OPTIMIZATION OF EXTRACTION PARAMETERS OF SELECTED MALAYSIAN PLANTS TOWARDS ANTIUROLITHIATIC ACTIVITIES (IN-VITRO)

NUR FAZIRA BINTI ABDUL RAHIM

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Science

Faculty of Applied Sciences and Technology
Universiti Tun Hussein Onn Malaysia

JANUARY 2021
I hereby declare that the work in this Master’s Thesis is my own except the quotations and summaries which have been duly acknowledged.

Students :

NUR FAZIRA BINTI ABDUL RAHIM

Date : 19/01/2021

Supervisor :

C.M. DR. NORHAYATI BINTI MUHAMMAD

Date : 19/01/2021

Co-supervisor :

Ts. DR. NORAZLIN BINTI ABDULLAH

Date : 22/1/2021
ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my supervisor, ChM. Dr. Norhayati Binti Muhammad for her continuous guidance and support given throughout the duration for this research. Besides that, I also greatly indebted to my co-supervisor, Ts. Dr Norazlin Binti Abdullah for her advices, criticisms and motivational supports had given to complete this research successfully. The cooperation given by family, lecturers and staffs in Department of Technology and Natural Resources as well as fellow friends in guiding all the way to complete the project is also highly appreciated. Appreciation also goes to everyone involved directly or indirectly towards the compilation of this thesis.

Last but not least, I would like to gratefully acknowledge Universiti Tun Hussein Onn Malaysia (UTHM) for a research grant and encouragement to undertake the study of herbs. This research is sponsored by the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme (FRGS) (FRGS/1/2017/WAB11/UTHM/03/1) Vot No. 1646 and partially funded by Universiti Tun Hussein Onn Malaysia under Postgraduate Research Grant Scheme (GPPS) Code H290.
ABSTRACT

Urolithiasis has become a worldwide problem and its management depends on surgical procedures that are costly and cause reoccurrence. *Anacardium occidentale* (*gajus*), *Ananas comosus* (*nanas*), *Aquilaria malaccensis* (*karas*), *Centella asiatica* (*pegaga*), *Ceiba petandra* (*kekabu*), *Euphorbia hirta* (*ara tanah*), *Ficus carica* (*ara*), *Melastoma malabathricum* (*senduduk*), *Piper sarmentosum* (*kaduk*) and *Tradescantia zebrina* (*kura-kura air*) have been used traditionally to treat urolithiasis. However, no scientific data has been recorded on the extraction parameters. Thus, the objective of this study is to assess for the best ethnobotanical plant extract with good antiurolithiatic properties, followed by optimization of extraction parameters of selected plant extracts. The antiurolithiatic activities conducted were turbidity and titrimetric assays (*in-vitro*). Ethnobotanical plant extracts assessment revealed *A. occidentale* and *A. malaccensis* had the best antiurolithiatic activities as both plants had no significant difference with standard drugs (*p* > 0.05). The extraction parameters studied were solvent concentration, extraction temperature and time that was screened using two-level factorial design and optimized by response surface methodology and central composite design. The results showed that optimum extraction condition for *A. occidentale* extract (0.4% ethanol, 31.5°C, 30 minutes) on both antiurolithiatic activities were exhibited 85.57±0.43% (turbidity) and 96.48±0.70% (titrimetric). Meanwhile, optimum condition of *A. malaccensis* extract (100% ethanol, 30.0°C, 30 minutes) demonstrated 83.58±0.75% (turbidity) and 86.57±0.80% (titrimetric). Phenols, alkaloids, saponins, flavonoids, tannins and terpenoids were identified in both optimized extracts and all have positive correlation on both antiurolithiatic assays except flavonoids. Toxicity testing using brine shrimp lethality assay presented non-toxic effect on optimized *A. occidentale* (LC50, 1412.50µg/mL) but *A. malaccensis* (LC50, 30.50µg/mL) revealed toxic effects. This study has given basic scientific evidence that optimum extraction condition is necessary to obtain optimum antiurolithiatic activity.
ABSTRAK

