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Abstract. In many fields of science, modelling and analyzing survival rates has shown to be a valuable element of statistical 

study. This paper aims at proposing the partly-interval censored data into the fixed and time-varying covariates and measure 

the performances of Exponential survival distribution using mean square error (MSE), mean bias error (MBE), mean 

absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and standard error. As a 

result, when dealing the data without censored observations, the exponential distribution significantly fit the simulation 

data since low values of error measurements appeared when the data included the exact and complete types of simulation. 

Thus, this study proposed that the uncensored data could be applicable towards the Exponential survival distribution 

compared to other distributions of survival analysis. 

INTRODUCTION 

Sequential design of survival analysis has extensively been applied through medical records observation. In 

conducting time-to-event data, the fundamental approach of survival is focusing on the event of interest where the 

occurrences of an event will particularly lead to censored observation or missing outcomes [1]. Despite the rapid 

application of survival analysis in medical studies, partly-interval censored data limitedly being applied. The 

estimation of survival analysis has been divided into parametric, non-parametric and semi-parametric regression 

analysis [2].  

To start off the analysis of survival, unknown distribution leads to the non-parametric survival which is the Kaplan-

Meier regression analysis as one of the most popular application of survival. One of the studies has compared the non-

parametric Kaplan Meier, semi parametric cox proportional hazard and parametric methods to estimate the survival 

and compare the treatment with higher survival rates [3]. Cox-proportional hazard semi parametric survival analysis 

is applicable because of its simplicity. Nevertheless, the proportionality of hazard function needs to be observed prior 

to cox-proportional hazards or ultimately, parametric survival analysis could be applied with regards to certain 

assumptions of data analysis [4].  

Consequently, the advanced application of exponential distribution with various extension or modification has 

broadly been develop not only towards the medical records data but also in other field of study. Besides, several 

exponential models have been employed towards Bayesian approach of analysis by considering the simple, change 

point, mixture and survival fraction of exponential model [5]. Besides, comparison of exponential distribution among 

the parametric method of survival can be seen in many of the previous studies [6]; [7] and [8]. 
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Briefly, partly-interval censored data involves a modification of censored data where the study needs to consider 

all types of censored to be estimated in the analysis [9]. In order to cope with the medical data, partly-interval censored 

data has been created to record the observation and improves the precision. Compared to right, left and interval 

censored data, the partly-interval censored data is rarely applied by the researcher as the function is much more 

complex and it was found that several papers involving partly-interval censored data had been written by the same 

author which are [10]; [11], [12], [13] and [14].  

Besides, difficulty in identifying which methods of survival is preferable and precise has become one of the 

problems to analyze the medical records data. Among all parametric survival distributions, Exponential distribution 

has the constant hazard distribution which is appropriate to start off the analysis through censored and uncensored 

data. In other words, adjusting the methods of survival analysis towards the partly-interval censored data with the 

presence of varying effect covariate is to be measured in this study using simulation data. Hence, this study proposes 

survival time of exponential method of survival with the presence of partly-interval censored data and compared the 

fixed and time-varying covariate effect of survival using several performance indicators.  

MATERIAL AND METHODS 

Framework of analysis 

Based on Figure 1, the analysis starts with generating the simulation data where the data consists of the exact data, 

observed data and complete data. The exact data is the data without censored observation or fixed data, while observed 

data represents the fixed and all the censored data (partly-interval censored data) and the complete data is the data 

which represents the fixed, right censored and the missing values. Besides, 1000 iterations have been applied to test 

the fixed and time-varying covariate of partly-interval censored data with different assignation of sample sizes. The 

best fit model towards exponential with either fixed or time varying covariates will be selected based on the smallest 

value of model performances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Study flowchart of simulation data 

Simulation data using (n1, n2): 

1. Exact data  

2. Observed data  

3. Complete data   

Assign each data with different number of samples: (1000 iteration) 

1. (25,25) and (40,10) for 50 number of samples  

2. (30,70), (50,50), (70,30) and (80,20) for 100 samples  

3. (50,100) for 150 number of samples  

4. (50,150) for 200 number of samples 

5. (50,200) for 250 number of samples 

Exponential distribution (Generate Survival Time) 

• Survival function, 𝑆(𝑡) 
• Maximum likelihood function, 𝐿(𝜃) 

 

Method 1:   

Exponential + Fixed covariate + 

Partly-interval censored 

Method 2:   

Exponential + Time varying covariate + 

Partly-interval censored 

Model performances: MSE, MAE, MBE, RMSE, MAPE 
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Exponential fixed and time varying covariate likelihood estimation 

