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Abstract. Accurate air quality forecasting is critical for decreasing pollution and
protecting public health. A hybrid model combining the Temporal Convolution
Network (TCN) and the Graph Convolution Network (GCN) has been developed
to predict air pollution with high accuracy and minimise the associated health
risks. Because air quality data has two crucial components: temporal trends and
spatial linkages, the combination of TCN and GCN is required. The GCN model
learns the complicated architecture of each observatory, whereas the TCN model
uses past data to detect deviations. The Graph Temporal Convolution Network
(GTCN) model was evaluated using six important variables: station names, Air
Quality Index (AQI), data timestamps, longitude, and latitude. Our GTCN out-
performed other researchers’ models on real-world data between February and
July 2021. The results demonstrated the lowest Mean Absolute Error (MAE) of
approximately 4.78 and the lowest Root Mean Square Error (RMSE) of approx-
imately 6.67. Through precise air quality forecasting, people can pre-know how
to protect themselves and prepare outdoor dresses well to reduce exposure to air
pollution and related health hazards.

Keywords: Air Quality Index - Graph Convolution Network - Temporal
Convolution Network - Uncertainty - Prediction Model

1 Introduction

Inrecent years, public health, environmental sustainability, and economic growth have all
been significantly affected by air quality [1]. Due to rapid industrialization and urbaniza-
tion in many parts of the world, air pollution has become a serious problem that requires
immediate action [2]. Precise air quality forecast extends beyond short-term projections,
considering spatial relationships, historical trends, and a range of data sources to guide
mitigation activities. Prediction is a valuable tool for taking preventive action, allocating
resources properly, and raising awareness. Accordingly, precisely anticipating pollution
levels is a critical indicator for air quality regulation [3]. It has the potential to influence
decision-making processes ranging from personal behaviour to public policy and sus-
tainable urban design by giving precise, timely information on pollutant concentrations

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Ghazali et al. (Eds.): SCDM 2024, LNNS 1078, pp. 296-306, 2024.
https://doi.org/10.1007/978-3-031-66965-1_29



Enhanced Air Quality Index Prediction 297

(4). Governments and public health organisations can utilise precise projections to act
immediately to safeguard individuals from high levels of pollution.

Traditional air quality forecasts often utilise statistical models based on mathemati-
cal equations to simulate the physical factors that control air pollution [5]. These models
often rely on historical data and a restricted set of variables, such as traffic, weather,
and industrial pollution. These models may not always fully reflect the complex and
dynamic interactions between these variables, but they can still be useful for learning
about air quality. When compared to conventional models, machine learning techniques
provide a more sophisticated and flexible approach to forecasting air quality [6]. How-
ever, they do necessitate the ability to understand and analyse data, as well as a large vol-
ume of high-quality data. Artificial Neural Networks (ANN), Support Vector Machines
(SVM), Random Forest (RF), and Deep Learning models such as Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) are among the most utilised
machine learning techniques for predicting air quality [7-9]. Other machine learning
approaches, such as Decision Trees (DT), Bayesian Networks (BN), and K-Nearest
Neighbour (KNN), have also been used to forecast air quality, but less frequently [7,
10].

Graph convolutional networks (GCNs) and temporal convolutional networks (TCNs)
have showed great potential in air quality prediction due to their ability to replicate
complex spatial and temporal correlations in data. Zhang et al. [10] discovered that by
using graph-based representations that capture the relationships between stations, GCNs
may successfully depict the spatial dependencies between air quality monitoring stations.
TCNs use convolutional layers to capture patterns in time series data, allowing them to
accurately represent temporal dependencies in air quality data. It has been established
that combining GCNs and TCNs in air quality prediction models improves forecast
accuracy and enables the identification of potential pollution sources. A GCN-TCN
model was used to forecast Beijing, China’s air quality [10, 11]. The method beat earlier
machine learning models in terms of prediction accuracy and was able to determine how
different pollution sources affected the overall air quality.

