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Abstract—Population growth and industrialization are 

driving up global energy consumption, which is expected to soar 

in the near future. However, the predominant use of fossil fuels 

exacerbates environmental pollution and greenhouse gas 

emissions, which are primary contributors to global warming. 

To address this, this study proposes an artificial neural network 

(ANN) model designed to forecast the power output of both 

monocrystalline and polycrystalline photovoltaic (PV) panels. 

The aim is to assess the performance and efficiency of these two 

PV panel types. Data spanning from 2018 to 2020 was gathered, 

with meteorological parameters serving as input for the ANN 

model. Polycrystalline panels exhibit higher voltage output, 

whereas monocrystalline panels typically yield greater current. 

The model's mean square error (MSE) for training, testing, and 

validation equated, indicating robust learning during training 

without overestimation. Both models demonstrate an excellent 

fit to the data, evident from the correlation coefficient (R) 

reaching 1. The predicted values closely align with actual trends 

for both panel types, with insignificant disparities in estimated 

voltage, current, and power. Overall, the polycrystalline panel 

outperforms the monocrystalline panel, boasting efficiencies of 

0.999% and 0.997%, respectively. 

Keywords—photovoltaic, artificial neutral network, voltage, 

current.  

I. INTRODUCTION 

In recent years, the expansion and use of renewable 

energy have emerged as an inescapable path in the global 

energy revolution. As such, renewable energy is 

characterized as a sustainable and environmentally friendly 

source. It has the capacity to mitigate environmental impacts, 

minimize or eradicate secondary waste, and provide enduring 

energy solutions aligned with energetic, economic, and social 

needs [1]. Despite renewable energy being sustainable and 

inexhaustible, unlike finite fossil fuels, the prominence of 

photovoltaic (PV) power has been steadily rising in recent 

years, emerging as a pivotal component of the energy 

transition [2]. As fossil fuel prices escalate and their 

reliability wavers, photovoltaic systems are gaining traction 

in the global market. Moreover, with the advancement of 

green energy technologies and increased accessibility, 

photovoltaics are recognized as a viable cleaner energy 

option, despite being inherently reliant on sunlight. Solar 

energy production is affected by solar irradiance, which in 

turn is influenced by weather variables such as cloud cover, 

wind speed, and wind direction. In certain scenarios, 

customers may seek insights into the performance of 

deployed PV systems across various weather conditions. 

Artificial neural networks (ANNs) stand out as one of the 

most commonly utilized prediction methods for this purpose 

[3]. The fundamental form of artificial neural networks 

(ANNs) mimics the functionality of the human brain. Similar 

to the human brain, which can learn new abilities and adjust 

to varying situations, ANNs possess the capacity to analyse 

incomplete, unclear, and uncertain data and draw conclusions 

autonomously [4].  

The anticipated surge in energy demand is attributed to 

global population growth and industrialization. However, the 

extensive reliance on fossil fuels for energy generation 

significantly contributes to environmental pollution and 

greenhouse gas emissions, exacerbating global warming. To 

address these challenges, a blend of renewable and non-

renewable energy sources can help mitigate the drawbacks 

associated with fossil fuel usage. Solar energy, harnessed 

through photovoltaic (PV) technology, presents a sustainable 

alternative. The use of PV systems for power generation 

began in the 1970s and is currently experiencing fast global 

development [5]. Photovoltaic module efficiency is 

determined by a variety of environmental parameters, 

including solar irradiation, cell temperature, ambient 

temperature, and local climate conditions. Manufacturers 

generally produce module specifications based on 

conventional test conditions, which may not correctly 

represent practical performance, thus leading to 

overestimates of productivity. Accurately forecasting PV 

module power output and selecting optimal modules require 

reliable data and a thorough understanding of module 

performance under a wide range of operating scenarios. 

