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ABSTRACT 

The dorsal hand vein (DHV) pattern is a highly secured biometric system that is 

significantly used in many applications due to its uniqueness. Although it is a safe and 

secure means for biometric identification, accurate recognition of vein patterns for this 

application remains challenging. To solve the issue, various machine learning (ML) 

and deep learning (DL) techniques were employed in the past to identify DHV 

correctly. A hybrid ML and DL strategy are adopted in this study. An automatic 

segmentation technique designed based on the histogram, thresholding and 

morphological operations is proposed to overcome the shortcomings of manual 

segmentation. The Bosphorus database is used for demonstration. While the first set 

of the experiment used the original segmented dataset, the second combines the 

original dataset with the augmented images generated using the combinations of 

rotation transformations (i.e., [30˚ -30˚] and [50˚ -50˚]) and flipping. The results 

comparing the performance of AlexNet, which is used as the baseline, revealed a 

considerable difference between the outputs trained using manual and automatically 

segmented datasets with a classification accuracy of 87.5% and 76.5 %. This 

difference in accuracy is significantly reduced to 4 % with the augmentation methods 

i.e., 91.5 % and 88 %. Interestingly, the inclusion of augmentation does not increase 

the performance in the manual likely because the existing data is sufficient for the 

model to learn all core features. The proposed segmented set with augmentation is 

further supported by the good classification performance of GoogleNet and ResNet-

18. The mean and standard deviation of AlexNet, GoogleNet and ResNet-18 in their 

classification accuracy, sensitivity, and specificity are given by 99.79±0.098 %, 

89.5±4.92 %, and 99.89±0.05 %. The ResNet-18 achieved superior performance with 

less training time than GoogleNet on the DHV dataset, which can be attributed to its 

capacity to address the network degradation issue. This work recommends the 

proposed framework and a deep model with skip connections, such as ResNet-18 for 

use in recognizing DHV patterns for future authentication research and system 

development.  
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ABSTRAK 

Sistem pengecaman corak urat pada permukaan dorsal tangan adalah satu sistem 

biometrik yang paling selamat kerana sifatnya yang sangat unik bagi setiap orang. 

Namun masih terdapat kekurangan dan cabaran dalam kaedah pengesahan yang 

berasaskan urat tangan dorsal. Untuk mengatasi isu ini, pelbagai kaedah pembelajaran 

mesin dan model pembelajaran mendalam telah digunakan dalam pengkelasan corak 

urat tangan. Dalam kajian ini, pendekatan pembelajaran mesin hibrid dan 

pembelajaran mendalam dicipta untuk tujuan ini. Teknik segmentasi secara automatik 

yang berdasarkan taburan histogram, penentuan nilai ambang, dan operasi morfologi 

telah dicadangkan untuk mengatasi kelemahan kaedah segmentasi secara manual. Imej 

urat tangan dorsal tangan yang diperoleh daripada pangkalan data Bosphorus telahpun 

digunakan. Experimen pertama melibatkan menggunakan data asal, manakala kedua 

menggabungkan data asal dan data baru yang dijana melalui transformasi posisi (sudut 

[30˚ -30˚] dan [50˚ -50˚]) dan direksi. Perbandingan keputusan AlexNet menggunakan 

data yang diperolehi dari process segmentasi secara manual dan automatik 

menunjukkan perbezaan yang ketara dengan skor 87.5% dan 76.5%. Perbezaan ini 

telah dikurangkan kepada 4% melalui penggunaan data tambahan. Yang menariknya, 

penambahan data tambahan tidak meningkatkan prestasi dalam kaedah manual. Ini 

mungkin kerana data sediaada adalah mencukupi untuk model mempelajari semua ciri 

penting dalam data. Kecekapan pendekatan ini disokong dengan keputusan baik yang 

diperolehi melalui GoogleNet dan ResNet-18. Purata ketepatan pengelasan, kepekaan 

dan kekhususan adalah dengan skor 99.79±0.098 %, 89.5±4.92 %, and 99.89±0.05 %. 

ResNet-18 telah mencapai hasil prestasi yang baik. Kerja ini mengesyorkan supaya 

pendekatan yang dicadangkan berserta model pembelajaran mendalam seperti ResNet-

18 digunakan dalam pembangunan sistem pengecaman corak urat tangan pada masa 

hadapan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview  

This chapter provides the background information of this research. The 

background of the dorsal hand vein recognition system is discussed in section 1.2. In 

section 1.3, the problems concerning the existing systems are briefly explained. The 

aims and scopes of this research are presented in sections 1.4 and 1.5, followed by 

research contributions in section 1.6. The organization of the remaining chapters is 

presented in section 1.7. 

1.2 Background of study 

Nowadays, an automatic personal recognition system based on biometric 

methods plays an important role in many applications, such as in high-security offices, 

public banks and education sectors [1]. The application and implementation of a 

biometric system demands the following requirements: universality, distinctiveness, 

permanence, and collectability. A biometric system can be classified into two types: 

human physiological and behavioural characteristics identification system [2, 3]. The 

physical biometric systems are such as fingerprints [4], palm print, dorsal hand vein 

[5], and face identification [6], and iris of the eye recognition [7], while the behavioural 

characteristics include that of the keystrokes [8], gait, and voice [9]. 