Urolithiasis telah menjadi permasalahan di seluruh dunia dan pengurusannya bergantung pada prosedur pembedahan yang mahal dan sering menyebabkan pembentukan semula. *Anacardium occidentale* (gajus), *Ananas comosus* (nanas), *Aquilaria malaccensis* (karas), *Centella asiatica* (pegaga), *Ceiba petandra* (kekabu), *Euphorbia hirta* (ara tanah), *Ficus carica* (ara), *Melastoma malabthricum* (senduduk), *Piper sarmentosum* (kaduk) dan *Tradescantia zebrina* (kura-kura air) telah digunakan secara tradisional untuk merawat urolithiatik. Bagaimanapun, tiada data saintifik yang direkodkan mengenai parameter pengekstrakan. Oleh itu, objektif kajian ini adalah untuk menyaring ekstrak herba etnobotanik terbaik dengan sifat antiurolithiatik yang baik, diikuti dengan pengoptimuman parameter pengekstrakan terhadap ekstrak terpilih. Kaedah antiurolithiatik yang dilakukan adalah kekeruhan dan titrimetrik (*in-vitro*). Analisis awal memaparkan aktiviti antiurolithiatik terbaik pada *A. occidentale* dan *A. malaccensis* kerana tiada perbezaan yang ketara dengan ubat standard, (p>0.05). Parameter pengekstrakan yang dikaji adalah kepekatan pelarut, suhu dan masa pengekstrakan yang disaring melalui kaedah faktorial dua peringkat dan dioptimumkan dengan kaedah permukaan tindak balas dan komposit pusat. Hasil kajian mendapati bahawa keadaan pengekstrakan optimum untuk aktiviti antiurolithiatik bagi ekstrak *A. occidentale* (0.4% etanol, 31.5°C, 30 minit) memperolehi 85.57±0.43% (keruhan) dan 96.48±0.70% (titrimetrik). Sementara itu, keadaan optimum ekstrak *A. malaccensis* (100% etanol, 30°C, 30 minit) menunjukkan 83.58±0.75% (keruhan) dan 86.57±0.80% (titrimetrik). Fenol, alkaloid, saponin, flavonoid, tanin dan terpernoid dikenal pasti dalam kedua-dua ekstrak yang dioptimumkan dan kesemuanya mempunyai hubungan positif dengan ujian antiurolithiatik kecuali flavonoid. Ujian ketoksikan mendapati kesan tidak toksik pada *A. occidentale* yang dioptimumkan (LC\(_{50}\), 1412.50μg/mL) tetapi *A. malaccensis* (LC\(_{50}\), 30.50μg/mL) menunjukkan kesan toksik. Kajian ini telah memberikan bukti saintifik asas bahawa keadaan pengekstrakan optimum diperluankan untuk mendapatkan aktiviti antiurolithiatik yang optimum.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF PUBLICATION</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Research background 1
1.2 Problem statement 2
1.3 Research objectives 4
1.4 Scope of study 4
1.5 Significance of study 5

CHAPTER 2

LITERATURE REVIEW

2.1 Overview of urolithiasis 7
2.1.1 Current management of urolithiasis 9
2.2 Traditional remedies and scientific studies on traditional-used plants for urolithiasis 10
2.3 Effect of extraction parameters on antiurolithiatic activities 13
2.3.1 Solvent concentration 13
2.3.2 Extraction temperature 14
2.3.3 Extraction time 15
2.4 Phytochemical associated with antiurolithiatic activities

2.4.1 Phenols 16
2.4.2 Alkaloids 16
2.4.3 Saponins 17
2.4.4 Flavonoids 18
2.4.5 Tannins 18
2.4.6 Terpenoids 19

2.5 Overview of studied Malaysian plants 19

2.5.1 Anacardium occidentale (gajus) 20
2.5.2 Ananas nanus Linn. (nanas) 21
2.5.3 Aquilaria malaccensis (karas) 22
2.5.4 Ceiba petandra (kekabu) 23
2.5.5 Centella asiatica (pegaga) 24
2.5.6 Euphorbia hirta (ara tanah) 25
2.5.7 Ficus carica (ara) 26
2.5.8 Melastoma malabathricum (senduduk) 27
2.5.9 Piper sarmentosum (kaduk) 28
2.5.10 Tradescantia zebrina (kura-kura air) 29

