DEVELOPMENT OF A 3D BIOPRINTING SYSTEM, CHARACTERISATION OF BIOINK AND PRINTING MICROSPHEROIDS OF HEla CELLS

SHERIL AMIRA BINTI OTHMAN

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering
Universiti Tun Hussein Onn Malaysia

SEPTEMBER 2020
To those who have always been there for me; my parents, my siblings, uncle and grandfather.
ACKNOWLEDGEMENT

All praises to Allah for giving me the strength to endure all of the difficulties throughout my master project. Firstly, I would like to dedicate my most appreciation and gratitude to my supervisor, Assoc. Prof. Ir. Dr. Soon Chin Fhong for all of her efforts in giving guidance and ideas through this project. I had learned and experienced a lot of things from her. I believe that this project can be done finely because of her. All of her kindness and understanding will not be forgotten.

Thank you for the conducive research environment and equipment provided by the Biosensor and Bioengineering Laboratory and Microelectronics and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC) that help me in completing my research. I would also like to express my gratitude to all the staff and faculties that allowing me and helping me in using the laboratory equipment. In addition, I would like to thank Ministry of Education (MOE) for the financial support from of Fundamental Research Grant Scheme (FRGS Vot. K106).

My deepest gratitude to my parents, my sister, brothers, uncle and my grandfather for all the love, supports, patience and encouragement throughout my master’s journey. Besides that, thanks to my friends for all of their assistances.

Lastly, special thanks to those involved directly or indirectly in this project for their help, motivation and sharing their knowledge until the completion of this project.
ABSTRACT

3D Bioprinting is a promising technology widely applicable to the biomedical engineering field. This technology provides an advance alternative in terms of tissue and organ fabrication that will soon surpass the traditional 2D cell culture methods. Various of existing 3D bioprinting techniques had been developed such as extrusion-based, inkjet-based, laser assisted deposition and stereolithography. The existing microextrusion-based technology is designed with complex system and printing of scattered cells which presented threats to the cell viability. To circumvent this problem, a microextrusion-based 3D bioprinting system that implements the printing of microtissues was developed. In this project, the mechatronic system of the extruder was fabricated and programmed with flow rates of 1, 2, 3, 4 and 5 ml/min. Then, it was assembled to the existing 3D printer to function as a 3D bioprinter. The bioprinter moves at a printing speed set between 10 to 50 mm/s based on the G-codes designed for the desired structures. The effects of flow rate of the extruder and printing speed of the bioprinter to the printability of bioink was determined by examining the linearity in width of the printed constructs captured in images. The viscosities of five different concentrations of sodium alginate-gelatin bioink were determined by vibration viscometer. The bioprinting inks were also characterised using contact angle, Fourier Transform Infrared Spectroscopy (FTIR) and Dynamic Mechanical Analysis (DMA). The degradation of bioink was observed for 14 days. After the printing parameters were optimised, constructs of alginate-gelatin were printed with HeLa cells infused in calcium alginate microcapsules. After 14 days of culture, the tissues were still viable as indicated by the green fluorescence of calcein-acetoxyxymethyl. The printed biofilament are potential cell models that can be utilised for the study of oncology and pharmacology. The bioprinting system was successfully developed and applied to print the encapsulated 3D microtissues into 3D constructs.
ABSTRAK

CONTENTS

TITLE
DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
ABSTRAK
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS AND ABBREVIATIONS
LIST OF APPENDICES

