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ABSTRACT 

Meta-heuristic algorithms have become popular in finding optimal solutions for 

nonlinear complex problems. These algorithms belong to stochastic and non-

deterministic classes, have some problems with exploration or exploitation. The 

researchers used different strategies to tackle these issues. The flower pollination 

algorithm (FPA) is one of the more popular nature-inspired search algorithms. It has 

powerful global searchability to find the best optimal solution of real-world problems 

by using levy flight to explore the search space. Moreover, its single tuning parameter 

and simple mathematical model make it easier to implement. However, the flower 

pollination algorithm has a few drawbacks which are partially addressed by the 

practitioners. The first issue is regarding the balance between global pollination and 

local pollination, which may negatively affect the optimality of solution. Secondly, the 

FPA has a diversification problem which may leads to premature convergence of the 

optimal solution. This research proposed an algorithm which is based on dynamic 

switch probability to control the balance between exploration and exploitation which 

increases its searchability. The swap operator has been added in local pollination to 

enhance the exploitation behavior of pollens during the pollination process. 

Furthermore, it is hybridized with the Pattern Search algorithm to ensure the optimality 

of the solution. The performance of the proposed algorithm (IFPDSO-PS) has been 

evaluated on seventeen standard test functions and compared with the stated meta-

heuristic algorithms. The statistical tools (Absolute Mean Error & Fried Man) are used 

to rank the performance of all algorithms. The proposed algorithm is ranked first 

among the stated algorithms with respect to its performance in getting the optimal 

solution. 
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ABSTRAK 

Algoritma meta-heuristik telah menjadi popular dalam mencari penyelesaian optimum 

untuk masalah kompleks bukan linear. Algoritma ini tergolong dalam kelas stokastik 

dan bukan deterministik, mempunyai beberapa masalah dengan penerokaan atau 

eksploitasi. Para penyelidik menggunakan strategi yang berbeza untuk menangani isu 

ini. Algoritma pendebungaan bunga (FPA) ialah salah satu daripada algoritma carian 

yang diilhamkan oleh alam semula jadi yang lebih popular. Ia mempunyai 

kebolehcarian global yang berkuasa untuk mencari penyelesaian optimum terbaik bagi 

masalah dunia sebenar dengan menggunakan penerbangan levi untuk meneroka ruang 

carian. Lebih-lebih lagi, parameter penalaan tunggal dan model matematik mudah 

menjadikannya lebih mudah untuk dilaksanakan. Walau bagaimanapun, algoritma 

pendebungaan bunga mempunyai beberapa kelemahan yang sebahagiannya ditangani 

oleh pengamal. Isu pertama adalah mengenai keseimbangan antara pendebungaan 

global dan pendebungaan tempatan, yang mungkin menjejaskan optimum 

penyelesaian secara negatif. Kedua, FPA mempunyai masalah kepelbagaian yang 

boleh membawa kepada penumpuan pramatang bagi penyelesaian optimum. 

Penyelidikan ini mencadangkan satu algoritma yang berasaskan kebarangkalian suis 

dinamik untuk mengawal keseimbangan antara penerokaan dan eksploitasi yang 

meningkatkan kebolehcariannya. Operator swap telah ditambah dalam pendebungaan 

tempatan untuk meningkatkan tingkah laku eksploitasi debunga semasa proses 

pendebungaan. Tambahan pula, ia dihibridkan dengan algoritma Carian Corak untuk 

memastikan penyelesaian yang optimum. Prestasi algoritma yang dicadangkan 

(IFPDSO-PS) telah dinilai pada tujuh belas fungsi ujian standard dan dibandingkan 

dengan algoritma meta-heuristik yang dinyatakan. Alat statistik (Absolute Mean Error 

& Fried Man) digunakan untuk menilai prestasi semua algoritma. Algoritma yang 

dicadangkan berada di kedudukan pertama antara algoritma yang dinyatakan 

berkenaan dengan prestasinya dalam mendapatkan penyelesaian yang optimum.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research background  

 In computer science particularly in operations research and mathematics, optimization 

is the procedure to find the optimal solution by comparing number of solutions 

iteratively. In other words, optimization is a technique of making something (a design, 

system, or decision) as perfect, functional and effective as possible. In optimization, 

mathematical procedures are involved in finding the maximum or minimum value of 

the function with a given set of inputs. Optimization provides an elegant mixture of 

theory and applications where the theory uses some elements of basic calculus and 

elementary linear algebra and continues with functional and complex analysis. 