This article proposes using the GCN and TCN techniques to forecast future AQI
using the latitude and longitude of the observation station, as well as prior AQI readings.
This study uses spatial and temporal correlations to forecast AQIs for future time points.
Because air pollutants are mobile in the atmosphere and travel to different places depend-
ing on meteorological circumstances, there are both temporal and spatial correlations
involved. The suggested model employs temporal convolutional networks to learn minor
dynamic changes in historical data and graph convolutional networks to learn compli-
cated topology patterns between observation stations. This model can forecast the AQI
at future time points, acting as an early warning system for people to take appropriate
action and giving the government information on the trend in air quality to help it create
pertinent legislation.

This paper is organized as follows: the first section provides the introduction. The
second section introduces the related works. The experiment method is described in
the third section. The experimental results and discussions are presented in the fourth
section. The last section gives the conclusion and future work.
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2 Related Works

The AQI is a statistic used in several countries to assess the quality of air [12]. There
are also numerous researchers working on AQI furcation using various models [13—
17]. In Taiwan, the Environmental Protection Agency incorporated long-standing dual
air quality indicators into the AQI, such as the Air Pollution Index (PSI) and Fine
Suspended Particulate Index (DAQI). The primary components include ozone (O3),
suspended particles (PM10), small, suspended particulates (PM2.5), nitrogen dioxide
(NO2), sulphur dioxide (SO2), and carbon monoxide (CO). The sub-indicator values
of various pollutants are transformed depending on their impact on human health, and
the maximum value of each sub-indicator value for the day is used to generate the AQI
value for the observation station.

Many studies have focused on predicting the AQI to preserve human health, such as
Lah, etal. [18] used the ARIMA model to estimate the historical AQI value. Furthermore,
the relationship between the AQI and nine factors (PM2.5, PM10, SO2, NO2, CO, O3,
maximum temperature, minimum temperature, and wind direction) is investigated in
Jiao, et al.’s research works [19] before utilizing the LSTM model to predict the AQI
using these variables. Meanwhile, a new framework, MTMC-NLSTM, is presented in
Jin, et al.’s research works [20]. It employs nested LSTM, which boosts the size of each
LSTM unit by one. To forecast multivariate AQI data, MTMC (multi-task multi-channel)
is used. The experimental results show that the DL. model with DSWT can predict events
more accurately and with fewer errors. Lah, et al. [18] and Zhao, et al. [21] provide good
prediction results, however, they only analyze the temporal relationship and ignore the
geographical correlation.

Cui [22], on the other hand, presented a novel traffic forecasting technique. They
used Graph Convolutional Networks (GCN) to learn about the intricate structure of road-
ways and Gated Recurrent Units (GRU) to grasp past traffic patterns. Based on exper-
imental results and dynamic changes in the data, the suggested approach may provide
spatiotemporal correlation in traffic data and can be applied to a variety of correlation-
based predictions. He and colleagues proposed a new deep learning framework known
as TGC-LSTM. Road interactions in the traffic network were identified using graph
convolutional networks and LSTM. The findings of the experiment show that models
that incorporate both temporal and spatial correlations perform better in predictions.

Deep learning has evolved substantially in recent years, resulting in much more
accurate models. Gopali et al. [24] suggested a temporal convolutional network model
(TCN) for detecting time series abnormalities. TCN was used to learn the typical pattern
of sequence data, and anomalies were recognized using a specified threshold and the
aberrant error’s degree of divergence. Kipf et al. [25] investigated the performance of
LSTM and TCN for detecting anomalies in time series data. The results revealed that
TCN outperformed LSTM, demonstrating that it can predict data more accurately and
quickly utilizing time series.

From the above works, we can see that practically all studies employed LSTM, GCN,
GRU, or TCN to combine each model as TGC-LSTM, TCN + LSTM. Nevertheless,
those approaches all have limitations, such as the inability to analyze the space-time
situation simultaneously. Due to this reason, our study employs both GCN and TCN
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model to forecast Taiwan’s air quality to consider more impact factors in space-time
locations.

