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ABSTRACT 

3D Bioprinting is a promising technology widely applicable to the biomedical 

engineering field. This technology provides an advance alternative in terms of tissue 

and organ fabrication that will soon surpass the traditional 2D cell culture methods. 

Various of existing 3D bioprinting techniques had been developed such as extrusion-

based, inkjet-based, laser assisted deposition and stereolithography. The existing 

microextrusion-based technology is designed with complex system and printing of 

scattered cells which presented threats to the cell viability. To circumvent this problem, 

a microextrusion-based 3D bioprinting system that implements the printing of 

microtissues was developed. In this project, the mechatronic system of the extruder 

was fabricated and programmed with flow rates of 1, 2, 3, 4 and 5 ml/min. Then, it 

was assembled to the existing 3D printer to function as a 3D bioprinter. The bioprinter 

moves at a printing speed set between 10 to 50 mm/s based on the G-codes designed 

for the desired structures. The effects of flow rate of the extruder and printing speed 

of the bioprinter to the printability of bioink was determined by examining the linearity 

in width of the printed constructs captured in images. The viscosities of five different 

concentrations of sodium alginate-gelatin bioink were determined by vibration 

viscometer. The bioprinting inks were also characterised using contact angle, Fourier 

Transform Infrared Spectroscopy (FTIR) and Dynamic Mechanical Analysis (DMA). 

The degradation of bioink was observed for 14 days. After the printing parameters 

were optimised, constructs of alginate-gelatin were printed with HeLa cells infused in 

calcium alginate microcapsules. After 14 days of culture, the tissues were still viable 

as indicated by the green fluorescence of calcein-acetoxymethyl. The printed 

biofilament are potential cell models that can be utilised for the study of oncology and 

pharmacology. The bioprinting system was successfully developed and applied to print 

the encapsulated 3D microtissues into 3D constructs.
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ABSTRAK 

Pencetak bio 3D adalah satu teknologi harapan yang digunapakai secara meluas dalam 

bidang kejuruteraan bioperubatan. Teknologi ini menyediakan satu alternatif yang 

maju dari segi fabrikasi tisu dan organ yang bakal melepasi kaedah tradisional dua-

dimensi (2D). Pelbagai teknik pencetak bio 3D yang sedia ada telah dibangunkan 

seperti pencetak berasaskan pengekstrusi mikro, pancut dakwat, pemendapan laser dan 

stereolitografi. Kaedah pengekstrusi mikro sedia ada telah direka dengan sistem yang 

kompleks dan pencetakan sel secara berselerak telah memberikan ancaman kepada 

jangka hayat sel. Untuk mengelakkan masalah ini, satu sistem pencetak bio 3D 

berasaskan kaedah pengekstrusi mikro yang mampu melaksanakan percetakan tisu 

mikro telah dibangunkan. Dalam projek ini, sistem mekatronik pengekstrusi direka 

dan diprogramkan dengan kadar aliran 1, 2, 3, 4 dan 5 ml/min. Kemudian, ia telah 

dipasangkan pada pencetak 3D sedia ada untuk berfungsi sebagai pencetak bio 3D. 

Pencetak bio tersebut bergerak mengikut kelajuan percetakan yang ditetapkan antara 

10 hingga 50 mm/s berdasarkan kod G yang direka untuk struktur yang dikehendaki. 

Kesan kadar aliran dan kelajuan percetakan pencetak bio kepada kebolehcetakan 

dakwat bio ditentukan dengan memeriksa kerataan dalam lebar binaan yang ditangkap 

dalam imej. Kelikatan lima kepekatan dakwat bio alginat -gelatin diukur dengan 

menggunakan viskometer getaran. Dakwat pencetak bio juga dicirikan menggunakan 

sudut sentuhan, spektroskopi inframerah transformasi Fourier (FTIR), dan analisis 

mekanikal dinamik (DMA). Degradasi dakwat bio telah diperhatikan selama 14 hari. 