CHAPTER 1 INTRODUCTION
1.1 Overview
1.2 Research background
1.3 Problem statement
1.4 Objectives of research
1.5 Scopes
1.6 Thesis contributions
1.7 Thesis outline
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 8
2.2 Eukaryotic cell and tissues 8
2.3 Extracellular matrix (ECM) and cell adhesion 11
2.4 Squamous cell carcinoma and HeLa cells 13
2.5 Phases of cell growth 15
2.6 Two-dimensional (2D) and three-dimensional (3D) cell culture 16
2.7 Techniques for culturing 3D microtissues 18
2.8 Microencapsulation 19
2.9 Bioink for bioprinting 22
 2.9.1 Natural polymers 22
 2.9.2 Synthetic polymers 24
 2.9.3 Composites of bioink 26
2.10 Types of 3D bioprinting 28
 2.10.1 Stereolithography bioprinting 28
 2.10.2 Laser-assisted bioprinting 29
 2.10.3 Inkjet-based bioprinting 31
 2.10.4 Extrusion bioprinting 32
2.11 Printability and thixotropy 40
2.12 Analytical instruments 41
 2.12.1 Phase contrast microscopy 41
 2.12.2 Fluorescence microscopy 42
 2.12.3 Contact angle measurement device 43
 2.12.4 Dynamic mechanical analysis 44
 2.12.5 Viscometer 45
 2.12.6 Fourier transform infrared spectroscopy 47

CHAPTER 3 METHODOLOGY

3.1 Introduction 49
3.2 Development of bioprinting system 52
 3.2.1 Hardware development 53
 3.2.2 Electronic development 57
 3.2.3 Programming the microcontroller for the 59
extrusion system

3.3 Stepper motor speed verification
3.4 Geometric shape printing design for 3D bioprinting
3.5 Design of constructs and G-code
3.6 Synthesis of sodium alginate - gelatin bioink
3.7 Determining flow rate and printing speed of the 3D bioprinter for forming the designed 3D structures
3.8 HeLa cell preparation
3.9 Microencapsulation of HeLa cells by using flicking technique
3.10 Characterisation of CaAlg - Gel bioink
 3.10.1 Viscosity
 3.10.2 Contact angle measurement
 3.10.3 Fourier transform infrared spectroscopy (FTIR)
 3.10.4 Dynamic mechanical analysis (DMA)
 3.10.5 Degradation test
 3.10.6 Live and dead cells staining

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction
4.2 The effect of nozzle diameter on printability of NaAlg - Gel bioink
4.3 The relationship between the flow rates and motor speed
4.4 The effects of printing speed and flow rates to width of the printed filament
4.5 The influence of nozzle distance to the printability of bioink
4.6 Printability of multilayer structure
4.7 The viscosity measurement of NaAlg-Gel bioink
4.8 Surface behaviour of CaAlg-Gel
4.9 Functional group of NaAlg-Gel bioink
4.10 Dynamic mechanical analysis of CaAlg-Gel bioink
4.11 The degradation of CaAlg-Gel bioink 93
4.12 Encapsulation of HeLa cells in Calcium Alginate microcapsules 96
4.13 HeLa microtissues printed in NaAlg-Gel bioink 99
4.14 Live and dead cell assay 100
4.15 Previous work of extrusion-based 3D bioprinting system 103
4.16 Comparison of 3D bioprinting of bioink laden with microtissues and single cells 104

