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ABSTRACT 

In microgrid’s islanded mode of operation, the precise power sharing is an immensely 

critical challenge when there is a difference in line impedance of the DG inverters 

connected in parallel. The existing control strategies in parallel connected inverter-

based microgrid power sharing issues, voltage compensation at point of common 

coupling (PCC) and circulating current among connected inverters in mismatched 

feeder impedance case need to be addressed. This project aimed to develop 

decentralised power sharing and voltage compensation modelling using the predictive 

control scheme for an islanded microgrid structure with two Voltage Source 

Converters (VSCs). This mismatched impedance was nullified by using the adaptive 

virtual impedance (AVI) control. The finite control set–model predictive control (FCS-

MPC) strategy was used to replace the pulse-width modulation (PWM) strategy in 

order to have fast response, which had the benefit of power sharing among the VSCs, 

while compensating for the rated voltage at the PCC due to load changing. The AVI 

was used to generate the reference voltage, which responded to the values of the 

impedance mismatch by utilising the derivative terms for the FCS-MPC for faster 

tracking response and minimum tracking error when the load changed rapidly. The 

AVI-based predictive control scheme was compared with the conventional and static 

virtual impedance (SVI) methods based on the simulation results obtained through 

MATLAB/Simulink software. From the results, the power sharing accuracy for the 

connected loads for the proposed AVI-based predictive control scheme improved by 

99%. The voltage error for the compensation at PCC was 0.01% under the AVI-based 

predictive control scheme, 1.92 % under the SVI-based control scheme and 0.72 % 

under the conventional control scheme. The circulating current was suppressed up to 

0.047 A under the AVI-based predictive control scheme with the condition of 

mismatched line impedances. The AVI-based predictive control scheme was able to 

enhance power sharing performance and simultaneously maintain the voltage 

magnitude at the PCC effectively when the loads changed.
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ABSTRAK 

Dalam mod operasi pulau mikrogrid, perkongsian kuasa yang tepat adalah cabaran 

yang sangat kritikal apabila terdapat perbezaan dalam galangan talian penyongsang 

DG yang disambungkan secara selari. Strategi kawalan sedia ada dalam isu 

perkongsian kuasa mikrogrid berasaskan penyongsang bersambung selari, pampasan 

voltan pada titik gandingan sepunya (PCC) dan arus edaran antara penyongsang yang 

disambungkan dalam kes galangan penyuap yang tidak sepadan perlu ditangani. 

Projek ini bertujuan untuk membangunkan perkongsian kuasa terdesentralisasi dan 

pampasan voltan menggunakan skema kawalan ramalan untuk struktur mikrogrid 

pulau dengan dua Penukar Sumber Voltan (VSC). Impedans yang tidak sepadan ini 

telah dibatalkan dengan menggunakan kawalan impedans maya suai (AVI). Strategi 

kawalan ramalan model set kawalan terhingga (FCS-MPC) digunakan untuk 

menggantikan strategi modulasi lebar nadi (PWM) untuk mendapat tindak balas 

pantas, yang mempunyai faedah perkongsian kuasa di kalangan VSC, sambil 

mengimbangi penarafan. voltan pada PCC akibat perubahan beban. AVI digunakan 

untuk menjana voltan rujukan, yang bertindak balas kepada nilai ketidakpadanan 

impedans dengan menggunakan istilah terbitan untuk FCS-MPC untuk tindak balas 

penjejakan yang lebih pantas dan ralat penjejakan minimum apabila beban berubah 

dengan cepat. Skim kawalan ramalan berasaskan AVI dibandingkan dengan kaedah 

impedans maya (SVI) konvensional dan statik berdasarkan keputusan simulasi yang 

diperolehi melalui perisian MATLAB/Simulink. Daripada keputusan, ketepatan 

perkongsian kuasa untuk beban yang disambungkan untuk skim kawalan ramalan 

berasaskan AVI yang dicadangkan bertambah baik sebanyak 99%. Ralat voltan untuk 

pampasan di PCC ialah 0.01% di bawah skim kawalan ramalan berasaskan AVI, 1.92 

% di bawah skim kawalan berasaskan SVI dan 0.72 % di bawah skim kawalan 

konvensional. Arus edaran ditekan sehingga 0.047 A di bawah skim kawalan ramalan 

berasaskan AVI dengan keadaan galangan talian yang tidak sepadan. Skim kawalan 

ramalan berasaskan AVI dapat meningkatkan prestasi perkongsian kuasa dan pada 
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masa yang sama mengekalkan magnitud voltan pada PCC dengan berkesan apabila 

beban berubah.
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