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1 Introduction 

Real-world data is rarely flawless, and uncertainties might come in at any point, reducing 
modelling and predicting accuracy. Uncertainties in collected data include measurement 
errors, data quality, representativeness, and bias. Uncertainties inherent in real-world 
scenarios apply a significant influence on forecasting and decision-making processes, 
complicating decision [1] parameters across various industries. Data contains fuzzi­
ness and randomness because of the ambiguities and vagueness that exist in the real 
world. Randomness refers to physical uncertainty, while fuzziness is caused by human 
cognition. Fuzzy random data can be used to describe all the information associated 
with a measurement result, including systematic and random components to the overall 
uncertainty. 

Portfolio selection models often face challenges in uncertain environments, where 
security returns are difficult to predict based on historical data alone. To address this, 
various models have been proposed, such as uncertain portfolio selection models with 
background risk [2], those based on VaR minimization [3], and multi-period portfolio 
models considering expert evaluations. These models aim to enhance decision-making 
by incorporating uncertainty into the portfolio selection process. 

The evaluation of the usefulness of portfolio selection models across diverse indus­
trial sectors serves multiple important purposes, including validating the methodology's 
applicability, assessing its performance comprehensively, and demonstrating its practical 
relevance. By examining sectors such as Agriculture, Mining, Manufacturing, Electric­
ity, and Water, the study ensures that the proposed methodology addresses sector-specific 
challenges and is effective in various real-world scenarios. This approach helps validate 
the robustness and generalizability of the model, making it applicable beyond specific 
industries. 

Data containing fuzzy random uncertainties reduces the accuracy of portfolio selec­
tion models by introducing uncertainty and ambiguity into the decision-making process. 
In modeling uncertain phenomena [ 4] across different production sectors, the concepts of 
random variables and fuzzy theory play pivotal roles. While probability theory addresses 
random events, fuzzy theory offers solutions for handling fuzzy data. However, exist­
ing models often treat these uncertainties separately, overlooking their simultaneous 
occurrence real data. 

2 Literature Review 

This section provides a background on portfolio selection through the mean-variance 
model and the utilization of fuzzy numbers. 

2.1 Mean-Variance Model 

Portfolio selection entails the process of identifying an optimal portfolio. Markowitz 
introduced a method aimed at determining the optimal portfolio that maximizes returns 
while minimizing risks, framing such scenarios as portfolio selection problems. Portfolio 
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selection finds wide application in real-world contexts and has been expanded to address 
uncertainties [5 , 6]. 

Equation (1) defines the portfolio selection model [7]. 

min t~i~ Xtcryxj} 
,. 

s.t. E E(rt)Xt = p 
i=l ,. 
I:x;=1 
i=l 

Xi~ 0, i = 1, ... ,n 

(1) 

In this context, r; represents the random variable denoting the return, E(r;) signifies 
the expected value associated with r;, Uii stands for the variance of ri, Uij represents the 
covariance between rt and 'i> Xi denotes the proportion of capital allocated to security i 
and p signifies the parameter related to the expected return. 

2.2 Fuzzy Set 

The concept of fuzzy sets is as follows: 

Definition 1: Within the context of this analysis, let U represent the universal set of 
discourse. We define a fuzzy set A on U using a membership function mA. This function 
assigns a real value between 0 and 1 to each element x in U, indicating the degree to 

whichx satisfies the characteristic property of A. Formally, we can express a fuzzy setA 
in U as acollectionoforderedpairsA = {(x, mA(x)): x E U}, wheremA: U ~ [0, 1] 
represents the membership degree of x in A. Formally, a fuzzy number xis described as: 

,. 
mA(X) = Lm;(X)IA1(X) (2) 

i=l 

where lAi (X) = 1 when x E A; and lAi (X) = 0 if x 't A;. 

Definition 2: A fuzzy set A on the universal set U, defined by the membership function 
y = m(x), is regarded normal if there is at least one element x in U with m(x) = 1. 

2.3 Fuzzy Random Variables 

Data hybridization, which combines fuzzy data with randomness, appears as a major 
advance in the extension of fuzzy sets [11]. The concept of fuzzy random variables [12] 
was improved by [13] with a new notion of exclusion, allowing the generalization of 
integrals for set-valued functions. 
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Theorem 1. Central Limit Theorem. 
Let X1, ... , X11 be the random variables with mean m and variance a2. Let 

1-
nl(X11 -m) W,.-nm z,. = ---- = -----~--

fl nlu 
(3) 

Xt, X2, ... X,. are independent, identically distributed random variables with mean 
1.1. and standard deviation o; Z11 is the standardised sample mean. The sample mean, or 
X11, is calculated by dividing the sum of the random variables X; by the sample size, n is 
the sample size, o is the standard deviation of each individual random variable, and m 
is the population mean, or expected value. Zn converges in distribution to Z as n-+ oo. 
Zn -+ Z "'N(O, 1) is denoted as n -+ oo where Z distribute according to a standard 
normal distribution function N (0,1 ). 