Therefore, the artificial neural network model employed in 

this study must be suitable and precise to facilitate the 

selection of the most suitable technology for the given 

location. 
The objective of this paper is to assist solar energy 

operators in effectively managing, estimating, and strategizing 
electricity pricing to enhance their electricity generation 
capacity. The specific goals of this study are: to construct an 
artificial neural network (ANN) model for forecasting the 
output power of various PV types, to assess the voltage, 
current, and power characteristics of each module, and to 
compare the efficiencies of monocrystalline and 
polycrystalline panels.  
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II. THEORY OF PHOTOVOLTAIC (PV)  

A. Overview Of PV 

Photovoltaics refers to the process by which solar cells 
convert sunlight directly into electricity. While it is 
experiencing rapid growth as a renewable alternative to 
conventional fossil fuels, photovoltaics is relatively new 
compared to other electricity generation technologies, with 
initial practical demonstrations dating back to the 1950s [7]. 
Currently, photovoltaic systems are extensively deployed to 
support electricity supply to the power grid due to the cost 
competitiveness of solar cell electricity in numerous regions. 
The predominant material used in most solar cells available 
today is silicon, which enhances the efficiency of solar cell 
electricity conversion from sunlight while remaining 
affordable. These cells are often aggregated to create larger 
modules, which can be installed on rooftops of residential or 
commercial buildings in ceiling-mounted racks or assembled 
into massive utility-scale solar energy systems.  

B. Photovoltaic Electrical Characteristics 

The electrical performance of photovoltaic cells is tested 
in order to identify important parameters and conversion 
efficiency. The I-V curve illustrates the features of the PV, 
shown in Fig. 1 [8]. This graph depicts the relationship 
between current and voltage over the load spectrum, ranging 
from short circuit current (Isc) to open circuit voltage (VOC). It 
demonstrates the performance of solar cells, modules, and 
arrays. Solar cells or modules are exposed to a specific degree 
of radiation in order to ensure optimal power generation while 
controlling cell temperature, load resistance, and output 
current. The circuit includes two endpoints: the open circuit 
voltage (Voc) and the short circuit current (Isc). Voc refers to 
the voltage across the positive and negative terminals when 
the circuit is open, resulting in zero electricity flow due to 
infinite load resistance. The power curve peaks at its 
maximum, known as PMP, which represents the operational 
position where the solar cell produces the most power 
production. The position, which is known as the maximum 
power point (MPP), is defined by the voltage VMP and the 
current IMP, also known as PMAX or MPP. Isc represents the 
current flowing between a cell or unit's positive and negative 
terminals, with zero voltage between the terminals due to the 
absence of load resistance. Solar cells and modules operate at 
various voltages and currents. It is challenging to ascertain the 
true efficiency of the PV cell or module solely based on the 
curve. Instead, the point at the maximum power point (Pm) is 
typically considered. 

C. Equivalent Circuit Model 

The current that results from the pair of electrons and 
positive holes which obstruct solar radiation is known as the 

source photonic current and is denoted by Iph. It is affected by 
the quantity of sunlight and ambient temperature at a certain 
hour of the day [8]. To maintain the appropriate forward bias 
voltage and residual current IL, a portion of the photonic 
current flows through the diode via an internal load resistance 
RL, as seen in Fig. 2. The voltage-current traits of the solar 
cell can be delineated as follows: 

 � = ��ℎ − �� [	
� �(�����
�����

� − 1] − ������
���

� (1) 

Where,  

Io is diode current  

I is output current  

Tk is Operating temperature  

�� is Boltzmann’s constant  
��ℎ = �!" is photon current  
A is diode ideal factor  
q is electron charge constant (1.602 × 10−19 #) 

D. Type of PV  

Solar cells are commonly referred to as "semiconductor 

cells," and their characteristics are crucial for efficient 

sunlight absorption. Cells designed for terrestrial applications 

absorb sunlight differently from those intended for space use. 

Solar cells can come in various physical designs, including 

single-junction solar cells, as well as multi-junction designs 

with different absorption mechanisms and charge separation 

systems. Solar cell technologies are categorized into first, 

second, and third generations. The main material used in 

commercial photovoltaic (PV) technology is crystalline 

silicon, which comprises polysilicon and monocrystalline 

silicon and is referred to as first-generation or conventional 

cells.  

Thin-film solar cells like amorphous silicon, CdTe cells, 

and CIGS are part of the second generation of solar cells. 

They are utilized in power plants, integrated photovoltaics, 

and small standalone power systems. Third-generation solar 

cells encompass various emerging thin-film technologies, 

which include organic materials such as organometallic and 

inorganic compounds. However, these technologies are still 

in the research and development phase and have not yet been 

commercialized [9]. In this project the focus will be on 

monocrystalline and polycrystalline cells. 

1) Monocrystalline Silicon: The main and long-standing 

technique comprises using single crystal solar cells 

manufactured of pure silicon on thin silicon wafers. Each 

atom in single-crystal silicon is neatly structured into evenly 

 
Fig. 1. I-V Curve [8]. 

 

Fig. 2. Cell Equivalent Circuit [8].  
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dispersed crystal layers. This type of c-Si module is widely 

utilized in solar energy production and is predicted to stay 

popular for several decades. These modules are now widely 

accessible and provide substantial benefits, especially due to 

their inexpensive cost. [10][11]. P-doped wafers with p-n 

junctions are used to make c-Si modules. The production 

process begins with the manufacture of c-Si sheets, which are 

subsequently cut into wafers less than 0.3mm in diameter 

from this material. Under ideal illumination conditions, the 

complete solar cell assembly could produce 35mA of 

electricity and 0.55 volts. It is typical for these modules to 

exhibit a pyramid-like texture on their surface. The solar cells 

are combined into a solar cell module using the appropriate 

voltage and current. Fig. 3 depicts the schematic diagram and 

monocrystalline silicon solar panel. 

2) Polycrystalline Silicon: In the 1980s, polycrystalline 

silicon solar cells emerged as a cost-effective alternative to 

traditional silicon solar cell production, utilizing silicon 

waste from the electronics industry. However, despite 

advancements, the conversion efficiency of laboratory cells 

(2cm2) for polysilicon solar cells remained relatively low, 

hovering around 13%, leading to limited support for the 

technology [11]. Poly c-Si represents another variation of c-

Si photovoltaic technology, although it holds a slightly 

smaller market share compared to mono c-Si. Poly c-Si cells 

were devised to tackle the challenges related to metal 

contamination often encountered in mono c-Si cells. Similar 

to mono c-Si, poly c-Si utilizes parallel and series 

combinations of cells to assemble modules for practical use. 

Various crystal shapes can be engineered in laboratory 

settings to develop these cells. Fig. 4 provides a depiction of 

the cross-section and structure of a polycrystalline silicon 

solar panel. 

The process involves melting and solidifying silicon to 

produce crystals with a single orientation, which are then 

fashioned into thin blocks, and eventually wafers, before 

undergoing cooling. These solar cells exhibit various random 

patterns on their surfaces and include an additional layer to 

minimize light reflection. Furthermore, the photovoltaic 

industry manufactures high-grade silicon minerals using 

metallurgical methods instead of chemical refining, which is 

more environmentally sustainable. The contamination level 

in polysilicon created for the photovoltaic sector is typically 

less than one billionth of a part per billion, although silicon 

derived from solar polysilicon may have lower purity levels 

[14]. 
In this paper the parameters of PV panels 250W 

monocrystalline and 110W polycrystalline which are used in 
constructing the ANN model [14][15]is shown in Table I. 

The calculation of cell temperature incorporates ambient 
temperature, relative humidity, wind speed, and global 
irradiance, as indicated in (2). Similarly, equations are 
provided to derive the short-circuit current and open-circuit 
voltage, as shown in (3) and (4), respectively [15]. 
Furthermore, the current and voltage produced by the PV 
panel can be determined using (5) and (6), respectively, while 
the output power is obtained by multiplying the current and 
voltage together, as shown in (7) [15]. 

 $% = 0.954$+ + 0.3. − 1.62912 + 0.08845 + 3.9 (2) 

 �67  =  �67.89: ; <
<=>?

@ +  A�67($7 − $89:) (3) 

 CD7 = CD7 + ACD7($7  − $89:) (4) 

 �E = �67(1 − F − �) (5) 

 CE = CD7(1 − � G
HIJ

� �K F − 46(1 − F − �)) (6) 

Where  

$#  is cell temperature C.  

�L#  is short circuit current A.  

CM#  is open circuit voltage V  

$F  is air temperature C.  

.  is global radiation W/m2.  
 

 

(a) (b) 

Fig. 3. (a) schematic diagram (b) monocrystalline silicon solar panel [12]. 

 

 

(a) (b) 

Fig. 4. (a) cross-section of poli-silicon (b) polycrystalline silicon solar 

panel [13]. 

TABLE I.          SPECIFICATIONS OF MONOCRYSTALLINE AND 

POLYCRYSTALLINE SILICON PV MODEL 

Parameters Monocrystalline Polycrystalline 

Maximum Power, 

NOF
 
250 W 110 W 

Maximum Voltage, 

CO�� 
30.2 V 17.1 V 

Maximum Current, 
�O�� 

8.28 A 6.43 A 

Open circuit 

voltage, CM# 
37.4 V 21.2 V 

Short circuit current, 

�L# 
8.80 A 7.16 Ab) 

Voc thermal 

coefficient,μCM# 
-0.350 %/C -0.346 %/C 

Isc thermal 

coefficient,μ�!" 
0.056 %/C 0.056 %/C 
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4ℎ  is relative humidity.  

1L  is wind speed m/s.  

μCM#  is Voc thermal coefficient.  

μ�L#  is Isc thermal coefficient.  

III. ARTIFICIAL NEUTRAL NETWORK (ANN) TECHNIQUE 

Network design and development requires determining 
several network parameters, such as the number of neurons in 
hidden layers, transfer functions, and training and bias 
functions. In this project, the input data consist of air 
temperature (Ta), relative humidity (Rh), wind speed (Ws), 
maximum temperature (Tmax), minimum temperature 
(Tmin), cell temperature (Tc), and solar radiation (G), as 
depicted in Fig. 5. The voltage and current generated by the 
artificial neural network (ANN) in response to these inputs 
are trained and evaluated inside the established ANN model. 

During the training phase, modifications to parameters 
such as the number of training epochs, learning rate, and the 
number of hidden layers can be adjusted if the performance of 
the ANN deteriorates. The proposed ANN model is illustrated 
in Fig. 5. Prior to developing the model, the normalized data 
is divided into three categories: 70% for training, 15% for 
testing, and 15% for validation.. In this study, a multilayer 
perceptron (MLP) network was employed to train the input 
data using Levenberg-Marquardt (LM) backpropagation due 
to its superior accuracy in predicting and forecasting output 
compared to other networks.  

When designing the optimal network, various factors such 
as numerous neurons, multiple epochs, and learning rates were 
carefully considered. The number of neurons ranges from 1 to 
10, the learning rate varies between 0.001 and 1.0, and the 
number of epochs spans from 10 to 1000. With a correlation 
coefficient (R) close to 1, this network can be deemed the most 
suitable choice. Lower MSE values indicate effective training 
of the network. Three error statistics were utilized to evaluate 
the suggested ANN model in this project: mean squared error 
(MSE), mean absolute percentage error (MAPE), and root 
mean squared error (RMSE). The MSE quantifies the 
discrepancy between the actual and predicted outputs, while 
the MAPE serves as an accuracy indicator for the neural 
network. 

IV. RESULTS AND DISCUSSION  

This section will cover the presentation of the results and 
the evaluation of the performance of PV panels. It will also 
discuss the development of the model and analyze the errors, 
as well as compare the outputs of the model. 

A. Results from Mathematical Equation 

In this study, calculations were carried out to extract and 
emphasize the required input from the data. To train the ANN 
models effectively, obtaining the cell temperature is crucial. 
In this project, (2) was utilized to predict the cell temperature. 
Another significant input parameter to consider in this 
calculation process is the predicted short-circuit current, 
determined by (3). This equation incorporates electrical 
parameters from the solar panel, including the short-circuit 
current, along with meteorological factors such as global solar 
radiation and temperature. Nevertheless, the predicted short-
circuit current values for both monocrystalline and 
polycrystalline panels tend to be elevated. This phenomenon 
arises due to the impact of temperature and relative humidity 
on the cell, as evidenced by previous studies [16]. On the other 
hand, the open-circuit voltage value, predicted using (4), 
exhibits disparities between the two types of solar panels, with 
some instances showing significantly larger values. These 
current and voltage values serve as the targets for the ANN 
models to predict the model's output. The efficiency of a PV 
system is widely acknowledged as the primary metric for 
assessing the performance of a solar PV system, as noted in 
previous literature [17]. The short-circuit current, along with 
meteorological factors like global solar radiation and 
temperature, are key parameters derived from the solar panel. 
However, it's observed that the predicted short-circuit current 
values for both monocrystalline and polycrystalline panels 
tend to be elevated. This phenomenon is attributed to the 
influence of temperature and relative humidity on the cell, 
supported by [16]. Conversely, the open-circuit voltage value, 
determined by (4), exhibits variations between the two types 
of solar panels, with some instances showing notably higher 
values. The results of voltage, current, and power obtained 
through mathematical equations are compiled in Table II. 

B. Results from ANN Technique  

Table III presents the percentage of mean squared error 
(MSE) for both training and testing, along with the value of 
the correlation coefficient (R), across various numbers of 
neurons and training epochs. Notably, the MSE test values for 
the final three neurons were found to be the lowest, indicating 
the best fit for testing, while the correlation coefficient 
approached 1, suggesting a strong positive linear relationship. 
This suggests that the optimal number of neurons lies within 
the last three neurons, while an inadequate number of neurons 
may lead to overestimation or overtraining of the network. 
Furthermore, it is essential for the MSE value of the training 
data to be smaller than that of the testing data. Fig. 5 and 6 
depict the best curve fit achieved by the ANN model for 
predicting voltage and current in both monocrystalline and 
polycrystalline solar panels. The consistency between the 
MSE values of the training, testing, and validation data 
indicates that the model has effectively learned from the 
training data. A correlation coefficient (R) value of 1 further 
confirms the strong fit of the model to the data. Fig. 6 (a) and 
(b) show the best curve fit for mono- and poly-crystalline 
Panel using ANN technique respectively.  

Fig. 5. The Proposed ANN Model [15]. 
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C. Voltage, Current and Power Performance 

Fig. 7 and 8 illustrate the comparison between the actual 
and estimated data for the voltage of the solar panels over a 
span of three years from 2018 to 2020. From the figures, it is 
evident that the voltage initially starts at 2kV for 
polycrystalline PV panels, exhibiting a higher voltage 
compared to monocrystalline panels, which start at a lower 
voltage of 33.5V. Subsequently, the voltage gradually 
increases until reaching its peak in May 2019 for 
monocrystalline panels, and then fluctuates until reaching 
another peak in May 2020. The highest voltage values 
recorded are 2.1kV for polycrystalline panels and 34.5V for 
monocrystalline PV panels. It's noteworthy that there is a 
minor discrepancy between the estimated and actual values. 

Fig. 8 (a) and (b) depict the actual and predicted current, 
showcasing a notable similarity in trends with minimal margin 
error and differences between the actual and predicted values. 
Notably, the current exhibited a descending trend in May 

TABLE II.        RESULTS OF VOLTAGE, CURRENT AND POWER 

Parameter 
Type of Photovolatic  

Monocrystalline  Polycrystalline  

Short Circuit 

Current, Isc 
0.655A 0.559A 

Open Circuit 
Voltage, Voc 

35.648V 19.468V 

Output Voltage 32.979V 19.52V 

Output Current 572.305A 277.59A 

TABLE III.        MSE FOR DIFFERENT NUMBER OF HIDDEN LAYERS 

Number of 

hidden 

layers 

MSE 

Training  

MSE 

Test  
R Value  

1 0.0134  0.0110  0.9671  

2 0.0120  0.0189  0.9679  

3 0.0158  0.0134  0.9735  

4 0.0139  0.0161  0.9738  

5 0.00123  0.0016  0.9999  

6 0.0013  0.0098  0.9999  

7 0.0066  0.012  0.9999  

8 0.000  0.000  1.000  

9 0.000  0.0000  1.000  

10 0.000  0.0000  1.000  

 

 

(a) 

 

(b) 

Fig. 6. Best Curve Fit for Polycrystalline Panel ANN Model. 

 

(a) 

 

(b) 

Fig. 7. The results of voltage (a) polycrystalline PV and (b) 
Monocrytalline Silicon PV Model. 

 

(a) 

 

(b)  

Fig. 8. The results of current (a) polycrystalline PV and (b) 

Monocrytalline Silicon PV Model. 
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2018, followed by a relatively stable value in May 2019. 
Conversely, there was a downward trend in current observed 
in May 2020, attributed to the dry season spanning from May 
to July. 

The average real and estimated values from the ANN 
output are shown in Table IV and Table V for both PV panels. 
It can be seen from the table that there was a small difference 
between the actual and predicted value and in some cases the 
differences are negligible. Polycrystalline produces a 
substantially higher voltage than monocrystalline. In contrast, 
monocrystalline PV panels tend to have a higher current value 
compared to polycrystalline PV panels. As a result, the 
efficiency of the PV module has a significant impact on the 
overall efficiency of the PV system. The efficiency of this 
component is mostly determined by the temperature of the 
surrounding environment and the solar radiation received. 
Efficiency of a PV module is defined as the ratio of the power 
output of the module itself to the power that is emitted by the 
sun during its operation. 

V.  CONCLUSION 

This paper represents the design of ANN model that 
predicts the voltage and current of the photovoltaic for 
monocrystalline and polycrystalline. Furthermore, the 
calculation has been performed and highlight the input and 
output, were the calculated ambient temperature, cell 
temperature, short circuit current and open circuit voltage are 
obtained to be set as input for the model with other 
meteorological parameters such as relative humidity, wind 
speed, and global solar radiation. Furthermore, the ANN 
model results indicate the percentage of MSE testing and 
training for varied number of neurons. As a result of that, the 
last three neurons tend to be low. Meanwhile, MSE training 
for this model was equivalent to MSE testing and validation. 
It means the data of model have been learning very well during 
training and zero means that it has an overestimate the 
prediction of the network. In addition, the average real and 
estimated values from the ANN model shows that there was a 
small difference between the actual and predicted value. 
Nonetheless, voltage produced by polycrystalline panel is 
much larger than monocrystalline panel. In contrast, 
monocrystalline panels have a higher current value than 
polycrystalline. The overall power output and efficiency 
presented in this project shows that polycrystalline panels 
have a better performance than monocrystalline. Hence, the 
model perfectly predicts the output. 
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TABLE IV.         RESULTS OF VOLTAGE, CURRENT AND POWER 

Parameter 
Monocrystalline 

Math. Equ.   ANN  

Voltage Avg  33.369V 33.364V 

Current Avg  7.65kA 7.64kA 

Power Avg  950.192kW 950.390kW 

Eff.  0.997% 

TABLE V.         RESULTS OF VOLTAGE, CURRENT AND POWER 

Parameter 
Polycrystalline 

Math. Equ.   ANN  

Voltage Avg  2.94kV 2.93kV  

Current Avg  3.39kA 3.38kA 

Power Avg  2.2GW 2.1GW 

Eff.  0.999% 
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