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ABSTRACT

The use of mathematical models to investigate blood flow activity has become an

invaluable method for studying and understanding the circulatory system. In light of

many clinical conditions, the blood flow issue of an inclined artery is significant from

a physiological perspective. The current study analyzes blood flow with magnetic

particles through inclined stenosed and multi-stenosed arteries, where impact of blood

flow by Newtonian and Casson fluids was considered. The flow was driven by

an oscillating pressure gradient and subjected to an external inclined magnetic field

for all models. The Caputo–Fabrizio time fractional-order model without singular

kernel was used to solve the nonlinear governing equations. The Laplace and finite

Hankel transforms, as well as the Robotnov and Hartley’s functions, were applied to

obtain analytical solutions. Moreover, Mathcad software was utilized to construct

blood velocity, temperature profiles, and magnetic particle velocity from different

physiological parameters on blood flow through an inclined artery. The effects of

various important factors, including body acceleration, thermal radiation, porosity

and electric field on the transportation of magnetic particles flow of blood have been

analyzed. The current findings were compared to those mentioned in previous studies,

demonstrating that they are in good agreement. Numerical findings reveal that the

fractional parameter order and inclination angle affect blood and magnetic particle

distributions. Some significant findings show that the fractional- order derivative,

electric field, porosity, Reynolds number, and Casson fluid parameter can enhance

blood and magnetic velocities. Both fluid flow velocities have similar trends in

fractional parameters; however, Casson fluid is slower than Newtonian fluid. Radiation

and metabolic heat both play an essential role in controlling blood temperature. The

temperature of the blood flow increases as the radiation and metabolic heat source

values increase. Meanwhile, the Hartmann number and porosity decelerate the blood

flow and magnetic particle velocity. These findings facilitate the clinical research of a

variety of arterial diseases.
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ABSTRAK

Penggunaan model matematik untuk mengkaji aktiviti aliran darah menjadi kaedah

bernilai untuk memahami dan mempelajari sistem peredaran darah. Secara klinikal

masalah aliran darah dalam arteri condong adalah penting dari sudut perspektif

fisiologi. Kajian semasa mengambilkira penyelidikan aliran darah dengan zarah

magnetik melalui arteri stenosis condong dan berbilang stenosis. Penyelidikan ini

mengkaji kesan aliran darah oleh bendalir Newtonian dan Casson. Aliran bendalir

bagi semua model didorong oleh kecerunan tekanan berayun dan juga tertakluk kepada

medan luaran elektrik condong. Model peringkat pecahan masa Caputo-Fabrizio

tanpa inti singular telah digunakan untuk menyelesaikan persamaan menakluk tak

linear. Penyelesaian analitik diperoleh menggunakan jelmaan Laplace, jelmaan Hankel

terhingga, dan fungsi Robotnov dan Hartley. Perisian Mathcad telah digunakan

untuk melakar profail halaju, taburan suhu dan halaju zarah magnetik dari pelbagai

parameter fizikal pada aliran darah melalui arteri condong. Analisis terhadap kesan

dari pelbagai faktor penting, termasuk pecutan badan, sinaran terma, keliangan

dan elektrik pada aliran darah zarah magnetik telah dijalankan. Keputusan yang

didapati telah dibandingkan dengan kajian terdahulu dengan hasil yang memuaskan.

Penemuan berangka mendedahkan bahawa terbitan peringkat pecahan dan sudut

kecondongan mempengaruhi taburan zarah darah dan magnetik. Beberapa penemuan

yang signifikan menunjukkan bahawa turutan terbitan pecahan, medan elektrik,

keliangan, nombor Reynolds, dan parameter bendalir Casson meningkatkan halaju

darah dan magnetik. Kedua-dua halaju aliran bendalir mempunyai arah aliran yang

sama dalam parameter pecahan; bagaimanapun, cecair Casson adalah lebih perlahan

daripada cecair Newtonian. Sinaran, dan haba metabolik memainkan peranan penting

dalam mengawal suhu darah. Suhu aliran darah meningkat apabila nilai sumber

haba radiasi dan metabolik meningkat. Sementara itu, nombor Hartmann dan

keliangan memperlahankan aliran darah dan halaju zarah magnetik. Hasil kajian ini

memudahkan penyelidikan secara klinikal terhadap pelbagai penyakit arteri.
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CHAPTER 1

INTRODUCTION

1.1 Research background

Hemorheology is an application of study of blood circulation and its interaction

with the vessel into which the flow takes place. Human blood cardiovascular

system includes additional substances such as nutrients and oxygen to the cells

and removes metabolic waste from the same cells. Blood flow modeling has

been widely used in the past few decades to better understand the symptomatic

signal of various diseases to improve existing or new treatments. A computational

blood flow model is essential not only for clinical disease diagnosis, but as

an integral component of more complex structure modeling. Throughout this

opening section, some behavioral background is provided to lay the foundation for

the development of mathematical modeling and theoretical analysis in subsequent

chapters.