2.6 Response surface methodology (RSM) 32

2.6.1 Screening design of parameters 34
2.6.2 Optimization process 34

2.7 Toxicity 35

CHAPTER 3 RESEARCH METHODOLOGY 37

3.1 Introduction 37

3.2 Chemical and equipment 39

3.2.1 Reagents and solvents 39

3.2.2 Apparatus and instruments 39

3.3 Collection of plant samples 40

3.4 Sample preparation 41

3.5 Preliminary antiurolithiatic assessment of ethnobotanical plant extracts 42

3.6 Extraction process 42
3.7 Evaluation of antiurolithiatic activities

3.7.1 In-vitro turbidity (nucleation) assay

3.7.2 In-vitro titrimetric (calcium oxalate dissolution) assay

3.8 Phytochemical analysis

3.8.1 Qualitative methods

3.8.1.1 Phenols and tannins

3.8.1.2 Alkaloids

3.8.1.3 Saponins

3.8.1.4 Flavonoids

3.8.1.5 Terpenoids

3.8.2 Quantitative methods

3.8.2.1 Total phenolic content

3.8.2.2 Total alkaloid content

3.8.2.3 Total saponin content

3.8.2.4 Total flavonoid content

3.8.2.5 Total tannin content

3.8.2.6 Total terpenoid content

3.9 Experimental design for extraction parameters

3.9.1 Screening process

3.9.2 Optimization process

3.10 Toxicity testing (in-vitro)

3.11 Statistical analysis

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Introduction

4.2 Moisture analysis and extraction yield

4.3 Preliminary antiurolithiatic assessment of ethnobotanical plant extracts

4.3.1 Turbidity assay (in-vitro)

4.3.2 Titrimetric assay (in-vitro)

4.3.3 Qualitative phytochemical assessment

4.4 Optimum extraction condition for A.
occidentale on antiurolithiatic activities 63
4.4.1 Screening of extraction parameters 64
4.4.1.1 Turbidity assay (in-vitro) 64
4.4.1.2 Titrimetric assay (in-vitro) 67
4.4.2 Optimization of extraction parameters 69
4.4.2.1 Full model fitting 71
4.4.2.2 Effect of extraction parameters on antiurolithiatic activities 74
4.4.2.3 Validation of the model 79
4.5 Optimum extraction conditions for A. malaccensis on antiurolithiatic activities 80
4.5.1 Screening of extraction parameters 80
4.5.1.1 Turbidity assay (in-vitro) 81
4.5.1.2 Titrimetric assay (in-vitro) 83
4.5.2 Optimization of extraction parameters 86
4.5.2.1 Full model fitting 88
4.5.2.2 Effect of extraction parameters on antiurolithiatic activities 91
4.5.2.3 Validation of the model 96
4.6 Summarization of optimum extraction condition on both optimized Anacardium occidentale and Aquilaria malaccensis 97
4.7 Characterization of optimized Anacardium occidentale and Aquilaria malaccensis 98
4.7.1 Phytochemical analysis 98
4.7.2 Determination of toxicity 102

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 104
5.1 Conclusion 104
5.2 Recommendations 105

REFERENCES 106

APPENDICES 137

VITA 163
LIST OF TABLES

2.1 Some of Malaysian plants used traditionally for kidney stones diseases 11
2.2 Summary of potential antiurolithiatic activity presence in plant herbs 30
3.1 Collection of plant samples summarization 40
3.2 List of parameters and its values for two-level factorial design 50
3.3 Design layout for the screening of significant extraction parameters by two-level factorial design 50
3.4 Design layout for the optimization process using RSM 51
4.1 Moisture content and extraction yield of selected Malaysian plants on preliminary antiurolithiatic assessment 56
4.2 The inhibition activity of CaOx crystal in positive controls and plant extracts for preliminary turbidity assay 58
4.3 The dissolution activity of CaOx crystal in positive controls and plant extracts for preliminary titrimetric assay 61
4.4 Summary of phytochemicals assessment for ten (10) types of studied Malaysian ethnobotanical plants 62
4.5 The inhibition activity of CaOx crystal in positive controls and A. occidentale extracts for extraction parameters screening on turbidity assay 65
4.6 The results of fractional factorial design (Resolution III) analysis on turbidity assay of A. occidentale extracts 66
4.7 The dissolution activity of CaOx crystal in positive controls and A. occidentale extracts for extraction parameters screening on titrimetric assay 67
4.8 The results of fractional factorial design (Resolution III)
analysis on titrimetric assay of *A. occidentale* extracts 68

4.9 Design layout and response surface methodology results of
A. occidentale on antiurolithiatic activities 70

4.10 Quadratic polynomial equations of *A. occidentale* extracts
for the two responses in terms of coded factors 71

4.11 ANOVA for the full quadratic model for both
antiurolithiatic assays of *A. occidentale* extracts 73

4.12 Model summary statistics for antiurolithiatic assays of *A.
occidentale* 74

4.13 Experimental data of the validation of predicted values at
optimal extraction conditions for *A. occidentale* 80

4.14 The inhibition activity of CaOx crystal in positive controls
and *A. malaccensis* extracts for extraction parameters
screening on turbidity assay 82