3 Experimental Method

The proposed system architectural design is shown in Fig. 1. The process began with
data splitting, which divided the historical source data into latitude and longitude and
AQI values. The data is then preprocessed. After training, the GCN and TCN models
are used to obtain temporal and spatial correlations. Finally, obtain a model capable of
forecasting AQI with temporal and geographical correlations.

Fig. 1. System Architecture Diagram

The environmental data open platform of the Republic of China’s Environmental
Protection Agency serves as the primary source of experimental data in this paper.
The original data contains a total of 25 observation items, such as meteorological and
pollution indicators that have an impact on the AQI. The specific items have “Site Name”,
“Country”, “AQI”, “Data Creation Date”, “Longitude”, “Latitude”, “Status”, “S02”,
..., “PM2.5”, “Wind speed”, and “Site ID”. We chose six items for our experimental
data that are “Site Name”, “Country” (the station name), “AQI”, “Data Creation Date”,
“Longitude”, and “Latitude”.

Table 1. Data included Empty Data

Area County AQI Time

Daicheng Changhua 108 2021/3/17 10:00
111 2021/3/17 11:00
N 2021/3/17 12:00
N 2021/3/17 13:00
103 2021/3/17 14:00
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We utilized data from February 2021 to January 2022, as some observation stations
were destroyed in 2021. We incorporated the updated information from the revised
observation stations, which included the addition of several new stations. The initial
phase involved organizing the original data and removing irrelevant information. For
further data analysis, we retained the observation station name, AQI value, longitude,
and latitude. In Table 1, we present examples of five scenarios. During the AQI processing
phase, the program scanned the data and populated any empty AQI value columns with
N.

Then, through Eq. (1), Eq. (2) and Eq. (3), the historical AQI value is updated. X ()
represents the data at time point ¢. If the time point ¢ is N, but the time point  — 1 and
the time point 7 4+ 1 are not N, fill in the data at the time point t through Eq. (1).

Xa—1 + Xy
X = B E—

if X@-1), Xa+1) #Nand Xy =N ()]

If the data at time point t and time point ¢ 4+ 1 are N, and the data at time point ¢ — 1
and time point 7 — 2 are not N, then fill in the data at time point ¢ through Eq. (2). Since
the range of the AQI value is between 0 and 500, doing so can ensure that the data at the
time point ¢ will not be negative or out of range due to drastic fluctuations.

Xi—2) +Xi-1
Xo=—"">5"—

if Xq-2),Xq—1) #Nand X1), X441y =N (2)

Similarly, if the data at time point # and time point # — 1 are N, and the data at time
point 7 4+ 1 and time point ¢ + 2 are not N, fill in the data at time point ¢ through Eq. (3).
The final completed data is shown in Table 2. In Tables 1 and 2, The initial value of
data N is obtained by adding 108 and 111, dividing the result by 2, and rounding to
110. Equation (2) is used to calculate this. The second data N is then calculated through
Eq. (1). The result is rounded to 107 after adding 110 to 103 and dividing the total by 2.

Xit+1) + X+42)
X(l‘) = f

i Xevny, Xev2) #Nand Xy, X1y =N 3

The filling formulas in Eqs. 1-3 represent better filling strategies. It can prevent the
AQI from quickly rising or falling due to emergencies while also ensuring that the AQI
does not drop below zero.
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Table 2. Filled empty data to complete information.

Area County AQI Time

Daicheng Changhua 108 2021/3/17 10:00
111 2021/3/17 11:00
110 2021/3/17 12:00
107 2021/3/17 13:00
103 2021/3/17 14:00

3.1 The GCN Model

Deep learning has recently gained prominence in a variety of industries. However, their
research subjects are frequently limited to Euclidean data, even though many essential
data sets exist in the actual world as graphs. Because the distances between observation
stations in different locations are not equal, a graph-structured topology network is
established, indicating that it is difficult to utilise CNN to process such non-Euclidean
data to derive spatial correlation. As a result, we use graph convolutional networks,
which can handle data with non-Euclidean structures.