From the biomechanical point of view, blood is considered as an intelligent

fluid, probably the most intelligent one in nature, as it is capable of adapting

itself in a great extent in order to provide nutrients to the organs. Numerous

experimental and theoretical studies to visualize arterial blood flow behavior

have been implemented in the past. The importance of obtaining a better

understanding throughout the mathematical modeling and computational simulations

can determine the feasibility of a medical technique before the real clinical trials

due to assumptions that may not be directly accessible through the experimental

investigation. The study of blood flow via arteries is essential because it
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provides insight into the physiological processes. Blood may be considered

either a Newtonian or a non- Newtonian fluid, depending on the circumstances.

All essential fluids, including liquids and gases, flow along a solid barrier

and are subjected to shear stress at the boundary. The no-slip condition indicates

that the fluid is moving at zero speed. Shear stress and strain rate are related to

constant viscosity in Newtonian fluid laminar flow. In the case of non-Newtonian

fluids, however, it is not continuous, and there is a loss of velocity, which causes shear

stress to be transmitted onto the boundary. Shear stress varies with non-Newtonian

fluid grade. Behaviour of blood as Newtonian or non-Newtonian fluid depends on the

nature of the blood transportation process as well as on the size and shape of vessel.

Blood having shear rate greater than 100 s
�1 shows a Newtonian nature. For example,

in large arteries, veins and in large cavities, blood exhibits Newtonian characteristics.

However, for shear rate less than 100 s
�1, blood present non- Newtonian nature. In

general, in capillaries, arterioles and in myocardium, non-Newtonian effects can be

seen. With increasing flow velocity and shear strain rate, blood flows more smoothly

and its viscosity decreases toward a constant, which has been commonly used as the

viscosity of blood in a Newtonian model. However, in the low-velocity areas, the

true viscosity is much higher than this constant, when non-Newtonian rheological

models could simulate the blood viscosity variations in different shear strain rates.

According to the available research, blood’s rheological characteristics and

flow behavior in tubes of varied cross-sections are essential in diagnosing and

treating many cardiovascular disorders. A non-Newtonian fluid at low shear

rates and in narrow blood vessels, especially in sick conditions, when blood

clots are prevalent, is well established in the medical community. Researchers

have shown that the Casson model best captures the behavior of blood at

low shear rates when the hematocrit, anticoagulants, and temperature are

varied (Nagarani & Sarojama, 2007). In addition, Casson fluid has recently

been investigated for blood flow in the human body under various physical

characteristics (Siddiqui, Verna & Mishra, 2009; Qasim, 2014; Ali et al., 2017;

Gudekote, Manjunatha & Choudhari, 2018; Ahmed, 2018; Sarifuddin, 2020).

Biomagnetic Fluid Dynamics (BFD) revolves around the study of fluid

flow under the interference of magnetic field. This field of fluid dynamics has
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fascinated many researchers (Tzirtzilakis, 2008; Turk, Tezer-Sezgin & Bozkaya, 2014;

Bose, Sayan & Banerjee, 2015 ; and Tzirakis et al., 2016) due to the abundance

of applications suggested by medical science and bioengineering, including the

development of magnetic tracers, the selective transport of drugs using magnetic

particles as drug carriers and cancer treatment by magnetic hyperthermia. Tzirtzilakis

(2005) proposed the concept of investigating the magnetic and electrical properties

of blood under a single mathematical model. In formulating the governing equation

of blood motion, it is necessary to take into account the electrical conductivity

of human blood circulation and the effects of magnetism and the Lorentz force

(Kenjeres & Opdam, 2009). Despite this, biomagnetic fluid behavior should be

considered to establish its physiological standpoint in the model’s development.

At present, there is a great deal of interest in examining blood flow

via tubes and blood flow inside human circulatory systems. Generally, blood

arteries have been classified as having zero inclination, which is considered

horizontal in most research. These arteries appear to be uneven in terms

of their physical position. The consideration of an artery’s tendency brings

gravity into the picture. Sanyal, Das & Debnath (2007) investigated blood

flow characteristics using a mathematical model of an inclined circular tube

with periodic body acceleration in the presence of a uniform magnetic field.