4.15 The results of fractional factorial design (Resolution III)
analysis on turbidity assay of *A. malaccensis* extracts 82

4.16 The dissolution activity of CaOx crystal in positive
controls and *A. malaccensis* extracts for extraction
parameters screening on titrimetric assay 84

4.17 The results of fractional factorial design (Resolution III)
analysis on titrimetric assay of *A. malaccensis* extracts 85

4.18 Design layout and response surface methodology results of
A. malaccensis on antiurolithiatic activities 87

4.19 Quadratic polynomial equations of *A. malaccensis* extracts
for the two responses in terms of coded factors 88

4.20 ANOVA for the full quadratic model for both
antiurolithiatic assays of *A. malaccensis* extracts 90

4.21 Model summary statistics for antiurolithiatic assays of *A.
malaccensis* 91

4.22 Experimental data of the validation of predicted values at
optimal extraction conditions for *A. malaccensis* 97

4.23 Summary data of before and after optimization process on
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.24</td>
<td>Summary on qualitative of phytochemicals assessment for optimized A. occidentale and A. malaccensis extracts</td>
<td>98</td>
</tr>
<tr>
<td>4.25</td>
<td>Summary on quantitative of phytochemicals assessment for optimized A. occidentale and A. malaccensis extracts</td>
<td>99</td>
</tr>
<tr>
<td>4.26</td>
<td>Correlation analysis</td>
<td>100</td>
</tr>
<tr>
<td>4.27</td>
<td>Summary of the probit of mortality and log$_{10}$ concentration</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

2.1 Pathogenesis of stone formation 8
2.2 *Anacardium occidentale* plant 20
2.3 *Ananas comosus* Linn. plant and fruit 21
2.4 *Aquilaria malaccensis* (a) plant and (b) stem 23
2.5 *Ceiba petandra* (a) plant and (b) leaves 24
2.6 *Centella asiatica* plant 25
2.7 *Euphorbia hirta* plant 26
2.8 *Ficus carica* plant 27
2.9 *Melastoma malabathricum* (a) plant and (b) flower 28
2.10 *Piper sarmentosum* plant 29
2.11 *Tradescantia zebrina* plant 30
2.12 RSM steps summarization 33
2.13 Highlight of central composite design (CCD) 35
3.1 Overall flow chart design for this study 38
4.1 Pareto chart of fractional factorial design (Resolution III) analysis on turbidity assay of *A. occidentale* extracts 66
4.2 Pareto chart of fractional factorial design (Resolution III) analysis on titrimetric assay of *A. occidentale* extracts 69
4.3 Response surface plots of *A. occidentale* showing the effect of (a) solvent concentration and extraction temperature, (b) solvent concentration and extraction time, and (c) extraction temperature and extraction time on turbidity assay 75
4.4 Response surface plots of *A. occidentale* showing the effect of
(a) solvent concentration and extraction temperature, (b) solvent concentration and extraction time, and (c) extraction temperature and extraction time on titrimetric assay

4.5 Pareto chart of fractional factorial design (Resolution III) analysis on turbidity assay of A. malaccensis extracts

4.6 Pareto chart of fractional factorial design (Resolution III) analysis on titrimetric assay of A. malaccensis extracts

4.7 Response surface plots of A. malaccensis showing the effect of (a) solvent concentration and extraction temperature, (b) solvent concentration and extraction time, and (c) extraction temperature and extraction time on turbidity assay

4.8 Response surface plots of A. malaccensis showing the effect of (a) solvent concentration and extraction temperature, (b) solvent concentration and extraction time, and (c) extraction temperature and extraction time on titrimetric assay
LIST OF SYMBOLS AND ABBREVIATIONS