Poor and inefficient security capabilities are the main concern in many 

biometric systems. The vulnerable and weak security mechanisms cause fraud, privacy 

loss, money laundering, and other confidentiality problems. Thus, different biometric 

techniques have been designed to overcome the problem.  
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The fingerprint is the most common personal identification system in our 

society, but it can be easily fooled by capturing the prints and printing on gelatin 

material board, and there are even cases where fingerprints are not recognized due to 

scratches in the fingers because of injury and skin diseases. Similarly, a face 

recognition system is also currently being used in growing numbers of applications. 

Even though this technique is able to recognize the person from a distance, the major 

problems associated with the system are processing speed and storage, surveillance 

angle, light variations, and inter-class variability [6].  

The iris of different individuals varies, so it can be used for personal 

identification. However, iris is sensitive to light and it cannot be scanned with glasses 

on. Thus, many researchers diverted their focus towards the dorsal hand vein biometric 

system because, unlike the iris, its pattern can be easily seen with naked eyes and the 

technique is comparatively more robust to the environmental changes. The dorsal hand 

vein was first proposed to be used in biometric technology in 1992 [10]. Example of 

hand vein patterns is as shown in Figure 1.1. 

 

Figure 1.1: Pattern of dorsal hand vein [1]. 

The pattern of a vein is formed by a capillaries network of blood vessels that 

carry deoxygenated blood from the body to the heart beneath the person’s skin. Thus, 

it cannot be copied or fooled easily. This type of biometric system is contactless, 

hygienic and is not affected by external condition of the skin, such as dirt or skin 

disease. It has a unique biometric feature similar to that of fingerprints and iris. 
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Everyone possesses a different pattern of veins, even among twins. Thus, it is difficult 

to be forged. Besides, dorsal hand vein does not change with time. Consequently, it is 

stable enough regardless of the ageing effect and environmental conditions, such as 

temperature and humidity [1].  

The main factor affecting the overall quality and clarity of hand veins image is 

the imaging system used. There are many devices that have been proposed to capture 

the dorsal hand vein images, such as near-infrared (NIR) camera [11, 12], 

complimentary monochrome metal oxide semiconductor (CMOS) [13] and digital 

single-lens reflex camera (DSLR) [14]. To avoid the unnecessary information of dorsal 

hand vein images, segmentation techniques can be used. By doing that, the background 

of dorsal hand vein images can be eliminated and the veins’ pattern can be further 

enhanced, which may improve the recognition accuracy. Various segmentation 

approaches have been introduced in the past with varying degrees of success. The 

image delineation can either be carried out manually [15] or automatically [16] to the 

extract Region of Interest (ROI) of dorsal hand vein images.  

To extract the features of dorsal hand vein pattern, machine learning and deep 

learning (DL) methods were adopted in the past. DL automatically performs feature 

extraction and modeling after data training, whereas machine learning requires data 

scientists or users to extract and create features. Classic network architecture of DL 

includes Long Short-Term Memory Networks (LSTMs), Recurrent Neural Network 

(RNN), Convolution Neural Network (CNN) and Deep Neural Network (DNN). The 

classification accuracy depends on the network architecture and training methods, the 

input features, and the size of dataset. Among which, CNN has been extended to 

resolve multiple computer vision and pattern recognition challenges with great success 

by employing deeper architectures [17], improved training technologies such as 

Dropout [18], and better nonlinear activation functions such as Rectified Linear Unit 

(ReLU). Moreover, this technique requires minimal image pre-processing steps due to 

its ability to combine segmentation, feature extraction, and classification in one 

module. There are several pre-trained CNN models available for use, such as AlexNet 

[19], ResNet [20], GoogleNet [21], SqueezeNet [22] and Visual Geometry Group 

(VGG) [23]. Each differed in their feature extraction scheme and data transformation. 

As the convolution layers become increasingly deep,  their training errors and 

testing errors could become low, but this is at the price of higher computation time 

[20]. GoogleNet comprises of 22 layers, which is deeper than other models. 
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Meanwhile AlexNet has comparatively shallow architecture. AlexNet was also 

reported to achieve comparable training performance to the deeper counterpart 

(VGG16 and VGG19) with lesser computational resources. In addition, the 

performance of the model also depends upon the size of dataset. The higher the number 

of images in a dataset, the better the model can recognize the important features in the 

dataset, thus the higher the model inference accuracy. Augmentation scheme is another 

strategy often introduced to enlarge the dataset for avoiding model overfitting during 

the training.  

1.3 Problem statement 

Behavioral characteristics are unsecure and less reliable means of biometric 

system e.g., keystroke such as password can be easily hacked or copied. However, 

traditional physical characteristics include several significant flaws, such as angular 

problem in the case of facial recognition system [6] and iris is sensitive to light 

radiation. To overcome these problems, researchers focused on dorsal hand vein. This 

biometric system is secured and unaffected by environmental variations such as 

temperature because it is found inside the skin. 