Optimization has been applied in many industries such as in the information 

technology industry, Medical Science, Bio-informatics, medical images, Engineering 

and Economics. In this era, optimization has become one of the growing research fields 

for researchers, practitioners, and students to study, apply, and conduct research.   

The Optimization algorithms have been divided into two distinct types, 

gradient base or (dependent) techniques and gradient free or (independent) techniques. 

The gradient base techniques use specific rules in getting an optimum solution as 

compare to other promising solutions while the gradient free techniques use random 

process to get the optimum solution. This research focus on nature inspired 

metaheuristic (gradient free) non deterministic techniques. These techniques can be 

further divided into main three subtypes:  Bio inspired, Swarm intelligence inspired, 

physics-based and chemistry-based.  Swarm intelligence is one of the popular field of 

artificial intelligence (AI) over the last three decades ( Hussain et al., 2019;  Komsiyah 

et al., 2016) which has been used in many applications in solving complex 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



2 

optimization problems. Swarm intelligence is inspired by the collective behaviors of 

social swarms of the ant colony, school of fish, bees, worms, termites, and a flock of 

birds, in achieving their goals. The bio-inspired techniques are based on biological 

evolutionary process. These new approaches use biological mechanism like immune 

system, genetic evolution and clonal selection for survival of the fittest. 

In the meta-heuristic approaches, exploration (diversification) is the process of 

finding the different solutions in the search space. Whereas, the exploitation 

(intensification) is the process of focusing the search process in the neighborhood for 

good solutions by exploiting the information obtained (Diab and El-Sharkawy, 2016). 

In each meta-heuristic algorithm, the process of searching the best global solution 

depends on the balancing between exploration and exploitation (Nabil, 2016).  

In the nature-inspired algorithms, the Flower Pollination Algorithm (FPA) is 

one of the meta-heuristic algorithms which has single tunning parameter and simple 

mathematical model. It is easy to understand the mathematical processes of FPA as 

compare to other metaheuristic algorithms which attracts the practitioners to apply it, 

in various domains of research. It has been applied in the domains of engineering, 

education and medical to get near optimal solution. The flower pollination algorithm 

was developed by Xin-She Yang (2012), inspired by the pollination behaviors of 

flower to pollinate for reproduction according to the principles of survival of the 

fittest (Yang, 2014,  Karamanoglu & He, 2014, Emary et al.,2016). The consistency 

of flower in reducing the costs of investigation has helped the pollinators to increase 

the transferring time of pollen, which maximizes the process of production. The 

limited memory of pollinators helps flower consistency to eliminate its learning and 

investigation which represents the incremental steps that depend on the difference or 

similarity of two flowers.  

The flower pollination algorithm (FPA) has some advantages over other 

metaheuristic algorithms due to having single controlling parameter  to select 

exploration ( global search) or exploitation (local search) ( He et al., 2018). In the 

literature studies, Markov theory has  proved the FPA as the global best algorithm 

(He et al., 2017a). However, the flower pollination algorithm also faces some issues 

for solving different complex multimodal optimization problems. Firs t  o n e  i s  t h e  

h i g h  switch probability value 0.8 has been used in basic FPA which causes an 

imbalance between exploration and exploitation (Liu et al., 2019).The balance 

between exploration and exploitation means to control its searchability according to 

the nature 
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of the problem. In optimization problems search space varies which required more 

exploration as compare to exploitation to get global best solution in the whole search 

space. The flower pollination algorithm also face the problem of premature 

convergence in exploitation when the problem is multimodal (Zhou and Wang, 2016, 

Sreenivasa Rao et al., 2018). 

In addressing the problem of balancing between the exploration and 

exploitation, numbers of researchers introduced modifications in the standard FPA to 

enhance its efficiency. There are some modified versions of FPA that have been 

introduced by the authors  (Lazim et al., 2017, Alyasseri et al., 2018, Mishra and Deb, 

2019). All those authors have addressed a single  modification in some parts of the 

FPA e.g. some authors have modified levy’s flight with random walk in standard FPA 

to enhance its searchability, few of the authors brought some changes in switch 

probability by fuzzy inference system and some replace it with exponential dynamic 

switch probability (Valenzuela et al., 2017) (Wong & Ming, 2019).Whereas other 

authors modified in the step size of the levy’s flight and uniform distribution 

parameter (He et al., 2017). Some authors have addressed the issue mentioned earlier 

by using mutation and crossover operator in basic FPA but failed to handle all 

those problems that have been identified (Abdel-baset & Hezam, 2015).  