Sreenadh, Pallavi & Satyanarayana (2011) studied the steady mathematical model

of steady flow of Casson fluid through an inclined tube of non-uniform cross

section with multiple stenoses. Siddiqui, Ullah & Awasthi (2017) developed a

mathematical model to analyze the effects of body acceleration and slip velocity

on Herschel Bulkley fluid pulsatile movement through an inclined stenotic artery.

The gradual thickening of the artery has long been recognized as an early

phase of atherosclerosis formation, one of the most pervasive human diseases that

eventually led to cardiovascular malfunction. Most research indicates that the disease’s

growth may be attributed to the deposition of cholesterol, fatty substances, cellular

waste products, calcium, and fibrin. This deposition of substances is identified as

stenosis in the arteries. There has been growing interest in studying blood rheology

and blood flow through constricted arteries due to its great importance in the human

cardiovascular system (Majee & Shit, 2017). Any study of an electrically conducting
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fluid flow via a stenosed artery with permeable walls is essential theoretically

and for various medical and engineering concerns such as magnetohydrodynamics

(MHD) generators, blood flow problems, and plasma research. The study of MHD

is very useful in bio-engineering especially in the study of Magnetic Resonance

Imaging (MRI), heart attack and cancer treatment (Das, Wang & Payne, 2013).

Fractional-order derivatives are as old as integer-order derivatives. This subject

has limited to mathematics for the past three decades. However, the principles of

fractional calculus have also implemented in other fields over the last few years

due to their abundant practical uses. The use of fractional order derivative in

mathematical modeling has found numerous applications such as those in physics,

fluid mechanics, mathematical biology and electrochemistry (Hatami, Hatami & Ganji,

2014). Markis, Dargush & Constantinou (1963) obtained satisfactory agreement

between experimental and theoretical results by employing a non-integer order

Maxwell model rather than an integer order Maxwell model. The authors noted that

the fractional model had a stronger memory impact than the integer-order model in

that experiment. However, certain disadvantages were found in these operators, such

as their singular kernel and the incredibly complex solutions produced. Caputo &

Fabrizio (2015) introduced another derivative technique followed by theoretical and

applied studies in several real-world problems. It replaces the singular kernel of the

Caputo derivative with an exponential function where it has two representations for

the temporal and spatial variables. The fractional calculus is an attractive issue of

current study trends in many areas of fluid dynamics to explain the development of

specific physical properties. Moreover, this approach has been applied in numerous

research fields, including rheological characteristics and complex dynamics of various

fluids. It is a comprehensive study of its behavior when the ordinary time derivative in

constitutive equations is replaced with a fractional-order product. Furthermore, more

general models of physical systems can be developed using fractional calculus rather

than ordinary calculus. Recently, fractional calculus has been broadened in diverse

directions, specifically, in fluid dynamics, tracer influent currents, visco-elasticity,

electrochemistry, bio-engineering, neurons model in biological science, finance, and

signal processing (Asjad et al. 2017).
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Caputo-Fabrizio fractional derivative with a parameter memory has the

advantage that the definition is not singular. Significant transforms (such as

Laplace, finite Hankel, and Bessel transforms) are combined with Robotnov/Hartley

functions to create a single closed-form solution for both the local and non-local

cases. The most crucial benefit of modeling with fractional-order derivatives is

that it is non-local, which makes it different from the local model. Non-integer

order derivatives, like half-order derivatives, are used to show this (where we

take integer-order derivatives like first-order derivatives, second-order derivatives,

etc.).The local model represents the system’s current stage, while the non-local model

describes the system’s history stage. According to Devendra, Singh and Kumar

(2015) the non-local property of the fractional differential equations differentiates

it from the other models, which predict the next stage of a system based on the

historical background and don’t rely on the system’s current state. According to

Caputo (2008) and Riesz (2016), in applied mathematics, fractional calculus is

concerned with derivatives and integrals of arbitrary (real or complex) orders. It

has recently acquired prominence and appeal, owing to well-established applications

in science and engineering. It encompasses fluid flow issue modeling, electric

networks, seismic wave propagation, rheology, oscillation, anomaly and reaction-

diffusion, turbulence, polymer and chemical physics, electrochemistry, relaxation

and dynamical processes, and many other physical phenomena in complex systems.