 
Based on [2], the exponential distribution represents the survival function, 𝑆(𝑡𝑖), hazard function, , density 

function, 𝑓(𝑡𝑖), and likelihood function, 𝐿(𝜃) which are, 𝑆(𝑡𝑖) = 𝑒𝑥𝑝 (−
𝑡𝑖

𝑏
)  , ℎ(𝑡𝑖) =

1

𝑏
, 𝑓(𝑡𝑖) =

1

𝑏
𝑒𝑥𝑝 (−

𝑡𝑖

𝑏
), and 

𝐿(𝑏) = ∏
1

𝑏
𝑒𝑥𝑝 (−

𝑡𝑖

𝑏
)𝑛

𝑖=1  respectively. To be clear, 𝑡 represents the survival time while 𝑏 is the scale parameter with 

𝑏 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖+. . . +𝛽𝑝𝑥𝑝𝑖 . All these functions are modified in the partly-interval censored data of fixed and 

time-varying covariate effect.  

For the time varying covariate, the notation is in binary form where the covariate might either change its value or 

not changing the value. The code “1” and “0” represent that the covariates changed and did not change respectively 

as the notation will follow the symbol 𝑐𝑖 and (1 − 𝑐𝑖). Thus, on the study by [15], the dependent covariate can be 

defined by the following notation: 𝑐𝑖 = {
0,covariate is updated

1,covariate is not updated
  

The likelihood of exponential with fixed covariate and partly-interval censored data can be observed based on 

equation (1) and (2) below. 
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The log likelihood of exponential with partly-interval censored data has been modified as shown in Equation (1) where 

the exponential only has one parameter, which is 𝑏 that represents the scale parameter and the first part of likelihood 

holds the exact data. The censored observation depends on the values of 𝛿𝑖 and 𝜌𝑖. When 𝛿𝑖 = 1, the likelihood will 

follow the left censored observation, and otherwise when 𝛿𝑖 = 0, it will become right censored observation. The 

interval censored observation will be applied when 𝜌𝑖 = 1. The 𝑅𝑖 represent the right censored survival time, 𝐿𝑖 
represent the left censored survival time, and 𝑡𝑖 represent the exact duration of survival time. Meanwhile the equation 

(2) represents the log-likelihood with partly-interval censored data and time-varying covariate effect.  
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Generating survival time from Exponential distribution  

The derivation uses parametric family approach with covariate that is associated with the event time, 𝑡 that could 

either be fixed or time varying covariate which is 𝑏 = 𝑒𝑥
′𝛽 or 𝑏 = 𝑒𝑥

′𝛽+𝛾𝑧(𝑡) respectively. For the simulation 
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procedure, the time varying covariate for 𝑧(𝑡) is in a binary form. The derivation will begin with finding the cumulative 

hazard function, 𝐻(𝑡) by integrating the hazard function of exponential of partly-interval censored from 0 to 𝑡 of 𝑑𝑢 

for the fixed covariate and time varying covariate,  𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 where the hazard function has been mentioned 

earlier. The hazard function in piecewise form is as follows (Collet, 2015): 

 

ℎ(𝑡|𝑎, 𝑥, 𝑧(𝑡)) =

{
 

  (
1

𝑒𝑥𝑝{𝑥′𝛽}
) ,                    𝑡 < 𝑡𝑐

(
1

𝑒𝑥𝑝{𝑥′𝛽 + 𝛾𝑧(𝑡)}
)  ,        𝑡 ≥ 𝑡𝑐

 

 

After the integration of the hazard function of Weibull model, the cumulative hazard function can be defined as 

follows:                                                             

𝐻(𝑡|𝑎, 𝑥, 𝑧(𝑡)) =

{
 
 

 
  ∫ (

1
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𝑡

0

 ,                    𝑡 < 𝑡𝑐

∫ (
1

𝑒𝑥𝑝{𝑥′𝛽 + 𝛾𝑧(𝑢)}
) 𝑑𝑢

𝑡

0

 ,        𝑡 ≥ 𝑡𝑐

 

 

Therefore, in order to get the survival function, the cumulative hazard function will be used by the exponent of the 

negative cumulative function. The integration has been made in order to find the cumulative hazard with fixed and 

varying covariate in the model. Besides, the main idea of exponential function was adapted from [1]. Thus, the 

cumulative hazard function for exponential has been developed in order to find the survival time of fixed and varying 

effect covariate,  
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Next, in order to find the survival time, 𝑡, the survival function is assumed to follow uniform distribution and extract 

the survival time from the equation. Thus, the survival time, 𝑇 could be defined as 𝑆(𝑡|𝑎, 𝑥, 𝑧(𝑡)) = 𝑒𝑥𝑝[ −
𝐻(𝑡|𝑎, 𝑥, 𝑧(𝑡)]: 

For 𝑡 < 𝑡𝑐, 

 