Furthermore, many researchers have hybridized the FPA with other meta-

heuristic and dynamic algorithms to balance the exploration and exploitation of the 

FPA. The Flower Pollination Algorithm has been used for exploration to hybridize 

with other meta-heuristic algorithms (Kherfane et al., 2014, Alyasseri et al., 2018, 

Sidhu and Mehta, 2017, Abdel-Fattah  et al., 2016, Lazim et al., 2017). In this research 

an improved Flower Pollination algorithm has been proposed for exploration and 

Pattern Search (local search) optimization algorithm for exploitation to tackle the 

issues of diversification and premature convergence appropriately.  

1.2 Motivation for research 

In the last three decades a number of metaheuristic algorithms have been developed to 

handle the enormous complexity and high computational cost of real-world problems. 

In the literature studies, it has been identified that these algorithms work well in 

practice but most of them do not have theoretical analysis. Therefore, it was rarely 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4 

known how to improve their working mechanism. The standard Flower Pollination 

Algorithm (FPA) has been analyzed theoretically to identify its strengths and 

weaknesses which are associated with it in solving complex optimization problems. 

This information helps in this research to understand the strength of FPA and its 

drawbacks. The basic flower pollination algorithm belongs to the class of global search 

algorithms. Therefore, this research has improved the basic FPA and hybrid it with 

local search algorithm (PS) to address the issues of searchability and premature 

convergence to enhance its performance.  

1.3 Problem statement 

The standard Flower Pollination Algorithm (FPA) has become popular among 

researchers; however, some drawbacks have been associated with it in solving 

complex optimization problems. These drawbacks have been listed below: 

a) The premature convergence of algorithm in multi-modal optimization problems

being trapped in local optima may affect the optimality of the solution.

b) The fixed switch probability creates imbalance between global pollination and

local pollination which affects the searchability and performance in getting the

optimum solution.

c) If the best solution is obtained in maximum number of iterations in FPA, there

is still need for further exploring and exploiting to get the universal best optimal

solution.

1.4 Research objectives 

The main task of this research is to develop an improved flower pollination algorithm 

by handling the local optimum with swap operator, dynamic switch probability for 

balancing the exploration and exploitation, and hybridizing it with pattern search for 

improving the performance. The following main objectives have been proposed for 

this research: 
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a) To propose an improved flower pollination algorithm by introducing swap

operator within local pollination for diversification of promising solutions to

avoid the premature convergence for improving the optimality of solution.

b) To further enhance the proposed method in (a) by modifying the fixed switch

probability to dynamic switch probability for balancing the exploration and

exploitation to enhance the searchability of the flower pollination algorithm to

improve the performance of FPA.

c) To enhance the quality of solution hybridized the pattern search approach and to

evaluate the performance of the proposed method by comparing with prevailing

meta-heuristic algorithms, standard flower pollination algorithm on some

selected benchmark functions and real-life power generation (electrical

engineering) problems.

1.5 Scope of research   

The proposed version of the hybrid flower pollination algorithm (IFPDSO-PS) has 

been evaluated on single and multi-objective optimization problems (Economic load 

dispatch to minimize the cost of production, Valve point Loading effect, Transmission 

loses minimization and Minimizing the emissions, Distributed Generation to minimize 

loses, wireless sensor network (Sidhu and Mehta, 2017, Abdelaziz et al., 2016, Hajjej 

et al.,  2016; Sakthivel et al., 2016).  The proposed algorithm has been evaluated on 

standard benchmark functions (Khursheed et al., 2020, Kamboh et al., 2021) and 

real-world optimization problems (Yang, 2015). The performance of the proposed 

algorithm has been compared and analyzed with the standard flower pollination 

algorithm, different improved flower pollination algorithms, hybrid flower 

pollination algorithms, simulated annealing algorithm, artificial bee colony 

algorithm, Whale optimization algorithm, genetic algorithm, grey wolf optimizer and 

some other optimization techniques. The criteria of assessment for the proposed 

algorithm are based on mean and standard deviat i o n  ( S D )  a s  w e l l  a s  M e a n  

A b s o l ute Error and Friedman statistical tool have been used to rank the algorithms 

to measure its performance. All the results and simulations have been discussed in 

Chapter 4 to justify the robustness (in the sense of quality of solution) of the 

improved hybrid flower 
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pollination algorithm (IFPDSO-PS) with dynamic switch probability and swap 

operator. 

1.6 Outlines of the thesis 

The thesis consists of five chapters including the introduction and the conclusion. 