We use an undirected graph G to represent the relationship between observation
stations and observation stations. Use the unweighted graph G = (V,E) to describe the
topological structure between the geographical locations of the observation stations in
each region. Each observatory represents a node, and is the set of all nodes, which means
= V{vy, v2,v3...,v,}. is the set of all observatories and the connected edges between
them.

In the past related papers [19] the process of graph convolution uses the Chebyshev
polynomial 7 (x) to do the approximation. The Chebyshev polynomial is defined recur-
sively. The definition formulais Eq. (4), and the graph convolution formula approximated
by Chebyshev polynomials can be redefined as Eq. (5).

Tox) =1, T1(x) =x, Tp (x) = 2xTj—1(x) — Ty 2(x), x € [—1,1] 4
k
y = gurX ~ Z GILTk (Z;)x (5)
k=0

Next, to reduce the time complexity in the process of model training and learning,
we set k to 1, that is, only consider the adjacent one-step nodes each time, so the whole
formula can be rewritten as Eq. (6).

y = 0px + 0] Lx (6)

2L
Amax

Among them, L= 1. So, the formula can be rewritten as Eq. (7).

2L

=6 ]
Y o+ 1()\max

—Dx (N
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L represents the normalized Laplacian matrix, then further set A max to 2 and define
L=I-D WD_% through the normalized Laplacian matrix, rewrite the formula as

Eq. (8).
v =64 —6{(D" WD) ®)

Finally, to reduce the parameters of the model, let 6y = —6/, and re-normalize,
rewrite the formula as Eq. (9), where W = W +1, D;; = X;Wj; is the adjacency matrix,
and D is the degree matrix.

y=0(D"2WD1)x ©)

In the experiment, the adjacency matrix W is calculated through latitude and longi-
tude. First, we take out the latitude and longitude of 81 observation stations in the original
data. The distribution of observation stations’ latitude and longitude data (partial data)
are shown in Table 3.

Table 3. Observation station latitude and longitude

Area County Longitude Latitude
Erlin Changhua 120.4097 23.92518
Sanchong New Taipei 121.4938 25.07261
Sanyi Miaoli 120.7588 24.38294
Tucheng New Taipei 121.4519 24.98253

Since the atmosphere on the Earth belongs to a system that changes at any time, there
are different degrees of influence between the observation stations. First, we use Eq. (10)
to calculate the observation stations (w, x) and the distance between Observation stations
(v, z) on the earth. The calculated distance (partial data) is shown in Table 4.

2 2
dist = 2r * arcsin \/(sin id 5 y) + cosw * cosy * <sinx 2 Z) (10)

Among them, w and y represent latitude, x and z represent longitude, and r represents
the radius of the earth. Then we use the distance calculated by Eq. (10) and substitute it
with Eq. (11) to calculate the distance between the stations. Weight k, the range of k is
between 0 and 1. 0 means the distance between two points is farther, and 1 means the
distance between two points is closer. To prevent excessive dependence between points,
we set the parameter z at 0.5, , and the final adjacent matrix (partial data) is shown in
Table 5.

Lifa=b ( (dist(a,b))z)
W(a.b)=10if k <z.k=exp|———o— (11)
kif k>z “
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Table 4. The distance between observation stations

Erlin Sanchong Sanyi Tucheng

Changhua New Taipei Miaoli New Taipei
Erlin Changhua 00.00 168.01 61.89 157.74
Sanchong New Taipei 168.01 0.00 106.60 10.84
Sanyi Miaoli 61.89 106.61 00.00 96.59
Tucheng New Taipei 157.74 10.84 96.59 00.00