For  𝑡 ≥ 𝑡𝑐, 
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Therefore, the survival time for exponential of fixed and time varying covariate could be applied in simulation 

procedure based on the following piecewise function: 

 

𝑡 = {
(−log(𝑢)) ⋅ 𝑒𝑥𝑝{ 𝑥′𝛽},                                                                     𝑡 < 𝑡𝑐

𝑒𝑥𝑝{ 𝑥′𝛽 + 𝛾} ⋅ [ −log(𝑢) − (
𝑡𝑐

𝑒𝑥𝑝{𝑥′𝛽}
) + (

𝑡𝑐

𝑒𝑥𝑝{𝑥′𝛽+𝛾}
)]  ,                𝑡 ≥ 𝑡𝑐

                           (3)                

  

where the equation (3) of survival time, 𝑡 is to be applied in the R coding so that the analysis of exponential distribution 

could be done. Through the used of the cumulative hazard function of exponential distribution that has been developed 

to obtain the survival time with fixed and varying effect covariate, simulation study could be done for this study. 

Simulation Studies 

To evaluate the performance of parametric survival analysis of exponential distribution, a simulation strategy has 

been illustrated by applying the standard value of distributions in modelling the parameters which are, 𝜆 =
1

0.25
, 

𝑥1~Binomial (1,0.5), 𝑥2~Normal(0,1), 𝑥3~time varying covariate. The survival time equation of exponential (3) 

has been applied in the analysis. Besides, the censoring follows partly interval censored data are the observe data 

where coding R produce simulation data based on exact, observe and complete data which subsequently means that 

the simulation data are having an exact duration of survival for exact data, the observe data represent the data while 

considering all right, left, and interval censored with exact observation while the complete data is data before 

introducing the censored observation by considering the missing value. Comparison between different sample sizes 

which are 50, 100, 150, 200 and 250 with 1000 iteration of simulation data has been carried out. 
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RESULTS AND DISCUSSION 

TABLE 1.  Simulation results of root mean square error (RMSE) for exponential fixed covariate and time varying 

covariate 

 
(𝒏𝟏, 𝒏𝟐) Fixed Covariate Time Varying Covariate 

Exact Observed Complete Exact Observed Complete 

(25,25) 1.611 3.903 1.597 1.596 14.08 1.467 

(40,10) 1.602 3.978 1.597 1.508 40.69 1.467 

(30,70) 1.614 4.043 1.588 1.564 46.42 1.354 

(50,50) 1.596 3.855 1.588 1.454 10.80 1.354 

(70,30) 1.591 3.939 1.588 1.393 18.89 1.354 

(80,20) 1.590 3.948 1.588 1.372 15.21 1.354 

(50,100) 1.601 3.994 1.584 1.295 12.72 1.207 

(50,150) 1.601 3.994 1.584 1.469 14.46 1.322 

(50,200) 1.596 4.058 1.583 1.466 11.10 1.313 

 

Based on Table 1, the simulation results showed that the lowest values of mean square error for both fixed and time 

varying covariate were among the complete data of simulation. So, the exponential distribution could likely estimate 

the data before introducing the censored observation and considering the exact and some missing values.  

TABLE 2.  Simulation results of mean absolute percentage error (MAPE) of exponential fixed covariate and time 

varying covariate 

(𝒏𝟏, 𝒏𝟐) Fixed Covariate Time Varying Covariate 

Exact Observed Complete Exact Observed Complete 

(25,25) 0.995 2.395 0.998 0.815 3.762 0.770 

(40,10) 0.998 2.444 0.998 0.783 8.741 0.770 

(30,70) 0.999 2.482 0.999 0.800 10.01 0.729 

(50,50) 0.997 2.377 0.999 0.767 3.270 0.729 

(70,30) 0.998 2.427 0.999 0.745 6.370 0.729 

(80,20) 0.997 2.432 0.999 0.738 5.940 0.729 

(50,100) 1.001 2.457 1.000 0.701 4.947 0.667 

(50,150) 1.001 2.457 1.000 0.771 5.700 0.716 

(50,200) 0.998 2.498 0.996 0.773 4.839 0.714 

 

Based on Table 2, the mean absolute percentage error was likely having lower MAPE among the exact and complete 

data while the time varying covariate were all having low values of MAPE among the complete simulation data. This 

would make the results to prefer the exponential distribution to have a better estimation with exact data and complete 

data without considering the censored observation. 