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 105

5.1 Conclusion 105
5.2 Recommendation for future work 106

REFERENCES 107

APPENDIX 120

VITA 131
LIST OF TABLES

2.1 Eukaryotic cell organelles ... 9
2.2 Comparison of 2D and 3D cell culture 17
2.3 Summary of the natural bioink properties, advantages with disadvantages .. 24
2.4 The synthetic bioink properties and advantages with disadvantages .. 25
2.5 Summary of bioink composites and bioink characteristics .. 26
2.6 The differences of four main 3D bioprinting techniques .. 34
2.7 Commercial 3D bioprinter .. 37
3.1 Establishment of experiments .. 51
4.1 The comparison of storage (G’) and loss modulus (G”) of each concentration at different frequency (Hz) .. 93
4.2 Comparison of proposed 3D bioprinter with previous work .. 103
4.3 The comparison of proposed bioink laden microtissues with previous development of bioink laden single cells .. 104
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic cell structure</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The human body tissues</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Cell adhesion to ECM via integrin (a) Cell adheres to ECM sites (b) Structures of adhesion proteins associated with cell adhesion to ECM</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Structural organisation of skin</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>(a) HeLa cells in 2D culture (b) Cervical tumour growth</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>HPV spheroids in squamous cell carcinoma</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Growth curve of cells</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>HeLa cells cultured in (a) 2D model (b) 3D model microtissue captured by phase contrast microscope</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Main structural of microcapsules</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Spray-drying process</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>The microfluidic encapsulation of alginate</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>Extrusion approach in flicking technique</td>
<td>22</td>
</tr>
<tr>
<td>2.13</td>
<td>The alginate polymers in CaCl$_2$ solution</td>
<td>27</td>
</tr>
<tr>
<td>2.14</td>
<td>Stereolithography technique for bioprinting</td>
<td>29</td>
</tr>
<tr>
<td>2.15</td>
<td>Component of laser-assisted bioprinting system</td>
<td>30</td>
</tr>
<tr>
<td>2.16</td>
<td>Thermal and piezoelectric inkjet bioprinter methods</td>
<td>32</td>
</tr>
<tr>
<td>2.17</td>
<td>Major types of dispensing system in extrusion bioprinter</td>
<td>32</td>
</tr>
<tr>
<td>2.18</td>
<td>3D bioprinted heart valve conduit</td>
<td>33</td>
</tr>
<tr>
<td>2.19</td>
<td>Hexagonal shape printed by the proposed extrusion-based bioprinter</td>
<td>34</td>
</tr>
<tr>
<td>2.20</td>
<td>Printability of alginate - gelatin bioink</td>
<td>40</td>
</tr>
</tbody>
</table>
2.21 The working principle of phase contrast microscope
2.22 The principle of fluorescence microscope
2.23 Contact angle of liquid droplet on flat surface
2.24 Basic principle of dynamic mechanical analysis (DMA)
2.25 SV-10 vibro viscometer
2.26 The FTIR system
2.27 The vibration mode of molecules in FTIR
3.1 The flow chart of research methodology
3.2 A block diagram of the designed 3D bioprinting system
3.3 The prototype of a developed bioprinting system
3.4 The bioink extruder controller board
3.5 (a) The bioink extruder machine and (b) Plunger holder
3.6 (a) Integration with 3D printer and (b) nozzle tip holder attached to 3D printer head
3.7 The controller circuit diagram for the extrusion-based 3D bioprinting system
3.8 The program flow chart for controlling extrusion
3.9 Digital tachometer onto reflective mark
3.10 Geometric shapes for designing of 3D structures
 (a) circle (b) hexagon (c) straight line (d) grid
3.11 A 2D hexagonal shape design in Inkscape software
3.12 The starting of G-code
3.13 The coding to print the hexagonal structure
3.14 (a) The G-code for hexagonal single layer
 (b) Changing of Z-axis can be seen in multilayer code
3.15 The preparation process of NaAlg - Gel bioink
3.16 The concept of printing microencapsulated cells
3.17 The formation of multilayer tissues in CaAlg - Gel constructs
3.18 Experimental setup for flicking device (a) Flicker
machine (b) Enlarge exert of flicker and CaCl$_2$ used to polymerise microspheroids

3.19 Vibrational viscometer with NaAlg - Gel bioink in sample case

3.20 Contact angle measurement for the thin sheet of polymerised bioink

3.21 Sample placed on the FTIR device

3.22 (a) DMA measurement (b) Sample clamped between the fixtures

3.23 The live/dead® viability kit used in the experiment

3.24 Fluorescence microscope

4.1 The filaments printed with different nozzle size of (a) 0.30 mm (b) 0.50 mm (c) 0.70 mm and (d) 1.00 mm (Scale bar:1 mm)

4.2 The relationship of flow rate and stepper motor rotation speed

4.3 The relationship between filament width and printing speed of the 3D printer with respect to different flow rate

4.4 Biofilament obtained at flow rate higher than 5 ml/min

4.5 Filament width printed at a speed of (a)10 mm/s, (b) 20 mm/s, (c) 30 mm/s, (d) 40 mm/s, and (e) 50 mm/s for 1 ml/min of flow rate