Following is the brief outline of each chapter. First chapter consists of brief   

introduction of historical background of study, motivation for research, problem 

statement, scope of research, aims and objective of study. The second chapter 

describes the concept of optimization and detailed review of Meta-heuristic algorithms 

and the advancements in Flower Pollination algorithm have been discussed in detail. 

After deep review of flower pollination algorithm, gaps are identified and further 

improvements have been identified.  In Chapter 3, the research methodology of the 

proposed algorithm has been explained thoroughly. The identified gaps in FPA are 

adjusted to improve the searchability and convergence of the basic algorithm.  The 

pattern search algorithm has been discussed to hybridize with the improved flower 

pollination algorithm. In Chapter 4, the proposed hybrid algorithm is tested on standard 

benchmark test functions, and its performance is compared with other stated meta-

heuristic algorithms. The algorithm is also tested on economic dispatch problem. The 

last chapter summarizes the research contributions and recommendations for future 

work. PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The theory about nature-inspired algorithms explains the main process (natural 

selection, reproduction, and survival) of living creatures on earth which try its best to 

adapt the demands of the environment. If an organism has succeeded in adapting to 

such an environment, then it has the most chance to survive. This also shows that these 

entities are able to adapt the fluctuations of the environment. This is why these entities 

have more chance to survive longer and to spread their genotype (Yusoff et al., 2011, 

Xue et al., 2016). 

In the last three decades a number of optimization algorithms have been 

developed metaheuristic to handle the enormous complexity and high computational 

cost of real-world problems. The deterministic algorithms produce same output against 

any particular input but the non-deterministic algorithms can produce different output 

for same input in every run. However, hard optimization problems are those problems 

that cannot be solved by deterministic (exact) method within the limits of time. These 

problems can be divided into many categories such as continuous or discrete, mono or 

multi-objective, constrained or unconstrained, and static or dynamic. Among those 

optimization methods, the nature-inspired meta-heuristic techniques are more 

applicable to get possible solution. The nature-inspired meta-heuristic methods are 

divided into four categories: Evolutionary algorithms (EA),Swarm intelligence, 

Physics rule base algorithms and Human behavior base algorithms  (Wierstra et al., 

2008,  Sun et al., 2019). Most of the optimization methods are showing the common 

problems related to comprehensive coverage of change in the behavior of algorithms 

with respect to its performance (Sun et al., 2020).  
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   This chapter explains on previous literatures that show the classification of 

optimization and global overview of meta-heuristic optimization techniques. The main 

focus of this chapter is to identify the gaps and limitations of the meta-heuristic 

methods. Finally, the research related to the topic has been reviewed to find future 

research promising paths. This chapter does not only target on a single problem but 

focuses on more practical problems.  

2.2 Optimization 

The main aim of optimization is searching for optimality which involves a large 

number of problems. Optimization problems can be named and classified in different 

ways. Because of these optimization techniques vary significantly from problem to 

problem. The use of same approach is not possible for different problems because the 

complexity of optimization problems mostly depends on the form of the objective 

function and its constraints. 

The generic mathematical form of most optimization problems: 

Minimize/Maximize: 𝑓 𝑥  

 Subject to: 𝑔 𝑥 0    𝑗 1,2,3 … … … … … … . 𝑚     

ℎ 0    𝑘 1,2,3 … … … … … … … 𝑝 

   𝑥 𝑙 𝑥 𝑥 𝑢   𝑖 1,2,3 … … … … … … … . . 𝑛         (2.1) 

Where, 𝑓 𝑥  represents the fitness (or goal) function, 𝑔 𝑥  inequality constraints and 

ℎ  (x) equality constraints of objective function are represented in equation 2.1. 

Where, ‘j’ and ‘k’ are the number of constraints with limits ‘m’ and ‘p’ respectively. 

The vector ‘x’ represents the ‘n’ design variables to find the optimum. The searchable 

design space is represented by the upper and lower bounds  𝑥 𝑢 and 𝑥 𝑙, of the design 

variables respectively (Yar et al., 2016). 

In general case, the objective functions and constraints can be linear or 

nonlinear and can be explicit or implicit functions. Implicit functions normally appear, 

when a numerical simulation (e.g., a finite element simulation) is used to evaluate a 

fitness function (e.g., a stress value). Also, the design variables should not to be 

continuous. Optimization problems referred to some or all of the design variables 

restricted to integer or discrete values (Ratniyomchai et al., 2016). 
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