% - Percent
°C - Degree celcius
cm - Centimeter
g - Gram
M - Molarity
mg - Milligram
mL - Milliliter
mm - Millimeter
N - Normality
μg - Microgram
μL - Microliter
ANOVA - Analysis of variance
BSLA - Brine shrimp lethality assay
CaOx - Calcium oxalate
CCD - Central composite design
CV - Coefficient of variation
ESWL - Extracorporial shock wave lithotripsy
GAE - Gallic acid equivalent
LC - Lethality concentration
PNL - Percutaneous nephrolithotomy
RE - Rutin equivalent
RSM - Response surface methodology
TAE - Tannic acid equivalent
TFC - Total flavonoid content
TPC - Total phenolic content
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URS</td>
<td>Uretoscopy</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>A</td>
<td>Herbarium specimens</td>
</tr>
<tr>
<td>B</td>
<td>Process of turbidity (nucleation) assay</td>
</tr>
<tr>
<td>C</td>
<td>Process of titrimetric (calcium oxalate dissolution) assay</td>
</tr>
<tr>
<td>D</td>
<td>Graph formation of CaOx crystal in all samples for preliminary antiurolithiatic assessment on turbidity assay</td>
</tr>
<tr>
<td>E</td>
<td>The observations of qualitative phytochemical assessment for ten (10) types of Malaysian plants studied</td>
</tr>
<tr>
<td>F</td>
<td>Graph formation of CaOx crystal in A. occidentale extracts for extraction parameters screening on turbidity assay</td>
</tr>
<tr>
<td>G</td>
<td>Graph formation of CaOx crystal in A. occidentale extracts for optimization of extraction parameters on turbidity assay</td>
</tr>
<tr>
<td>H</td>
<td>Graph formation of CaOx crystal in A. malaccensis extracts for extraction parameters screening on turbidity assay</td>
</tr>
<tr>
<td>I</td>
<td>Graph formation of CaOx crystal in A. malaccensis extracts for optimization of extraction parameters on turbidity assay</td>
</tr>
<tr>
<td>J</td>
<td>Qualitative phytochemical assessment of optimized A. occidentale and A. malaccensis</td>
</tr>
<tr>
<td>K</td>
<td>Standard curve of quantitative determination of</td>
</tr>
</tbody>
</table>
TPC, TFC, total tannin content and total terpenoid content assays 159

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Finney’s table 161</td>
</tr>
<tr>
<td>M</td>
<td>Graph probit of mortality for both optimized extracts 162</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATION

Nur Fazira Abdul Rahim, Norhayati Muhammad, Norazlin Abdullah, Balkis A. Talip and Kay Huck Poh. 2020. The interaction effect and optimal formulation of selected polyherbal extracts towards antioxidant activity. Food Research, 4(6), 2042-2048. (Scopus)
CHAPTER 1

INTRODUCTION

1.1 Research background

In this century, medicinal plant therapies that have been acknowledged by traditional practitioners to cure various diseases has been well adopted and adapted by today communities all over the world. Globally, herbal medicines are growing fast nowadays might be because they are cost effective, eco-friendly, readily available and culturally acceptable as well as high margin of safety with minimal side effects as compared to synthetic drugs (Arya, Pandey, & Verma, 2017; Biglarkhani et al., 2017; Jain, 2003). Besides that, medicinal plants have a rich source of phytochemicals and allopathic constituents that have been conventionally used for treating ailments including urolithiasis which is characterized by the formation of stones in the urinary system (Ahmed, Hasan & Mahmood, 2016; Yadav et al., 2011; Ahmad & Ismail, 2003).

Malaysia is well-known to have wide variety of medicinal plant sources that may mediate urolithiasis. Diverse ethnicity in Malaysian communities such as Malay, Chinese, Indian and indigenous people was inherited with traditional knowledge on medicinal plants that could inhibit and disintegrate kidney stone formation (Adnan & Othman, 2012; Ong & Norzalina, 1999). Over the years, antiurolithiatic plants had been widely used in the form of decoction, infusion, or juice, to eliminate kidney stones and to prevent their reoccurrence (Ahmed et al., 2018). Previous pre-clinical and clinical studies have established valuable effects of many plants related with kidney functions and stones in experimental animals (Das, Vasudeva & Sharma, 2019).

Basically, the term used in urolithiasis is based on the location of the stone such as nephrolithiasis (renal calculi or kidney stones), ureterolithiasis (ureter calculi...
or ureter stone) and cystolithiasis (bladder calculi) (Mikawlrwng, Kumar & Vandana, 2014). It is a complex physicochemical process as its formation due to the super saturation of mineral salts in the urinary tract (Balaji, Banji & Banji, 2015). It is estimated to occur in approximately 12% of the global population and its occurrence rate in males is 70-81% and 47-60% in female (Shukla et al., 2017; Soundararajan et al., 2006). It can range from a minor health problem to a life threatening situation since it is a multifactorial disease with high prevalence and reoccurrence rate. There are four categories of urinary stones which are dominantly calcium oxalate (75-90%), followed by struvite (10-15%), uric acid (3-10%) and cysteine stone which only 0.5 to 1% (Aggarwal et al., 2010).