4.6 The distance between nozzle outlet and the printing substrate (Z-offset)

4.7 The printed filament at nozzle distance (a) 1 (b) 2 (c) 3 (d) 4 and (e) 5 mm (Scale bar:1 mm)

4.8 Hexagon structure printed at (a) 2 layers, (b) 4 layers, (c) 6 layers, (d) 8 layers, and (e) 10 layers of NaAlg - Gel bioink filaments (Scale bar: 5 mm)

4.9 Viscosity measurement of bioink composite of NaAlg - Gel
4.10 The contact angle measurement on (a) 10:10%, (b) 10:20%, (c) 10:30%, (d) 10:40% and (e) 10:50% v/v CaAlg -Gel

4.11 The FTIR spectrum of (a) pure gelatin, (b) sodium alginate, (c) mixture of NaAlg - Gel bioink, (d) CaAlg - Gel bioink

4.12 The differences of spectrum between (a) 10:10%, (b) 10:20%, (c) 10:30%, (d) 10:40%, and (e) 10:50% v/v NaAlg - Gel bioink

4.13 Frequency sweep test results with (a) storage modulus (G') and (b) loss modulus (G'') for different concentration of CaAlg - Gel bioink

4.14 The percentage of degradation of printed CaAlg - Gel filament

4.15 Degradation of bioprinted filament of CaAlg - Gel bioink on day (a) 0, (b) 2, (c) 4, (d) 6, (e) 8, (f) 10, (g) 12, and (h) 14 (Scale bar:5 mm)

4.16 Calcium alginate microbeads of HeLa cells (Scale bar:100 µm)

4.17 HeLa microtissues size distribution (Scale bar: 100 µm)

4.18 Phase contrast microscopic images of 3D encapsulated HeLa cells cultured in calcium alginate microcapsules for day (a) 0, (b) 2, (c) 4, (d) 6, (e) 8, (f) 10, (g) 12, (h) 14, (i) 16 and (j) 18 (Scale bar: 100 µm)

4.19 The 3D NaAlg - Gel bioink printed filament with HeLa microtissues. (Scale bar: 5 mm)

4.20 3D filament of CaAlg - Gel printed with HeLa microtissues (Scale bar: 5 mm)