3 Portfolio Selection Model Using Fuzzy Random Data Based 
on Percentage Error on Industrial Production Index 

3.1 Fuzzy Random Data Pre-processing 

This section describes the methods for pre-processing data with fuzzy random variables. 
To account for real-world uncertainty, we use an approach based on measurement error 
ranges, as established in previous publications [14-16]. 

In this analysis, we depict the minimum potential value (A;) and the highest potential 
value (B;). Equation (4) describes the exact procedure used to generate fuzzy data from 
the initial single-value data points, where p is the percentage of error and ip is index 
production. 

Ai = ip- (ip *P%) 

Bi = ip + (ip •p%) (4) 

The original data is transformed into fuzzy intervals F; = [A;, Bil to account for real­
world uncertainties. The intervals represent the potential range of each data point. We 
also define each fuzzy interval by its center point (q) and width (wi)- The central point 
(c; = (A; + B;)/2) represents the most likely outcome, while the width (w; = B; -A;) 
indicates the level of uncertainty. Specific formulas for determining these numbers in 
theEq. (5). 

Ai +Bi . 
Ci = 

2 
V1 = 1, 2, ... n 

B·-A· 
Wi = ' 

2 
' Vi = 1, 2, ... n (5) 

This study addresses randomness in the data using four probability distributions: 
Normal, Weibull, Gamma, and Logistic. Each distribution generates a p-value, which 
indicates how well it fits the data. The distribution with the highest p-value, indicating 
the best fit, is selected for further analysis. After pre-processing with fuzzy random 
variables, the input is translated into interval form Y; = [C;, Wi], representing potential 
changes around a central point. Within each interval, C; represents the central point and 
W; indicates the width of the interval. 
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3.2 Fuzzy Random Based Portfolio Selection Model for Industrial Production 
Index 

Let Y; = (C;, W;) represent the set of interval fuzzy numbers with Vi = 1,2, ... , n. The 
expected value and variance of the fuzzy interval data are determined as follows: 

Expected value: 

(6) 

Variance: 

(7) 

E is the expected value of interval fuzzy number and a 2 is the variance. Portfolio 
formulation is given as follows: 

n 
max E E(c;)x; 

i=l 
II 

min E E(w;)x; 
i=l 
n 

s.t. E u(c;)x; 
i=l 

II 

E u(w;)x; 
i=l , 
LXi:::: 1 
i=l 
n 
E u(w;)x; 
i=l 

x; ~ 0 V i = 1, 2, ... , n 

(8) 

max E7=1 E(c;)x; and min E7=1 E(w;)x; in (8) uses expected value in center and width. 
Based on the findings in Sects. 3.1 , 3.2, we provide an optimized approach to this stage 
within the method: 

1. Data CoUection: Gather relevant data. 
2. Determine Measurement Error: Before using the data for fuzzification, it is critical 

to identify any potential collection inaccuracies. Quantifying this inaccuracy, such as 
a 5% margin, directs the fuzzification process by establishing acceptable limits for 
portraying data variability. 

3. Fuzzification Process: 

• For each data pointx;, calculate the maximum and minimum potential values based 
on the measurement error. Let's denote these as A; and B; respectively. 

• Formulate the fuzzy data interval F; =A;, B;. 

4. Calculate Central Point and Width: 

• Determine the central point c; of the fuzzy interval F;. 
• Calculate the width w; of the fuzzy interval F;. 
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5. Repeat for Each Data Point: Perform steps 3 and 4 for each data point in the dataset. 
6. Complle Results: Present the fuzzified data in the form of interval parameters Fi, 

where each Fi represents a fuzzy data interval with its respective central point and 
width. 

7. Calculate Probability Distribution Function (PDF): The central point and width 
provide clues into distribution types, but further investigation is required for identi­
fication. While a distribution's center point and width provide indications about its 
basic shape (synunetric, skewed), determining the underlying PDF requires more 
information or analysis, such as higher-order moments or goodness-of-fit tests. 

8. Compute Portfolio Selection Model: Use the PDF result to identify the risk level to 
get the most optimize result using Eq. (8). 

This strategy provides an efficient method for decision-makers to create selection 
models while handling data uncertainty. 

4 Numerical Experiment 

The analysis incorporates data from five distinct production sectors: Agriculture, Mining, 
Manufacturing, Electricity, and Water. This data is obtained from Malaysia's official data 
catalog (https://data.gov.my/ms-MY/data-catalogue/ipi) and spans a three-year period, 
from 2015 to 2023. The primary goal of this study is to identify an investment portfolio 
that chooses one of these five production sectors. 

