, bvp4c program. 

iii. To examine the effects of magnetic parameter and nanoparticle volume fraction 

on the velocity profile, temperature profile, skin friction coefficient and 

Nusselt number of the flow. 

 

1.5 Scope of study 

 

The scope of this study is outlined as follows: 

i. Two-dimensional flow, steady, incompressible and electrically conducting 

boundary layer flow towards the moving plate in a dusty nanofluid. 
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ii. Focusing on MHD dusty nanofluid, this study incorporated the effects of non-

dimensional governing parameters, namely magnetic parameters and 

nanoparticle volume fraction, on the velocity and temperature of the nanofluid. 

iii. This study employs the MATLAB boundary value problem solver, bvp4c 

program to solve the mathematical model. 

iv. This study uses water 2( )H O  as a base fluid. 

v. This study utilises three types of nanoparticles, namely copper oxide ( )CuO , 

aluminium oxide 2 3( )Al O  and titanium oxide 2( )TiO . 

vi. Two different cases of boundary conditions involving the flow of MHD dusty 

nanofluid towards the moving plate, namely constant surface temperature and 

convective boundary condition, are compared in terms of efficiency. 

 

1.6 Significance of study 

 

Fluid heating and cooling are important aspects of science and engineering areas. Thus, 

an effective cooling technique for any type of high-energy device is required. 

However, fluids have limited heat transfer capabilities to act as a medium for heat 

transfer. As a result, it is encouraged to find fluids with enhanced thermal properties, 

specifically with advanced heat transfer capabilities and higher conductivity. 

 Many engineering disciplines can apply fluid heating and cooling such as thin 

film solar energy collector device, transpiration cooling and climate control. These 

aspects are not only suitable for extended ranges of temperature control based on fluid 

selection but also have smooth continuous temperature control with no gaps. 

 

1.7 Thesis organisation 

 

This thesis is divided into five chapters, including the introductory chapter. The 

remaining four chapters are organised as follows: 

 Chapter 2 discusses the findings of prior studies. The heat transfer in nanofluid, 

flow of dusty fluid and nanofluid, magnetohydrodynamic fluid flow, fluid flow 

towards the moving plate, fluid flow with convective boundary conditions as well as 

numerical method for solving fluid flow are reviewed in the chapter. The chapter is 

then concluded with the identified research gap. 
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 Chapter 3 describes the current study’s method to solve the mathematical 

model of MHD dusty nanofluid towards the moving plate. The governing equations of 

flow and heat transfer are covered in the chapter. Similarity variables are also 

introduced, which are used to convert the governing equations into a system of non-

linear ordinary differential equations. The numerical method to solve the system of 

non-linear ordinary differential equations is discussed in the chapter. Following that, 

the chapter describes the applied numerical method to solve the equations with the use 

of mathematical software. 

 Chapter 4 presents the numerical solutions to the problem in tables and figures. 

Moreover, two cases of boundary conditions of the problem are compared in terms of 

efficiency to determine the best heat transfer rate of MHD dusty nanofluid towards the 

moving plate. 

 Chapter 5 concludes the study’s results after comparing the numerical solutions 

obtained between the two cases. All results were referred to the study’s objectives to 

determine whether or not the objectives have been achieved. The limitations of this 

study and recommendations for future research are also presented in the chapter. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

This chapter reviews the findings of prior related studies. In particular, Section 2.2 

deals with heat transfer in a nanofluid. Section 2.3 then discusses the flow of dusty 

fluid and nanofluid. After that, Section 2.4 introduces the MHD fluid flow. The fluid 

flow towards the moving plate is discussed in Section 2.5, while the fluid flow with 

convective boundary condition is explained in Section 2.6. Furthermore, the numerical 

method for solving the fluid flow is reviewed in Section 2.7. Lastly, Section 2.8 

concludes the identified research gap based on the literature review from Section 2.2 

to Section 2.7. 

 

2.2 Heat transfer in nanofluid 

 

Li and Xuan (2002) investigated the convective heat transfer and flow characteristics 

of nanofluid in a tube utilising copper water nanofluid for the experimental system. 

Based on the results, the suspended nanoparticles significantly increased the 

convective heat transfer coefficient of the base fluid. There was almost no change in 

the friction factor of the sample nanofluid with the low volume fraction of 

nanoparticles. Meanwhile, Koo and Kleinstreuer (2005) studied the heat transfer of 

nanofluid flow in micro-heat-sinks and revealed that the presence of nanoparticles 

significantly increased the heat transfer capability of the micro-heat-sinks. The study 

highlighted the advantages of high thermal conductivity of nanoparticles, justifying 

the benefits of adding nanoparticles. 
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 Kwak and Kim (2005) considered the viscosity and thermal conductivity of 

copper oxide nanofluid for the dispersion in ethylene glycol. The results showed that 

a significant enhancement in thermal conductivity pertaining to particle concentration 

can only be achieved when the particle concentration is below the dilute limit. Chon 

et al. (2005) reported the correlation for the case of thermal conductivity of aluminium 

oxide nanofluid as the effect of nanoparticle size on temperature. High temperature 

increases the nanofluid thermal conductivity and subsequently, the Brownian motion 

of nanoparticles. Evans et al. (2006) explained the role of the Brownian motion 

hydrodynamics on the thermal conductivity of nanofluid where Kinetic theory was 

used to analyse the heat flow in fluid suspension of the nanofluid, which revealed only 

a minor effect of the Brownian motion hydrodynamics on the thermal conductivity of 

nanofluid. 

 In another study, Kang et al. (2006) estimated the thermal conductivity of 

nanofluid using experimental effective particle volume, thus indicating the critical 

need to consider the heat transfer mechanisms, such as phonon transport and electron 

transport, to estimate the exact thermal conductivity of nanofluid. Meanwhile, Jang 

and Choi (2007) analysed the effects of various parameters on the thermal conductivity 

of nanofluid and discovered the major effects of nanoparticle size, volume fraction, 

and temperature on the conductivity of nanofluid. However, these parameters only 

exhibited minor effects on the ratio of the thermal conductivity of nanoparticles to that 

of the base fluid. The study further noted the emerging field of nanofluids, with high 

potential and challenges. Hence, any new concepts should be confirmed tentatively, 

and more feasible models should be developed in the future. 

 Yu et al. (2008) reviewed and compared nanofluid thermal conductivity and 

its heat transfer enhancement. The study reported that the heat transfer enhancement 

for nanofluid was within the range of 15% to 40%. Nevertheless, studies of laminar 

and turbulent flow still need to be developed substantially in future research. Anoop 

et al. (2009) examined the characteristics of the convective heat transfer of nanofluid 

in the developing region of tube flow with constant heat flux. Two particle sizes were 

used in the study, namely the average particle sizes of 45 nm and 150 nm. Based on 

the results, the heat transfer characteristics of both nanofluids were higher than that of 

the base fluid, and the nanofluid with a particle size of 45 nm had a higher heat transfer 

coefficient compared to that with a particle size of 150 nm. 
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