Setelah kesemua parameter percetakan dioptimumkan, binaan natrium alginat/gelatin 

telah dicetak bersama sel HeLa yang telah dicampurkan dalam mikrokapsul kalsium 

alginat. Selepas pengulturan selama 14 hari, tisu tersebut didapati masih berdaya maju 

seperti yang ditunjukkan oleh fluoresens hijau calcein-acetoxymethyl. Filamen bio 

yang telah dicetak adalah model sel berpotensi yang boleh diadaptasikan dalam kajian 

onkologi dan farmakologi. Sistem percetakan bio telah berjaya dibangunkan dan 

digunakan untuk mencetak kapsul mikrotisu 3D kepada binaan 3D
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The need of organ and insufficient supply of organ trigger the need of regenerating 

artificial organ or tissues. Various biotechnologies are undertaking by scientist and 

engineers to develop breakthrough products for minimising health risks and life-

threatening conditions. These technologies are such as bioinformatics, 

biopharmaceutical, chemical industrial technology, organ regeneration and tissue 

engineering. Engineering solutions such as bioprinting in organ regeneration 

technology enable the hope to regenerate functional tissues for building more complex 

structures such as a pumping heart. 3D bioprinting involving the biomaterials such as 

synthetic and non-synthetic bioink and cells are critical factors in creating a better cell 

model study. In conventional cell culture routine, the two-dimensional (2D) cancer 

model is commonly used by the cell biologists and pharmacologist in research. 

However, currently, it is gaining controversy regarding the accuracy of the model for 

disease and oncology studies.  

 

1.2 Research background 

 

Till date, conventional two-dimensional (2D) cell models are still being used in 

biological studies to understand the cell formation, functions and pathology [1]. 

Although growing a flat layer of cells in 2D culture had contributed a lot in cell 

research, but it lacks of predictivity and accuracy which increases the cost and failure 

rate during clinical trials [2]. These monolayer cell cultures show limitations in terms 

of cell proliferation, differentiation, gene expression, cancer cell invasion and 

morphology which slightly differ from the in vivo state [3]. In contrary, the three- 
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dimensional (3D) cells are able to adequately produce similar cell behaviour and 

mimic closely to the microenvironment of the in vivo responses [4]. The 3D cell model 

has proven to be more physiologically relevant in proliferation, cell number 

monitoring, viability and other studies of biological mechanism [3]. This native-like 

3D cells are becoming crucial scientific tools in cell research. Hence, researchers are 

encouraged to develop new techniques equipped with the capacity to produce 3D cell 

models such as 3D bioprinting technology. 

 3D bioprinting involves the three-dimensional printing of biological tissues 

and organs through the process of layering the living cells which begins by creating an 

architectural design of the fundamental composition of the target tissue or organ with 

the help of computer-aided design (CAD) [5]. The 3D printer that applies in the 

bioprinting is commonly known as 3D bioprinter. The bioprinter will deposit thin layer 

of cells based on the architectural design using a printer head which moves according 

to the required configuration. The bioprinter uses an ink called as the bioink to build 

the three-dimensional structure of the organic materials. The bioink can be synthetic 

and non-synthetic biomaterials mostly made up of dissolvable hydrogel component 

such as collagen, chitosan, Pluronic and hyaluronic acid (HA) [6]. Hydrogel is a 

hydrophilic network of polymer chains which is highly absorbent and possess a 

flexibility that is similar to the natural tissues [7]. This hydrogel is considered to have 

a great potential in medical purposes due to its ability to absorb large quantity of water, 

thus, in bioprinting, it is often used to support and protect the cells as well as acting as 

fillers to fill empty spaces within the tissues [8]. 