Table 1. Single form data 

Data/Production Agriculture Mining Manufacturing Electricity Water 

1/1/2010 92.7 99.4 98.8 99.8 99.2 

11212010 93.3 97.8 99 99.4 99.1 

113/2010 96.1 108.6 99.2 100.5 99.2 

1/412010 95.3 107.7 99.3 99.7 99.9 

1/5/2010 94.1 91.4 99.8 100.3 101.5 

... 000 ... 000 000 ... 
1/12/2023 123.2 97.4 120 117 118.3 

Fuzzy random data pre-processing starts here. The raw data obtained in Table 1 is 
then fuzzified by using 5% percentage measurement error based on Eq. ( 4 ). This resulted 
in fuzzy interval data in a form of [a, b] where a is minimum data and b is the maximum 
data. Table 2 shows the percentage error data. 



406 M. H. H. Othman et al. 

Table 2. Percentage error 5% data [aj, b;] 

Data/Production Agriculture Mining Manufacturing Electricity Water 

11112010 [88.07, [94.43, [93.86, 98.55] [94.81, 99.55] [94.24, 98.95] 
92.47] 99.15] 

11212010 [88.64, [92.91, [94.05, 98.75] [94.43, 99.15] [94.15, 98.85] 
93.07] 97.56] 

1/3/2010 [91.30, [103.17, [94.24, 98.95] [95.47, 100.25] [94.24, 98.95] 
95.86] 108.33] 

1/4/2010 [90.54, [102.32, [94.34, 99.05] [94.72, 99.45] [94.91, 99.65] 
95.06] 107.43] 

... ... ... ... ... ... 

111212023 [117.04, [92.53, [114.00,119.70] [111.15,116.71] [112.39,118.00] 
122.89] 97.16] 

After the data been processed using the percentage error, the data should be fuzzy 
data to o and l. The data should be processed such as Table 3. 

Table 3. Fuzzy data, center point, and width [o;, 1;] 

Date/Production Agriculture Mining Manufacturing Electricity Water 

1/112010 [ -2.43, 2.20] [-2.61, [ -2.59, 2.35] [-2.62, 2.37] [-2.60, 
2.36] 2.36] 

11212010 [-1.85, 2.22] [-4.17, [-2.40, 2.35] [-3.01, 2.36] [-2.70, 
2.32] 2.35] 

1/312010 [0.88, 2.28] [6.35, [ -2.20, 2.36] [ -1.94, 2.39] [-2.60, 
2.58] 2.36] 

1/412010 [0.10, 2.26] [5.47, [ -2.11, 2.36] [-2.72, 2.37] [-1.92, 
2.56] 2.37] 

... ... ... ... ... ... 
1/1212023 [27.27, 2.93] [-4.56, [18.05, 2.85] [14.13, 2.78] [15.99, 

2.31] 2.81] 

After collecting the data, the center point and width of the fuzzy data is identified as 
in Eq. (8). Table 4 shows the center point and width of the fuzzy data. The probability 
distribution function is then performed to treat the randomness. Each of the production 
data will provide 4 types of data which each of them will generate Nonnal, Log, Gamma, 
and Wei bull distribution. Each of the distributions will provide the p-value. In this paper, 
the biggest p-value indicates as the best result to treat the randomness. 



Portfolio Optimization with Percentage Error-Based Fuzzy Random Data 407 

Table 4, Interval number of the probability distribution function 

center,C width, w 
Agriculture N(14.7736, 18.5711) y (33.4912, 0.0783) 

Mining N(3.0240, 24.6628) y (17.2472, 0.1448) 

Manufacturing y (1.5832, 4.4442) W(358.2068, 0.0072) 

Electricity W(2.8662, 13.0576) W(24.6696, 2.7416) 

Water W(1.7513, 10.2081) W(28.1013, 2.6715) 

Table 5 shows 5 types of production are considered and represents in the form of 
X11 =(XI, xs, ... , xs) respectively. Table 4 shows the probability distribution function 
that has been selected based on the highest p-value. Note that the LOG denotes logistic 
distribution, was the Weibull Distribution and y as gamma distribution. The moment 
estimator is utilized to approximate the expected value and variance each of the vegetable. 

Table 5. Expected value and variance 

Production center, C width, w 
expected value variance expected value variance 

Agriculture Xl 14.77360 344.88390 2.62131 0.20517 

Mining X2 3.02401 608.25370 2.49815 0.36184 

Manufacturing X3 7.03619 488.69613 2.58137 0.01860 

Electricity X4 2.75506 0.06620 21.95005 74.78710 

Water xs 1.66756 0.03871 24.98108 101.46823 

Table 6 shows the result. Finally, the expected value and variance for each of the 
production indexes is computed. The data has now completed the pre-processing phase. 
This pre-processed data is then presented to the portfolio selection model to identify the 
best portfolio. 