4.21 Phase contrast microscopy image of HeLa microtissues printed in CaAlg - Gel 3D filament (Scale bar: 100 µm)

4.22 The phase contrast microscope image of HeLa microtissue after staining (Scale bar: 100 µm)
4.23 Fluorescence photographs of live and dead assay staining on (a) negative control, (b) live and dead cells in biofilament
(Scale bar: 100 µm)
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>ABS</td>
<td>Acrylonitrile Butadiene Styrene</td>
</tr>
<tr>
<td>CaCl</td>
<td>Calcium Chloride</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>Calcein AM</td>
<td>Calcein Acetoxymethyl</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese Hamster Ovary</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>DIR</td>
<td>Direction pin</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic Mechanical Analysis</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle's Medium</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EDTA Trypsin</td>
<td>Ethylenediaminetetraacetic acid Trypsin</td>
</tr>
<tr>
<td>ENA</td>
<td>Enable pin</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>EthD-1</td>
<td>Ethidium homodimer-1</td>
</tr>
<tr>
<td>FDM</td>
<td>Fused Deposition Modelling</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>G'</td>
<td>Storage modulus</td>
</tr>
<tr>
<td>G''</td>
<td>Loss modulus</td>
</tr>
<tr>
<td>Gel</td>
<td>Gelatin</td>
</tr>
<tr>
<td>GelMa</td>
<td>Gelatin Methacrylate</td>
</tr>
<tr>
<td>HA</td>
<td>Hyaluronic Acid</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's Balance Salt Solution</td>
</tr>
<tr>
<td>HeLa</td>
<td>Henrietta Lacks cervical cell line</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>HPV</td>
<td>Human Papillomavirus</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>K</td>
<td>Spring constant</td>
</tr>
<tr>
<td>kDa</td>
<td>KiloDalton</td>
</tr>
<tr>
<td>LAB</td>
<td>Laser-Assisted Bioprinting</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LED</td>
<td>Light-Emitting Diode</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MPA</td>
<td>Megapascal</td>
</tr>
<tr>
<td>NaAlg</td>
<td>Sodium Alginate</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene Glycol</td>
</tr>
<tr>
<td>PEGDA</td>
<td>Poly(ethylene glycol) Diacrylate</td>
</tr>
<tr>
<td>PEGDMA</td>
<td>Poly (ethylene glycol) Dimethacrylate</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic) Acid</td>
</tr>
<tr>
<td>PLGA</td>
<td>Polylactic-co-glycolic Acid</td>
</tr>
<tr>
<td>PUL</td>
<td>Pulse pin</td>
</tr>
<tr>
<td>RPM</td>
<td>Rotation Per Minute</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>STL</td>
<td>Stereolithography</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>W</td>
<td>Weight</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>x</td>
<td>Amplitude</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Theta</td>
</tr>
<tr>
<td>(\omega_n)</td>
<td>Natural frequency</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Project coding</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>List of Publications</td>
<td>129</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

The need of organ and insufficient supply of organ trigger the need of regenerating artificial organ or tissues. Various biotechnologies are undertaking by scientist and engineers to develop breakthrough products for minimizing health risks and life-threatening conditions. These technologies are such as bioinformatics, biopharmaceutical, chemical industrial technology, organ regeneration and tissue engineering. Engineering solutions such as bioprinting in organ regeneration technology enable the hope to regenerate functional tissues for building more complex structures such as a pumping heart. 3D bioprinting involving the biomaterials such as synthetic and non-synthetic bioink and cells are critical factors in creating a better cell model study. In conventional cell culture routine, the two-dimensional (2D) cancer model is commonly used by the cell biologists and pharmacologist in research. However, currently, it is gaining controversy regarding the accuracy of the model for disease and oncology studies.

1.2 Research background

Till date, conventional two-dimensional (2D) cell models are still being used in biological studies to understand the cell formation, functions and pathology [1]. Although growing a flat layer of cells in 2D culture had contributed a lot in cell research, but it lacks of predictivity and accuracy which increases the cost and failure rate during clinical trials [2]. These monolayer cell cultures show limitations in terms of cell proliferation, differentiation, gene expression, cancer cell invasion and morphology which slightly differ from the in vivo state [3]. In contrary, the three-
dimensional (3D) cells are able to adequately produce similar cell behaviour and mimic closely to the microenvironment of the in vivo responses [4]. The 3D cell model has proven to be more physiologically relevant in proliferation, cell number monitoring, viability and other studies of biological mechanism [3]. This native-like 3D cells are becoming crucial scientific tools in cell research. Hence, researchers are encouraged to develop new techniques equipped with the capacity to produce 3D cell models such as 3D bioprinting technology.

3D bioprinting involves the three-dimensional printing of biological tissues and organs through the process of layering the living cells which begins by creating an architectural design of the fundamental composition of the target tissue or organ with the help of computer-aided design (CAD) [5]. The 3D printer that applies in the bioprinting is commonly known as 3D bioprinter. The bioprinter will deposit thin layer of cells based on the architectural design using a printer head which moves according to the required configuration. The bioprinter uses an ink called as the bioink to build the three-dimensional structure of the organic materials. The bioink can be synthetic and non-synthetic biomaterials mostly made up of dissolvable hydrogel component such as collagen, chitosan, Pluronic and hyaluronic acid (HA) [6]. Hydrogel is a hydrophilic network of polymer chains which is highly absorbent and possess a flexibility that is similar to the natural tissues [7]. This hydrogel is considered to have a great potential in medical purposes due to its ability to absorb large quantity of water, thus, in bioprinting, it is often used to support and protect the cells as well as acting as fillers to fill empty spaces within the tissues [8].

The application of bioprinting technology in biomedical field was inspired from the early development of three-dimensional printing system back in the 1900s [9]. It has been rapidly commercialised due to the significant interests gained from biomaterials development, medicine and pharmaceutics industries. The current market offers bioprinters such as Organovo ExVive™, Aether I, FABION and BioBot™ Basic which work similarly but differs by the printing mechanism and bioink used [10], [11]. This rising technology had been adopted in tissue engineering and regenerative medicine into creating functional living tissues and organs. It has a great potential in keeping the pace with the growing demands for suitable organs and acts as an alternative to organ transplantation [12]. This new approach is able to create a structural and molecular environment that mimics significantly the properties of the native organ in order to support the recipient’s cells. The 3D bioprinting allows the
accurate evaluation of cell microenvironment that accelerates the development of cancer therapeutics in oncology studies [13]. The 3D tissue model produced by bioprinting techniques can also be used in medicine and pharmacology research for drug treatments and study diseases [14].

There are four types of bioprinting that had been developed to fabricate the 3D cells which are stereolithography bioprinting [15][16], drop-on-demand or inkjet bioprinting [17][18], extrusion bioprinting [19][20] and laser-assisted bioprinting [21][22]. Stereolithography bioprinting works with photopolymers which are not stable over time and might harm the cell. For inkjet-based bioprinting, the droplets tend to spread inconsistently and unequal in size [23]. Previous research on laser-assisted bioprinting showed that this method did not suffer any nozzle blockages due to the nozzle-less printing setup [24]. However, it is an expensive method to use.

Amongst previous bioprinting techniques mentioned, the extrusion-based bioprinting is the simplest and effective ways to print wide range of biomaterials viscosity. It also promotes a short fabrication time than the other bioprinting techniques. From previous work, extrusion-based bioprinter is mostly applied for printing scattered single cells laden in the bioink which can be difficult for cell to communicate due to the long distance between each other [25].

Thus, this research proposed the inclusion of microtissues that simulate the tumour embedded deep in the tissues of approximately 1 mm thick. This project focuses on developing an extrusion-based bioprinter with a potential to extrude and print 3D microtissues capsules coated with sodium alginate and gelatin 3D hydrogels or the bioink. The bioinks were synthesised and characterised for the physical and mechanical properties. The microspheroids of HeLa or cervical cancer cells had been encapsulated first in calcium alginate using a flicking machine that could produce spheroids of microtissues. These spheroids were doped in the sodium alginate and gelatin bioink and printed into the 3D constructs. Calcium chloride (CaCl$_2$) had been used as the crosslinker of the printed hydrogel structures. Hence, this work is able to be applied for more precise prediction of drugs diffusion through multilayer structures of the tissues in pharmacological studies.
1.3 Problem statement

The two-dimensional (2D) cancer cell has been used for a long time as the physiological cancer model. In previous research [26], the 2D cell model had led to a nonpredictive data for the in vivo responses as it provided a poor development of model. Due to that, three-dimensional (3D) cancer cell model had been introduced in clinical trials [27]. The 3D model cells are known to be more novel and has the ability to represent the integral missing component in the in vitro cancer research. It is a good approach to grow and treat cancer tumour as it exhibits similar growth and treatment patterns [28]. It also helps to reduce the usage of animal models. Previous extrusion-based bioprinting technology had been developed to print 3D constructs with scattered cells technique [29]. The scattering of cells had contributed to the decrease of cell interaction because of the distance between each other in the 3D constructs. Besides that, most of the extrusion-based bioprinting used small diameter of nozzle in the range between 0.2 mm to 0.8 mm which produced good resolution or structure of printed filament. However, this will increase the shear stress on the nozzle tip which leads to low cell viability [30].

Therefore, this project is proposed by developing an extrusion-based 3D bioprinting system that capable to extrude 3D structures made up from sodium alginate and gelatin mixture (sodium alginate-gelatin). The mixture was to enhance the printability properties of the bioink to print stable 3D constructs. A 1 mm diameter of nozzle was used to reduce the shear stress on the tip during extrusion and able to improve the cell viability. The straight-forward controller is easy to use and operated well. Instead of using the scattered cells technique, a different approach was used to print structure that consists of microbeads of calcium alginate for the microencapsulation of HeLa cancer cells. This approach is to fuse the functional microtissues in sodium alginate - gelatin bioink 3D structure which capable to induce the cell interaction. The biomaterials from the bioink are also non-toxic and highly biocompatible natural polymers which will increase the viability of the cells [31].
1.4 Objectives of the research

The main objectives of the research are:

i. To design and fabricate extrusion system to the existing 3D printer to form a 3D bioprinter.

ii. To characterise the bioink properties and optimum printing speed with flow rate of the sodium alginate - gelatin bioink for a printable single and multi-layered filament.

iii. To analyse the viability of the microencapsulated HeLa cells in the printed sodium alginate-gelatin biofilament.

1.5 Scopes

In order to achieve the stated objectives, the scopes of this project are planned as following:

i. The design of the extrusion system with an extruder, controller and syringe to load the bioink by using computer aided design (CAD) software, Google SketchUp 2017.

ii. The development of the system controller with selection buttons to control the flow rate of bioink.

iii. The integration of the extrusion system with existing Anycubic Prusa i3 3D printer by using silicon tube of 300 mm long (Diameter = 2.5 mm) attached with nozzle tip (Diameter = 1 mm).

iv. The calibration of the bioink flow rates and the printing speed of 3D bioprinter to produce desired line width.

v. The synthesis of bioink with sodium alginate and gelatin composites.

vi. The characterisation of bioink by using viscometer, contact angle, dynamic mechanical analysis device (DMA), Fourier transform infrared spectroscopy (FTIR) and degradation test.

vii. The printing of layers of tubular structure of the bioink with encapsulation of microtissue inside the bioink.

viii. The live and dead observation of the printed construct with microtissues.
1.6 Thesis contributions

In this dissertation, the experimental finding of a novel extrusion 3D bioprinting system and its application revealed a different approach in the tissue engineering field. The contributions of this study are listed below:

(a) An extrusion-based 3D bioprinting method
The bioprinter was built by integration of a controller, extruder and a commercial 3D printer. The tip holder and the syringe holder were also designed by CAD software and built by using the 3D printer. This bioprinting method is able to operate easily and user-friendly. The biocompatible bioink was successfully synthesized with suitable chemical, physical and mechanical properties and characterised by FTIR analysis, degradation test, contact angle measurement, viscosity and DMA analysis.

(b) Reduce animal model exploitation in cancer research and pharmaceutics
The findings obtained have contributed to the understanding of the effectiveness of alginate/gelatin biopolymer to be use as bioink. The printability of multilayer structures in this experiment proved the sturdiness of the sodium alginate/gelatin bioink. The multilayer structures can also help in cancer research and pharmaceutical study such as drug treatment. This will contribute to the decreasing in exploitation of animal model and the cost in maintaining the animal houses.

(c) Printing 3D model with microencapsulated tissues
Build model bridging 2D and animal models by printing 3D filament laden with microencapsulated tissues which bring one step closer to the in-vivo model. Instead of the conventional scattered cells, printing 3D model with inclusion of microencapsulated tissues contributed to the increasing of cell to cell interaction and cell to matrix interaction.
REFERENCES

no. 1, p. 21, 2017.

[57] A. Garg, K. Chhipa, and L. Kumar, “Microencapsulation Techniques in

[156] D. R. Katti, A. Sharma, and K. S. Katti, "Predictive methodologies for design of bone tissue engineering scaffolds," *Materials and Devices for Bone*