 The application of bioprinting technology in biomedical field was inspired 

from the early development of three-dimensional printing system back in the 1900s 

[9]. It has been rapidly commercialised due to the significant interests gained from 

biomaterials development, medicine and pharmaceutics industries. The current market 

offers bioprinters such as Organovo ExVive™, Aether I, FABION and BioBot™ Basic 

which work similarly but differs by the printing mechanism and bioink used [10], [11]. 

This rising technology had been adopted in tissue engineering and regenerative 

medicine into creating functional living tissues and organs. It has a great potential in 

keeping the pace with the growing demands for suitable organs and acts as an 

alternative to organ transplantation [12]. This new approach is able to create a 

structural and molecular environment that mimics significantly the properties of the 

native organ in order to support the recipient’s cells. The 3D bioprinting allows the 
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accurate evaluation of cell microenvironment that accelerates the development of 

cancer therapeutics in oncology studies [13]. The 3D tissue model produced by 

bioprinting techniques can also be used in medicine and pharmacology research for 

drug treatments and study diseases [14].  

 There are four types of bioprinting that had been developed to fabricate the 3D 

cells which are stereolithography bioprinting [15][16], drop-on-demand or inkjet 

bioprinting [17][18], extrusion bioprinting [19][20] and laser-assisted bioprinting 

[21][22]. Stereolithography bioprinting works with photopolymers which are not 

stable over time and might harm the cell. For inkjet-based bioprinting, the droplets 

tend to spread inconsistently and unequal in size [23]. Previous research on laser-

assisted bioprinting showed that this method did not suffer any nozzle blockages due 

to the nozzle-less printing setup [24]. However, it is an expensive method to use.  

 Amongst previous bioprinting techniques mentioned, the extrusion-based 

bioprinting is the simplest and effective ways to print wide range of biomaterials 

viscosity. It also promotes a short fabrication time than the other bioprinting 

techniques. From previous work, extrusion-based bioprinter is mostly applied for 

printing scattered single cells laden in the bioink which can be difficult for cell to 

communicate due to the long distance between each other [25].   

 Thus, this research proposed the inclusion of microtissues that simulate the 

tumour embedded deep in the tissues of approximately 1 mm thick. This project 

focuses on developing an extrusion-based bioprinter with a potential to extrude and 

print 3D microtissues capsules coated with sodium alginate and gelatin 3D hydrogels 

or the bioink. The bioinks were synthesised and characterised for the physical and 

mechanical properties. The microspheroids of HeLa or cervical cancer cells had been 

encapsulated first in calcium alginate using a flicking machine that could produce 

spheroids of microtissues. These spheroids were doped in the sodium alginate and 

gelatin bioink and printed into the 3D constructs. Calcium chloride (CaCl2) had been 

used as the crosslinker of the printed hydrogel structures. Hence, this work is able to 

be applied for more precise prediction of drugs diffusion through multilayer structures 

of the tissues in pharmacological studies. 

   

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4 

 

1.3 Problem statement  

 

The two-dimensional (2D) cancer cell has been used for a long time as the 

physiological cancer model. In previous research [26], the 2D cell model had led to a 

nonpredictive data for the in vivo responses as it provided a poor development of 

model. Due to that, three-dimensional (3D) cancer cell model had been introduced in 

clinical trials [27]. The 3D model cells are known to be more novel and has the ability 

to represent the integral missing component in the in vitro cancer research. It is a good 

approach to grow and treat cancer tumour as it exhibits similar growth and treatment 

patterns [28]. It also helps to reduce the usage of animal models. Previous extrusion-

based bioprinting technology had been developed to print 3D constructs with scattered 

cells technique [29]. The scattering of cells had contributed to the decrease of cell 

interaction because of the distance between each other in the 3D constructs. Besides 

that, most of the extrusion-based bioprinting used small diameter of nozzle in the range 

between 0.2 mm to 0.8 mm which produced good resolution or structure of printed 

filament. However, this will increase the shear stress on the nozzle tip which leads to 

low cell viability [30].         

 Therefore, this project is proposed by developing an extrusion-based 3D 

bioprinting system that capable to extrude 3D structures made up from sodium alginate 

and gelatin mixture (sodium alginate-gelatin). The mixture was to enhance the 

printability properties of the bioink to print stable 3D constructs. A 1 mm diameter of 

nozzle was used to reduce the shear stress on the tip during extrusion and able to 

improve the cell viability. The straight-forward controller is easy to use and operated 

well. Instead of using the scattered cells technique, a different approach was used to 

print structure that consists of microbeads of calcium alginate for the 

microencapsulation of HeLa cancer cells. This approach is to fuse the functional 

microtissues in sodium alginate - gelatin bioink 3D structure which capable to induce 

the cell interaction. The biomaterials from the bioink are also non-toxic and highly 

biocompatible natural polymers which will increase the viability of the cells [31].  
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1.4 Objectives of the research 

The main objectives of the research are: 

i. To design and fabricate extrusion system to the existing 3D printer to form a 

3D bioprinter. 

ii. To characterise the bioink properties and optimum printing speed with flow 

rate of the sodium alginate - gelatin bioink for a printable single and multi-

layered filament. 

iii. To analyse the viability of the microencapsulated HeLa cells in the printed 

sodium alginate-gelatin biofilament. 

1.5 Scopes 

In order to achieve the stated objectives, the scopes of this project are planned as 

following: 

i. The design of the extrusion system with an extruder, controller and syringe to 

load the bioink by using computer aided design (CAD) software, Google 

SketchUp 2017. 

ii. The development of the system controller with selection buttons to control the 

flow rate of bioink. 

iii. The integration of the extrusion system with existing Anycubic Prusa i3 3D 

printer by using silicon tube of 300 mm long (Diameter = 2.5 mm) attached 

with nozzle tip (Diameter = 1 mm). 

iv. The calibration of the bioink flow rates and the printing speed of 3D bioprinter 

to produce desired line width. 

v. The synthesis of bioink with sodium alginate and gelatin composites.  

vi. The characterisation of bioink by using viscometer, contact angle, dynamic 

mechanical analysis device (DMA), Fourier transform infrared spectroscopy 

(FTIR) and degradation test. 

vii. The printing of layers of tubular structure of the bioink with encapsulation of 

microtissue inside the bioink. 

viii. The live and dead observation of the printed construct with microtissues. 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



6 

 

1.6 Thesis contributions  

 

In this dissertation, the experimental finding of a novel extrusion 3D bioprinting 

system and its application revealed a different approach in the tissue engineering field. 

The contributions of this study are listed below: 

 

(a)  An extrusion-based 3D bioprinting method 

The bioprinter was built by integration of a controller, extruder and a commercial 3D 

printer. The tip holder and the syringe holder were also designed by CAD software 

and built by using the 3D printer. This bioprinting method is able to operate easily and 

user-friendly. The biocompatible bioink was successfully synthesized with suitable 

chemical, physical and mechanical properties and characterised by FTIR analysis, 

degradation test, contact angle measurement, viscosity and DMA analysis.  

 

(b)  Reduce animal model exploitation in cancer research and pharmaceutics 

The findings obtained have contributed to the understanding of the effectiveness of 

alginate/gelatin biopolymer to be use as bioink. The printability of multilayer 

structures in this experiment proved the sturdiness of the sodium alginate/gelatin 

bioink. The multilayer structures can also help in cancer research and pharmaceutical 

study such as drug treatment. This will contribute to the decreasing in exploitation of 

animal model and the cost in maintaining the animal houses. 

 

(c) Printing 3D model with microencapsulated tissues 

Build model bridging 2D and animal models by printing 3D filament laden with 

microencapsulated tissues which bring one step closer to the in-vivo model. Instead of 

the conventional scattered cells, printing 3D model with inclusion of 

microencapsulated tissues contributed to the increasing of cell to cell interaction and 

cell to matrix interaction.  
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