However, some authors argue that the non-singular kernel fractional derivative

is suitable for all real-world processes. Certain operators have properties that render

them unsuitable for numerous applications. The results of Ortigueira & Constantinou

(2018) show that the Caputo-Fabrizio model performs poorly compared to the classical

fractional derivatives. According to Giusti (2018), his result indicates that the

Caputo-Fabrizio operator is nothing more than an infinite linear combination of

ordinary repeated integrals of the function f(t). Non-singular kernel derivatives

have several drawbacks that should dissuade their use, as demonstrated by rigorous

mathematical reasoning. Due to the absence of a corresponding convolution integral,

they do not meet the fundamental rule of fractional calculus (Diethelm et al.,

2020). Meanwhile in the study of Baleanu (2020), he found that the findings

of Ortigueira & Constantinou (2019) were not consistent. A fractional calculus
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Türk, Ö, M. Tezer-Sezgin, and Canan Bozkaya. (2014). Finite Element Study

of Biomagnetic Fluid Flow in a Symmetrically Stenosed Channel.Journal of

Computational and Applied Mathematics 259(Part B): 760–770.

Tripathi, D. (2012). A Mathematical Model for Blood throug Inclined Arteries under

the Influence of Inclined Magnetic Field. Journal of Mechanics in Medicine and

Biology. 12(3): 01-18.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



125

Tripathi, D., Prakash, J., Tiwari, A. K., & Ellahi, R. (2020 ). Thermal, Microrotation,

Electromagnetic Field and Nanoparticle Shape Effects on Cu-CuO/blood Flow in

Microvascular Vessels. Microvascular Research . 132 : 104065.

Tzirtzilakis, E. E. (2005). A Mathematical Model for Blood Flow in Magnetic Field.

Physics of Fluids 17(7): 1–15.

Tzirtzilakis, E. E. (2008). Biomagnetic Fluid Flow in a Channel with Stenosis.Physica

D: Nonlinear Phenomena 237(1): 66–81.

Tzirakis, K., L. Botti, V. Vavourakis, and Y. Papaharilaou. (2016). Numerical Modeling

of Non-Newtonian Biomagnetic Fluid Flow. Computers and Fluids 126: 170–80.

Uddin, S., Mohamad, M., Gorji, M. R., Roslan, R., & Ibrahim M. A. (2019).

Fractional Electro-Magneto Transport of Blood Modeled with Magnetic Particles

in Cylindrical Tube without Singular Kernel. Microsystem Technologies 0(2012).

26 : 405-414.

Umadevi, C., Dhange, M., Haritha, B., & Sudha, T. (2021). Flow of blood mixed with

copper nanoparticles in an inclined overlapping stenosed artery with magnetic

field. Case Studies in Thermal Engineering. 25 : 100947.

Usman, M., Hamid, M., Khan, U., Din, S. T. M., Din, Iqbal, M. A. & Wang,

W. (2017). Differential transform method for unsteady nanofluid flow and heat

transfer. Alexandria Engineering Journal. 57(3): 1867-1875.

Waqas, H., Hussain, S., Naseem, R., Mariam, A. & Khalid, S. (2017). Mixed

convection and radiative heat transfer of MHD casson fluid flow by a permeable

stretching sheet with variable thermal conductivity and lying in porous medium.

British Journal of Mathematics & Computer Science. 22(6): 1-14.

Yadav, S. S., & Kumar, K. (2012). Bingham Plastic Characteristics of Blood Flow

Through a Generalized Atherosclerotic Artery with Multiple Stenoses Advances

in Applied Science Research. 3(6): 3551-3557.

Yakubu, D.G., Abdulhameed, M., Adamu, G.T., & Kwami, A.M. (2020 ). A Study of

fractional relaxation time derivative on blood flow in arteries with magnetic and

thermal radiation effects. Case Studies in Thermal Engineering. 26 : 126-144.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



126

Zaman, A., Ali, N., & Sajid, M. (2016). Slip Effects on Unsteady Non-Newtonian

Blood Flow through an Inclined Catheterized Overlapping Stenotic Artery. Aip

Advances. 6(1): 005-018.

Zaman, A., Ali., N., & Sajid., M. (2017). Numerical Simulation of Pulsatile Flow

of Blood in a Porous-saturated Overlapping Stenosed Artery. Mathematics and

Computers in Simulations. 134: 1-16.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



VITA

      Dzuliana Fatin binti Jamil was born in Batu Pahat, Johor on May 26, 1992. 

She attended undergraduate study in Negeri Sembilan and graduated from 

Universiti Teknologi Mara with honour in January 2016. The following September 

she entered Universiti Tun Hussein Onn Malaysia and in October 2018 received 

a Master of Science Degree in Applied Mathematics. She then further her study 

for PhD at the same university starting on October 5, 2018.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH




