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Abstract—Energy consumption has experienced significant 

growth on a global scale in the past decade. This has caused the 

growing demand of renewable energy resources into grid 

systems which has led to the need for technological solutions that 

can improve the stability of power systems. Electrical 

transmission network is an essential component for effectively 

and reliably transporting electricity. However, they are prone to 

power losses, which reduce overall system efficiency and raise 

operational expenses. Any remedial action to include 

compensating devices into the current system will require 

optimal sizing and sizing so as to avoid any over-compensation 

or under-compensation phenomena. This research investigates 

an approach of mitigating these losses by incorporating Battery 

Energy Storage Systems (BESS) into the transmission network. 

BESS is known to be a promising technology, providing several 

advantages such as peak shaving, load leveling, and improved 

grid stability. The purpose of this study is to find the optimal 

location and sizing of battery energy to minimize loss dissipated 

by the system using a newly proposed technique termed 

Integrated Immune Chaotic Evolutionary Programming 

(IICEP). IICEP is proposed to integrate BESS into the 

transmission network with a focus on loss minimization. IICEP 

integrates the operators of clonal features of Artificial Immune 

System (AIS) with the addition of a chaotic element into the 

original Evolutionary Programming (EP). It offers a better 

solution in optimization performance. Three battery energy 

storages are integrated into the network, each with the 

placement and sizing to meet the goal. The algorithm of IICEP 

is tested on IEEE 30- Bus RTS to observe its effectiveness. The 

results are compared with the traditional EP and AIS, resulting 

in a lower optimal solution of power losses. 

Keywords—Battery Energy Storage System (BESS), 

optimization process, loss minimization, Immune Chaotic 

Evolutionary Programming (IICEP) 

I. INTRODUCTION

Since the twenty-first century, worldwide electricity 
consumption has grown even faster, with an average annual 
increase of 3.4 percent, 1.2 percentage points greater than 
energy consumption's average annual growth [1]. The energy 
landscape is experiencing a major shift due to the rising 
demand of electricity, the incorporation of renewable energy 
sources, and the need for environmentally friendly practices. 
Installing battery energy storage systems (BESS) is an 

important approach in power scheduling to increase the 
network's energy efficiency. Besides, it also provided 
numerous benefits such as improved power quality, lower 
operating, and maintenance costs, and many more [2].  

In transmission network, the existence of energy storage 
can relieve transmission congestion and deferral transmission 
upgrades [3]. Deferring transmission upgrade investments 
involves postponing utility investments by utilizing modest 
quantities of storage capacity or in certain instances, by 
completely skipping such investments. Transmission 
congestion occurs when energy from dispatched power plants 
is unable to reach all or some loads due to insufficient 
transmission facilities. Transmission systems become 
congested when transmission capacity increases and do not 
keep pace with the increase in peak electric demand. 
Electricity storage can be used to minimize congestion-related 
expenses and charges, particularly if the costs become 
prohibitively expensive due to severe transmission line 
congestion. In addition, the appropriate placement, sizing and 
operation of BESS can improve overall network performance. 

The integration of energy storage can be made more 
efficient and effective by using optimization techniques. 
Optimization is the process of searching for the best possible 
solution for a particular problem, under given circumstances. 
It aims to maximize or minimize a fitness function by 
searching and selecting its best values [4]. Optimization 
techniques have long been recognized as useful methods for 
dealing with complicated mathematical issues. To address the 
shortcomings of traditional algorithms, many stochastic 
optimization algorithms known as meta-heuristic algorithms 
have been created in recent decades [5]. 

 This paper proposes a new integrated optimization 
technique which made use the chaotic element and clonal 
process, embedded in EP to allocate and identify the size of 
energy storage systems into the transmission network. 
Optimization algorithms are utilized to find the optimal 
combination of battery locations and sizes for minimizing 
power loss. Performance evaluation was conducted by 
comparing the results solved using proposed IICEP with 
respect to the traditional EP and AIS. It is fair to highlight that 
the results of BESS installation for reducing the loss in power 
transmission system solved using IICEP are convincing.  
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II. PROBLEM FORMULATION

The integration of BESS into the transmission network 
requires an excellent strategy to ensure the reliability and 
steadiness of power transmission. First step is to find the best 
location and sizing of battery energy storages. The objective 
of this new technique is to search for the optimal location and 
sizing of battery energy storages in transmission network with 
focusing on loss minimization. In this case, the criteria used to 
determine the location and sizing of BESS include the 
resistance, distance and network topology. The range of 
battery capacity is set below than 200MW, the best possible 
value is targeted below than 100MW. Three battery storage 
units are inserted into the system, which means three possible 
locations and three battery sizes must be chosen. 

The objective function of this optimization is set to 
minimize the total system loss which can be mathematically 
presented in eqn. (1) [6]. By applying the Newton-Raphson 
method, the precise voltage and phase angle at each bus are 
determined, allowing for accurate calculation of line currents 
and line losses. Thus, the objective function can be written by: 

�������� � 	
���,�
�

���
where: 

• n is the number of lines in the system

• 	
��� is the power loss at i

The power loss calculation is represented by the following 
formula: 

	
��� = �� × �
where: 

• 	
���  is the real power loss in MW
• I is the current flowing through the line in Amperes
• R is the resistance of the line in Ohms

III. OPTIMIZATION TECHNIQUE

There are several optimization strategies that have been 
developed and proposed for power network planning. On the 
same problem, certain optimization strategies have proven to 
be more effective than others [7]. After a brief studied and 
reviewed, the following techniques have been chosen to be 
integrated to produce IICEP. 

A. Evolutionary Programming

Evolutional Programming (EP) is one of the pioneer
approaches to the application of evolutionary techniques to 
machine learning and to the automatic design of artificial 
intelligence systems [8]. EP algorithm uses only a mutation 
operator, making it less susceptible to the dependency 
violation issue [9]. EP techniques can be presented in three 
distinct EP models: classical evolutionary programming 
(CEP), fast evolutionary programming (FEP), and improved 
fast evolutionary programming (IFEP). FEP was reported to 
exhibit the shortest computational time [10]. Later, various 
multi-objective of EP was developed to minimize the multi-
objective functions and to determine the optimal location and 
sizing of Distributed Generation [11]. EP works with the 
principle involving initialization, fitness computations in two-
phases, mutation, tournament selection and combination. The 

initial population is confined by several random variables 
within a set of individuals. The number of individuals is 
conventionally 20 as this amount is considered adequate to 
allow proper search during the optimization process. The 
control variables depend on how many BESS is planned to be 
installed into the system. For instance, in this study six control 
variables are required to denote 3 locations and 3 BESS sizing. 

The fitness computation deals with the evaluation of loss, 
utilizing all the individuals inserted into the system data. 
Fitness computations are conducted in 2 phases. The first 
phase utilizes the parents’ population, while the other one uses 
the offsprings. Offsprings are bred through mutation process. 
The Gaussian mutation process was the most popular mutation 
technique. Other than this, Levy or Cauchy mutation 
technique can also be adopted. 

Once the fitness computations in both phases have been 
conducted, a combination needs to be performed which 
integrates both populations in cascode mode, which in turns 
doubles the number of individuals. In this case, it would be 40. 
A subsequent tournament selection process is conducted to 
identify the survivors for the next evolution. The stopping 
criterion is determined by evaluating the difference between 
the maximum and minimum fitness values. This value needs 
to be less than a pre-defined criterion. This value is normally 
small, typically 0.0001. The process keeps on iterating until a 
converged solution is achieved. 

B. Artificial Immune System

Artificial Immune System (AIS) is a computational system
that is adaptive and diversified, based on the principles of the 
natural immune system [12]. The natural immune system is an 
intelligent pattern recognition system that is capable of 
classifying all cells in the body as self-cells or nonself-cells.  

The immune system employs the clonal selection principle 
as an algorithm to define the fundamental characteristics of its 
immunological response to an antigenic stimulus [13]. The 
clonal selection principle is used in power optimization to 
create a set of candidate solutions known as antibodies. These 
antibodies indicate potential power optimization options, with 
each antibody consisting of a unique configuration or set of 
adjustable parameters. These antibodies are subjected to a 
selection and mutation process during the optimization 
process, simulating the immune system's natural selection and 
diversification mechanisms. This strategy is more accurate 
since it gets closer to the perfect solution with each iteration 
[14].  

Similar to previous EP, Gaussian distribution mutation has 
been selected to perform mutation process for these two 
techniques. The main difference between EP and AIS is that 
EP has combination process, but in AIS. On the other hand, 
AIS has cloning process, but not in EP. 

C. Integrated Immune Chaotic Evolutionary Programming

The design of IICEP involves step-by-step procedure
starting with initialization process until finding the best 
combination result of right location and sizing to get better loss 
profile. The algorithm is coded with a focus on employing 
advanced computational and techniques to solve the 
complexity of power system optimization. 

IICEP concept of optimization is created based on EP and 
AIS techniques with an addition of chaotic sequence. The 
IICEP algorithm aims to locate energy storage placements to 
greatly reduce grid energy losses. The Piecewise Linear 

 (2) 

(1)
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Chaotic Map (PLCM) is adopted in this technique due to its 
simplicity, efficiency and good dynamic behaviour. The 
PLCM is denoted by (3) given below: 

����� =
⎩⎪⎪
⎨
⎪⎪⎧

� !" , 0 ≤ ��� < &
� !'"
(.*'" , & ≤ ��� < 0.5

(�'-'� !)
(.*'" , 0.5 ≤ ��� < (1 − &)

�'� !" , (1 − &) ≤ ��� < 1
(3) 

where: 

• ���  is the initial chaotic variable at iteration 0

• & is the control parameter

For this study, & = 0.4 is chosen as suggested in [15]. The
update of the chaotic variable, �����  is used in the mutation
process in IICEP to breed new individuals called the 
offsprings. 

IV. RESULT AND DISCUSSION

The effectiveness of the proposed technique is validated 
on IEEE 30-Bus RTS. The procedure begins with running 
power flow analysis to get the loss set without the installation 
of BESS. Power flow analysis computes the voltage 
magnitude and phase angle at each bus in a power network 
under steady-state conditions. These calculations are 
necessary to determine the flow of electrical power from 
producers to consumers while keeping the network operating 
within safe and stable limits. Once the power flow solution has 
been determined, the power losses in the transmission lines 
can be computed. After that, the procedure continues with 
initialization process to get 20 random combinations of 
location and sizing of three battery energy storage with its loss 
profile which need to be lower than the loss during the normal 
load flow process without BESS installation. To ensure the 
effectiveness of IICEP, the same combinations or energy 
storage are also tested using EP and AIS Algorithm. The 
results of the testing are presented below. 

A. Random Plot during Initialization at Qd26 = 30 MVAR

Fig.1 shows the random plot of the locations and size of all
batteries during initialization process. The locations and sizes 
of all BESS are scattered randomly within the limit set of 
200MW for the batteries. We can notice that all the plots of 
the individuals in random are not converging towards a 
particular point. But all the individuals ensure that the 
computed fitness values during initialization process are lower 
than the lossset during the normal load flow. 

Fig. 1 BESS Initialization. 

B. Converged Solution

The performance of all the three optimization techniques
is observed when load variations were subjected to Bus 26 and 
Bus 29. These two buses have both been identified as weak 
buses in power system analysis as it can contribute to voltage 
collapse in this system [16]. To ensure the new algorithm can 
be used effectively, the two bus values were selected for the 
testing process. The reactive power of 30 MVAR is used for 
all cases. 

1) Scatter Plot at Qd26=30 MVAR
The scatter plots showing the optimal location and sizing

of all batteries optimized using EP, AIS, and IICEP when 
tested on Bus 26 are shown in Fig. 2, Fig. 3, and Fig. 4. In 
terms of the position and sizing of all BESS, EP and AIS 
approaches yield the same results: BESS 1 is located at Bus 27 
and has a capacity of 73 MW, BESS 2 is located at location 21 
and has a capacity of 51 MW, and BESS 3 is located at 
location 20 and has a capacity of 27 MW. For IICEP, the 
location of BESS 1 is Bus 18 and has a capacity of 16 MW, 
battery 2 is Bus 28 and has a capacity of 97 MW, and battery 
3 is Bus 17 and has a capacity of 26 MW. 

Fig. 2 Converged Solution using EP, 

Fig. 3 Converged Solution using AIS. 
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Fig. 4 Converged Solution using IICEP. 

2) ScatterPlot at Qd29=30 MVAR
The scatter plots in Fig. 5, Fig. 6, and Fig. 7 illustrate the

optimal locations and sizing of all the BESS optimized using 
EP, AIS, and IICEP when tested on Bus 29. EP and AIS 
techniques produce identical results as tested on Bus 26. For 
IICEP, BESS 1 is located at Bus 28 and has a capacity of 29 
MW, BESS 2 is located at Bus 23 and has a capacity of 30 
MW, and BESS 3 is located at Bus 29 and has a capacity of 
11 MW. 

Fig. 5 Converged Solution using EP. 

Fig. 6 Converged Solution using AIS. 

Fig. 7 Converged Solution using IICEP. 

3) Loss Profile
To evaluate the loss performance, the algorithms are run

with reactive power inputs ranging from 0 MVAR to 30 
MVAR on both load buses. In general, as the load increased 
in steps, the loss values  for pre- and post-optimization also 
gradually increase. All optimization reduces lost value at a rate 
ranging from 48 to 60%. IICEP performs significantly better 
than the other two optimization techniques in terms of loss 
reduction as can be seen in Table I and Table II, also shown in 
Fig. 8 and Fig. 9. 

TABLE I. LOSS VALUE BEFORE AND AFTER OPTIMIZATION AT BUS 26 

Load 

(MVAR) 

Loss 

Set 

(MW) 

EP AIS  IICEP 

MW % MW % MW % 

0 17.58 7.60 56.80 7.60 56.80 6.97 60.34 

5 17.73 7.77 56.19 7.77 56.19 7.42 58.15 

10 18.12 8.07 55.45 8.07 55.45 7.43 59.01 

15 18.62 8.54 54.13 8.54 54.13 8.00 57.04 

20 19.39 9.22 52.42 9.22 52.42 8.29 57.25 

25 20.53 10.20 50.34 10.20 50.34 9.81 52.22 

30 22.44 11.59 48.33 11.59 48.33 10.82 51.80 

TABLE II. LOSS VALUE BEFORE AND AFTER OPTIMIZATION AT BUS 29 

Load 

(MVAR) 

Loss 
Set 

(MW) 

EP AIS IICEP 

MW % MW % MW % 

0 17.55 7.56 56.94 7.56 56.94 7.30 58.39 

5 17.72 7.74 56.29 7.74 56.29 7.69 56.61 

10 18.23 8.15 55.28 8.15 55.28 7.97 56.29 

15 19.00 8.84 53.46 8.84 53.46 8.21 56.81 

20 20.25 9.92 51.00 9.92 51.00 8.94 55.87 

25 22.27 11.59 47.96 11.59 47.96 10.91 51.02 

30 26.11 14.30 45.25 14.77 43.43 13.66 47.66 

Fig. 8 and Fig. 9 show the results for loss profile with 
regards to load variation in IEEE 30-Bus RTS. The results 
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Fig. 8 Loss versus Load tested on Bus 26. 

V. CONCLUSION

In conclusion, this research focuses on the best way to 
allocate and size BESS in transmission network to minimize 
loss. A new algorithm termed IICEP has been developed to 
find the optimal combination of BESS locations and sizing 
while keeping the loss profile low. The implementation of 
BESS is an important approach for increasing a power 
network's energy efficiency, and their appropriate placement, 
sizing, and operation can improve overall network 
performance. BESS maintains a stable and consistent power 
supply by balancing the supply and demand of electricity. 
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