Table 5. The Weight of Distance

Erlin Sanchong Sanyi Tucheng

Changhua New Taipei Miaoli New Taipei
Erlin Changhua 1 0 0.6732 0
Sanchong New Taipei 0 1 0 0.9879
Sanyi Miaoli 0.6732 0 1 0
Tucheng New Taipei 0 0.9879 0 1

3.2 The TCN Model

The Time Convolutional Network (TCN) is derived from the Convolutional Neural Net-
work (CNN) model and is utilized in this paper to process time series data. It comprises
key components such as one-dimensional convolutional network, atrous convolution,
causal convolution, and residual connection. To ensure consistency between input and
output layers’ lengths, the TCN employs hole convolution. This technique adapts the
sequence length of each hidden layer to match the input sequence length, with the hole
convolution employing exponentially increasing values (e.g., 1, 2, 4, 8...) to determine
the number of spaces between messages that need to be traversed to reach the next layer.

To prevent the information from being leaked during the training process of the
model, the temporal convolutional network adopts causal convolution, so that the output
y; at the time point ¢ will only receive the information x; at the time point ¢ and the
information before the time point ¢ influenced by x1, x2, ... x;—1. With the increase of
the neural network layer, many problems may be encountered when the depth is deeper.
This is such as gradient disappearance and gradient explosion, resulting in no way
to update the weight, and eventually the accuracy decreases. TCN uses residual poor
connections to solve this problem. It makes the entire network architecture achieve good
results when the number of layers is very deep.
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Changhua Erlin half a menth Table 6. The data from February to July.
. o
%0 ' Method MAE RMSE
s ARIMA 23.97 29.92
P LSTM 5.22 7.33
0 GCN 491 6.92
GRU 4.83 7.16
TGCN 4.86 6.74
Fig. 2. AQI prediction TCN 524 782
GCTN 4.78 6.67

4 Experimental Result and Discussion

The data set is divided into three parts: training, validation, and testing, in the ratio 7:1:2.
Then we use the geographical location to find Changhua Erlin in central Taiwan. In the
following trials, we made predictions with the Chang-hua Erlin as our goal. In Fig. 2, the
x-axis indicates the future time point, indicating that the prediction is based on the first
data point in the test set data; the unit is an hour; and the y-axis shows the AQI value.
Figure 2 illustrates the real values and forecasted value map, which were generated by
dividing the data set by half a year, from February to July of the next year, 2021. The
following experiment describes how to use the training and verification sets to predict
the test sets AQI.

We compare the model incorporating temporal and space correlation to the ARIMA,
LSTM, GCN, GRU, TGCN, and TCN models. In Table 6, statistics from half a year are
used to forecast the next half month. We can see that the model’s prediction value when
paired with TCN and GCN is lower. This suggests that our GCTN model performs better
in predicting Changhua Erlin’s AQI.

5 Conclusion

In this study, we introduce a novel approach, the GTCN model, for predicting Taiwan’s
AQI by incorporating both temporal and spatial correlations. Unlike traditional methods
that focus solely on temporal correlation, the GTCN model analyzes complex temporal
and spatial correlations among multiple observation stations across various counties and
cities. From our experiments, the GTCN model demonstrates superior predictive accu-
racy in both short- and long-term settings compared to existing models. By leveraging
real datasets and strict comparisons with other researchers’ models, we established the
effectiveness of the GTCN model in accurately forecasting AQIs. In particular, the GTCN
model achieves the smallest mean absolute error (MAE) of about 4.78 and the smallest
root mean square error (RMSE) of about 6.67 when tested on data from February to
July 2021, outperforming other models during this period. Our research works empha-
size the potential of the GTCN model as a valuable tool for environmental protection



Enhanced Air Quality Index Prediction 305

and public health improvement. In future works, we would like to develop predictive
applications that continuously analyze AQIs in real-time. These applications will not
only provide users with up-to-date AQI statistics but also offer guidance on preventive
measures against air pollution at various levels.
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