The portfolio selection model in Eq. (8) is used to build the Model (9). 

max 14.77361kt + 3.02401.~::z + 7.03619,.3 + 2.75506:~.~ + 1.667S'n 

min 2.62131xt + 2.4981Sxz + 2.58137x3 + 21.95005:~.~ + 24.98108xs 

S.t • .J344.8839(h-1 + .J608.2SJ70xz + .J488.6961JI3 + .J0.06620..... + .J0.0J871Jts = k 
.,f0.20517x2 + .j0.36184x2 + .JO.OIII60i3 + ..(74.7871Di4 + .J101.46823xs ~ k 

x1 +xz +x3 +x4 +xs ~ 1 
Xi 2:: 0 vi = I, 2, .... " 

(9) 

Equation (9) is solved using a linear programming approach. Here, we assume that 
k represents the risk level, and the optimal solution is achieved with x11 = (I ,0,0,0,0)', x11 

= (0,1,0,0,0)', Xn = (0,0,1,0,0)', Xn = (0,0,1,0,0)', Xn = (0,0,0,1,0)', or X11 = (0,0,0,0,1)'. 
The model's computation halts upon reaching the optimal solution. 
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5 Result and Discussion 

Table 6 shows the optimal solution results. From the results table, the risk of k = 
5.591 indicates the optimal solution where the expected return is (7 .03, 2.58) for a 5% 
percentage error. The optimum result based on the five industrial production data is 
manufacturing production. 

Table 6. The result with optimal solution 

Risk,k 3 4 5 5.591 6 

xri [0,0.6,0,0,0] [0,0.81,0,0,0] [0,0.95,0.05,0,0] [0,0,1,0,0] * [0,-
0.65, 
1.65, 0, 
0] 

Expected (1. 82, 1.34) (2.4, 1.8) (3.24, 2.3) (7 .03, 2.58) [9.66, 
Value 2.77] 

Risk level k is critical in helping management make portfolio selection decisions. 
This parameter, shown by the optimal value x* 5.591 in Table 6, denotes the amount of 
risk associated with a specific portfolio. In this situation, it indicates that manufacturing 
output can create the largest return compared to other production sectors, but at a greater 
risk level. 

The fundamental goal of this research is to find industrial production solutions with 
high potential for returns while controlling associated risks. While risk levels k = 3, 4, 
and 5 often produce positive expected returns, k = 5.591 stands out as having the 
greatest potential return based on our findings in Table 6. As a result, this model can 
assist management in prioritizing industries with optimal risk-return profiles to maximize 
prospective profitability. 

A total allocation of 1 is required while aiming for a particular risk level, k = 6, based 
on the portfolio outcome that has been provided, which is the allocation of resources 
represented by xl to x5. To achieve a risk level of 1.6541, it is specifically necessary 
to decrease the allocation of x2 by roughly 0.651 units and raise the allocation of x3. 
Within the context of this structure, the modifications seek to reallocate resources across 
the portfolio to satisfy the target degree of risk while abiding by the limitations set forth 
by the optimization issue. By using this reallocation approach, resources are distributed 
fairly and in accordance with the designated risk tolerance level. 

6 Conclusions 

In conclusion, this study introduces a portfolio selection approach designed to effec­
tively address the inherent uncertainties present in real-world data, particularly in indus­
trial production planning. Employing a two-stage strategy, our approach demonstrates 
resilience and adaptability in navigating uncertainty. Firstly, through the innovative inte­
gration of fuzzy random variables, our methodology rigorously cleans and prepares data, 
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capturing both unpredictability and ambiguity inherent in real-world datasets. Second, 
using this pre-processed data in a portfolio selection model based on the standard mean­
variance paradigm, we optimise portfolio strategies across multiple production sectors 
while accounting for uncertainty. Particularly, our approach enables more resilient and 
adaptive portfolio selection strategies, which are critical in the face of industrial pro­
duction planning uncertainties. Specifically, the first stage utilizes a measurement error 
method to transform crisp data into fuzzy sets, enriching the dataset and capturing 
potential variances. Subsequently, key parameters such as fuzzy center and width are 
derived from these fuzzy sets. To address randomness, our method incorporates prob­
ability distributions alongside the preprocessed fuzzy data, providing a comprehensive 
approach to managing uncertainty. Application of this technique across five distinct 
industrial sectors-agriculture, mining, manufactnring, electricity, and water-yields 
promising results, showcasing its ability to identify optimal production yields for each 
sector. These findings offer valuable insights for strategic planning and decision-making 
processes across industries, underscoring the resilience and adaptability of our portfolio 
selection tactics in uncertain environments. 
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