In order to properly recognize an image, ROI must be accurately known, 

segmented and analyzed separately. However, the present gold standard method using 

manual segmentation approach demonstrated in [15, 24] has several key shortcomings, 

including the high degree of variability in the outcomes because the process is 

dependent on intuition rather than objective analysis. In other words, the segmented 

results differ for each image due to the manual nature of the process. In addition, a 

small portion of vein may be vanished during segmentation. Therefore, researchers 

diverted their focus towards automatic segmentation. The authors in [25] used hybrid 

segmentation by combining morphological and local thresholding to extract the pattern 

of dorsal hand vein, but this algorithm requires a compensation method for the 

breakpoints (i.e., background and fingers) of dorsal hand vein in getting rid of the 

noise. In most cases, the robustness of the proposed segmentation methods was tested 

on small datasets [16]. This calls for further research, and a more generalized and 

rigorous evaluation on the automatic segmentation methods that are both effective and 

time efficient.  
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Meanwhile DL is especially useful in domains with large and multidimensional 

datasets. Some have developed their own CNN model, but this requires training on a 

large collection of data. A pre-trained model that has been extensively trained on very 

large-scale dataset can be employed for classifying new/unseen classes by fine-tuning 

its neurons’ weights. This technique was adopted in [26] using AlexNet in their 

demonstration, but the work lacks evaluation on the trained model because no unseen 

data were used to test model predictions. In addition, the authors in [26] used whole 

images, wherein the model is likely trained to identify hand contour and position 

instead of vein patterns. Meanwhile authors in [27] used augmentations strategy with 

several well-known models, i.e., AlexNet, ResNet-50 and ResNet-152 to enhance the 

testing accuracy, but the authors reported expensive computational power  (i.e., 

required high processing speed) in case of ResNet-152. There remains a need of 

identifying the best model in terms of computational time and performance for 

classification of dorsal hand vein datasets. An efficient segmentation and classification 

framework for dorsal hand vein pattern recognition is highly necessary for secure 

biometric system. 

1.4 Objectives 

This research study focuses on the following objectives: 

a) To propose a hybrid automatic segmentation approach for dorsal hand vein 

recognition.  

b) To investigate and compare the performance of the developed automatic and 

gold standard segmentation technique.  

c) To compare the performance of different 2D CNN models and to recommend 

the best model for identity authentication.  

1.5 Scopes of study 

The scope of the research is: 

a) A hybrid technique is developed by combining histogram equalization, 

morphological operation and thresholding algorithm for vein region 

delineation. 
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b) To compare the performance of the baseline AlexNet trained using automatic 

segmentation with manual cropped (gold standard) datasets. 

c) To recommend the best model for dorsal hand vein pattern recognition from 

the comparison of the inference accuracy, specificity and sensitivity of 

AlexNet, ResNet-18 and GoogleNet. 

 

1.7 Research contributions 

In this study, an automatic segmentation and classification scheme for dorsal hand 

images is proposed. The main contributions of this research are summarized as 

followed: 

a) An automatic method has been proposed to extract the ROI of dorsal hand vein 

images. This method is comparatively more effective and time efficient than 

the manual technique with 10 folds shorter processing time. 

b) The proposed framework combining the automatic segmentation and 

classification system produces a relatively good and rapid recognition result 

with a mean classification accuracy of 89.5 %, which is crucial for a robust 

biometric system. 

1.8 Thesis layout  

The structure of the remaining thesis is as followed: 

Chapter 2 includes the past works related to this thesis, and discussion of basic 

terminology, applications, and research regarding this topic.  

Chapter 3 describes the design, component and working principle of the 

proposed system in achieving the expected outcomes. 

Chapter 4 presents the results and discussions of this study. This chapter also 

compares the performance of various CNN models used in this research. 

Chapter 5 demonstrates the research conclusion and recommendations. This 

chapter also highlights the future works that need to be addressed and resolved to 

maximize the performance of the system. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

This chapter includes the past reviews related to the techniques and methods 

using hand vein pattern as the authentication of identities. This chapter begins with the 

introduction of different types of biometric systems, their characteristics and 

performance, and previous studies that utilized these methods in section 2.2. 

The imaging system available for the dorsal hand vein authentication research 

and the public available databases are elaborated in section 2.3 and 2.4. The 

segmentation methods used for making decisions on image delineation are discussed 

in section 2.5. The commonly used approaches for image classification, and their 

method in section 2.6, together with the available optimization techniques and 

augmentation strategy are presented in sections 2.7 and 2.8. The past works related to 

dorsal hand veins authentication are summarized in section 2.9. 

2.2 Overview of biometric system 

The word “biometric” is the combination of two Greek words, “bios” (life) and 

“metrikos” (measure) [28]. Therefore, it is referred to the analysis of human 

characteristics, either physical or behavioural [2, 3]. The physical characteristics 

include fingerprint, palm print, face, iris, dorsal hand vein, and palm vein while the 

behavioural consists of the keystroke, signature as shown in Figure 2.1. Biometric 

system is mainly introduced for security and assurance purposes for use in e.g., banks 

[1]. Everyone possesses unique characteristics, such as iris of an eye, fingerprints, and 

dorsal hand vein so it is not easily transferable. 
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