In this study, calcium oxalate (CaOx) stone is highlighted as it is the most common stone and it was prepared experimentally. The properties presence in the extracts of Anacardium occidentale (gajus), Ananus cosmosus (nanas), Aquilaria malaccensis (karas), Ceiba pentandra (kekabu), Centella asiatica (pegaga), Euphorbia hirta (ara tanah), Ficus carica (ara), Melastoma malabathricum (senduduk), Piper sarmentosum (kaduk), and Tradescantia zebrina (kura-kura air) were being determined for its antiurolithiatic effects as well as its phytochemical constituents. In evaluation of antiurolithiatic activity, polyherbal drug (cystone) and chemical drug (potassium citrate) were used as a reference standard. The effect of solvent concentration and also extraction time and temperature were evaluated to determine the optimum extraction condition for maximizing antiurolithiatic therapy against CaOx which induced urolithiasis (in-vitro) for the selected optimized extracts.

1.2 Problem statement

In recent years, urolithiasis has become a worldwide problem as it is long term ailment that give consequences throughout patient's lifetime (Al-yusofy et al., 2017; Patel et al., 2012). It is generally known as third common affliction of urinary system after urinary tract infection and prostrate disease with estimated occurrence in approximately more than 1/10th of population (Shukla et al., 2017; Bahmani et al., 2016; Hiatt & Friedman, 1982). The prevalence of this ailment has been increasing in the world ranging from 7% to 13% in North America, 5% to 9% in Europe and 1% to 5% in Asia (Liu et al., 2018). In Germany, it is reported that almost 750 000 kidney
stone cases per year with 25% experienced stone reoccurrence (Knoll, 2010; Hesse et al., 2003). This might be influenced by climate, dietary and lifestyle habits (Romero, Akpinar & Assimos, 2010).

Malaysia has shown the same pattern of incidence as it is growing for period of year in 1962 to 1981 per 100 000 populations (Liu et al., 2018; Alatab et al., 2016; Sreenevasan, 1990). Out of more than 4000 people subjected to this disease, the Chinese community lead with of 48%, followed by Malays (37.4%), Indians (13%) and mostly other races with 1.3% (Sreenevasan, 1990). However, another study done in teaching hospital in Kelantan, Malaysia reported that Malay ethnicity dominated with 91.1% (Nouri & Hassali, 2018). There were lack of documentation on this disease in Malaysia and last published was in 1990 (Nouri & Hassali, 2018; Sreenevasan, 1990). In addition, Malaysia has a subtropical climate that could contribute to the formation of kidney stones in humans. Such climate tends to accelerate body dehydration process caused by exposure to hot temperature. This situation causes urine concentration thus leading to stone formation and high frequency of urolithiasis (Hussein et al., 2013).

Nowadays, the management of urolithiasis includes surgical procedures such as extracorporial shock wave lithotripsy (ESWL), ureteroscopy (URS) and percutaneous nephrolithotomy (PNL). EWSL is the most widely used method as it involves noninvasive procedure that uses sound waves to fragment calculi (Silberstein, Lakin & Parsons, 2008). However, stones that larger than five (5) mm or stones failed to pass through the urinary tract required those interventional procedures (Mikawlrawng et al., 2014; Gilhotra, Mohan & Christina, 2013). In addition, this treatment has been proved to have renal side effects as well as quite expensive and high in reoccurrence rate (Tiwari et al., 2012).

Even though there are plentiful of progress in the study of the biological and physical manifestation of urolithiasis, there is truly no satisfactory drug available for the treatment of urolithiasis, particularly for the prevention of reappearance of the stones (Moe, Pearle & Sakhaee, 2011). The pharmaceutical drugs available nowadays are mostly might have adverse effects such as cause nausea, anxiety and also kidney damage that compromise their long-term use (Ankur et al., 2010; Atmani & Khan, 2000). In addition, it was reported that approximately 50% of patients with previous urinary or kidney stones have reappearance within 10 years (Ankur et al., 2010). Therefore, urolithiasis can be considered as a serious disease.
1.3 Research objectives

The main objective of this study is to optimize extraction parameters of selected Malaysian plants on *in-vitro* antiurolithiatic activity. Meanwhile, the specific objectives are as follows:

i. to assess the best ethnobotanical plant extract that had higher antiurolithiatic activities than standard drugs (positive controls) or no significant different with those drugs ($p>0.05$).

ii. to determine the optimum extraction parameters for maximum inhibitory and dissolution antiurolithiatic effect on selected plant extracts.

iii. to evaluate the phytochemical contents and toxicity effect of selected optimized plant extracts.

1.4 Scope of study

In order to achieve the research objective, the scopes of study that has been determined are:

i. The plant extracts used are *A. occidentale* (leaves), *A. cosmosus* (fruit), *A. malaccensis* (stem), *C. pentandra* (leaves), *C. asiatica* (whole), *E. hirta* (whole), *F. carica* (leaves), *M. malabathricum* (root), *P. sarmentosum* (leaves) and *T. zebrina* (whole).

ii. The extraction process on preliminary antiurolithiatic assessment extracts was done by decoction method.

iii. The best plant extracts on screening of antiurolithiatic properties were determined if the plant extracts demonstrate higher or no significant difference with standard drug, ($p>0.05$).

iv. The antiurolithiatic properties was analyzed by turbidity (nucleation) and titrimetric (calcium oxalate dissolution) assays.

v. The extraction parameters that were evaluated are solvent concentration, extraction temperature and extraction time.

vi. The screening of extraction parameters was designated using fractional factorial design (Resolution III, 2^{3-1} design).
vii. The optimum solvent concentration, extraction temperature and time were determined by using response surface methodology (RSM).

viii. The phytochemical contents of the optimized extract that were evaluated are phenols, alkaloids, saponins, flavonoids, tannins and terpenoids by qualitative and quantitative methods.

ix. The toxicity test of the optimized extract was done by using brine shrimp lethality assay.

1.5 Significance of study

The World Health Organization (WHO) reported that around 80% of the population in developing countries still depends on medicinal plants to treat various diseases (Bahmani et al., 2016; Ghatapanadi, Johnson & Rajasab, 2011). Recently, research on beneficial uses of medicinal plants have become mainstream globally including Malaysia. An estimate of 73% of households in Malaysia consume herbal products based on a survey conducted by the Forest Research Institute Malaysia (FRIM) (Ahmad et al., 2015). Malaysia have approximately 15000 species of vascular plants with about 8300 species in Peninsular Malaysia and 12000 species in Sabah and Sarawak (Saw et al., 2010). In addition, around 1300 species out of 14500 flowering plants are recorded to have medicinal use. Same goes to Sabah where about 1200 species out of 7411 species (excluding bryophyta, algae and fungi) found were used statewide for medicinal purposes including kidney stone problems (Kulip et al., 2010; Kulip, 2003).

Besides that, medicinal plants have been used traditionally to treat kidney stone even before the invention of modern treatments (Kumar, Latheef, & Remashree, 2014). There were studies reported that medicinal plants being effective and naturally safe remedies for kidney stone diseases (Alok et al., 2013; Butterweck & Khan, 2009). In the food industry, the formulated herbal supplement drinks from medicinal plants are becoming significant as consumer awareness is increasing in order to develop a healthy lifestyle for managing urolithiasis. Thus, this study will start by screening a few types of Malaysian medicinal plants that have been traditionally reported for its antiurolithiatic potential and determine the optimum conditions for evaluating the antiurolithiatic activities (in-vitro).
REFERENCES

Abu Bakar, M. F., Mohamed, M., Rahmat, A., & Fry, J. (2009). Phytochemicals and
antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chemistry, 113, 479–483.

Biotechnology, 15(35), 1855–1863.

and Research, 4(4), 154–160.

Papoutsis, K., Pristijono, P., John, B., Statopoulos, C. E., Michael, C., Scarlett, C.
J., & Vuong, Q. V. (2018). Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous Citrus pomace extracts. Food Bioscience, 21, 20–26.

effect of polyherbal formulations on DPPH radical scavenging activity. *Journal of Science and Technology, 10*(2), 116–121.

Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (*Camellia
sinensis or C. assamica) leaves. *Journal of Food Science and Technology, 53*(1), 721–729.

content, antioxidant activity, and antibacterial activity of five plants from the Commelinaceae family. *Antioxidants, 3*, 758–769.