TABLE 3.  Simulation results of mean absolute error of exponential fixed covariate and time varying covariate 

(𝒏𝟏, 𝒏𝟐) Fixed Covariate Time Varying Covariate 

Exact Observed Complete Exact Observed Complete 

(25,25) 1.492 3.355 1.498 1.185 5.794 1.111 

(40,10) 1.498 3.423 1.498 1.131 12.971 1.111 

(30,70) 1.501 3.470 1.499 1.160 14.85 1.050 

(50,50) 1.497 3.377 1.499 1.105 5.015 1.050 

(70,30) 1.498 3.399 1.499 1.072 9.650 1.050 

(80,20) 1.497 3.406 1.499 1.061 9.038 1.050 

(50,100) 1.502 3.443 1.499 1.013 7.516 0.960 

(50,150) 1.502 3.443 1.499 1.114 8.754 1.030 

(50,200) 1.497 3.495 1.496 1.114 7.395 1.025 
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Similarly, the mean absolute error (MAE) was most likely to have lower value towards the exact and complete 

data. This is because, the Exponential model is considered as the simplest parametric model because of the hazard is 

constant over time and it does not hold the flexibility of complex functions. Specifically, based on the results, the 

time-varying covariate of partly-interval censored data would perform better when the data is complete by considering 

the missing value and before introducing the censored data.  

Additionally, the standard error for both fixed and time varying covariate fit much better towards the complete 

data of simulation. At first, Table 4 showed the result of fixed covariate of exponential distribution which likely 

preferable with complete data with the lowest value of standard error. 

TABLE 4. Simulation results of standard error of exponential fixed covariate 

(𝒏𝟏, 𝒏𝟐) Standard Error, 𝒃𝟏 Standard Error, 𝒃𝟐 

Exact Observed Complete Exact Observed Complete 

(25,25) 0.444 0.413 0.296 0.228 0.724 0.160 

(40,10) 0.333 0.342 0.296 0.175 0.602 0.160 

(30,70) 0.402 0.319 0.206 0.204 0.514 0.102 

(50,50) 0.298 0.220 0.206 0.148 0.419 0.102 

(70,30) 0.245 0.220 0.206 0.121 0.392 0.102 

(80,20) 0.229 0.199 0.206 0.114 0.367 0.102 

(50,100) 0.309 0.230 0.160 0.151 0.386 0.085 

(50,150) 0.295 0.210 0.141 0.155 0.325 0.072 

(50,200) 0.285 0.196 0.126 0.148 0.266 0.064 

 

Meanwhile, the results of standard error in Table 5 with considering the time-varying covariate into the model has 

also showed a more preferable lowest value towards the complete data.  

 

TABLE 5. Simulation results of standard error for exponential time-varying covariate 

 
(𝒏𝟏, 𝒏𝟐) Standard Error, 𝒃𝟏 Standard Error, 𝒃𝟐 Standard Error, 𝒃𝟑 

Exact Observed Complete Exact Observed Complete Exact Observed Complete 

(25,25) 0.453 8.070 0.314 0.256 5.794 0.162 1.463 19.61 0.865 

(40,10) 0.350 19.18 0.314 0.188 24.15 0.162 1.012 57.32 0.865 

(30,70) 0.403 23.61 0.210 0.229 16.82 0.114 1.315 68.24 0.503 

(50,50) 0.298 4.873 0.210 0.171 2.849 0.114 0.788 15.06 0.503 

(70,30) 0.253 7.040 0.210 0.141 3.289 0.114 0.636 22.97 0.503 

(80,20) 0.238 7.570 0.210 0.132 2.469 0.114 0.554 14.82 0.503 

(50,100) 0.304 6.998 0.174 0.169 2.121 0.094 0.633 11.27 0.331 

(50,150) 0.309 8.607 0.146 0.164 1.337 0.077 0.817 12.76 0.346 

(50,200) 0.318 6.156 0.137 0.178 1.105 0.072 0.826 10.29 0.300 

 

CONCLUSION 

Based on the results of simulation with different assignations of sample sizes, the comparison of model selection 

criteria which are the MBE, MSE, RMSE, MAE, MAPE, and standard error had been carried out on the parametric 

distribution of survival analysis. Based on the exponential distribution, the MBE, MAE, and MAPE clearly showed 

that this type of distribution is fit when handling the data without censored observation as low values appeared when 

the data comprised exact and complete types of simulation. In terms of sample sizes, when the number of samples is 

below 100, the exact data is needed for exponential distribution. Increasing the sample sizes for partly-interval 

censored data is appropriate with (𝑛1 < 𝑛2) where 𝑛1 represents the exact data, while 𝒏𝟐 represents the censored data 

and will also decrease the values of estimation. Therefore, proposing the partly-interval censored data into fixed and 

time-varying covariates has been done through Exponential survival functions and it proves that Exponential 

distribution would fit better towards exact and complete simulation data (without censored data) for both situations 

when considered the fixed and time-varying covariates. It is recommended that using different values of parameter on 

the simulation data and different types of distribution of the parametric survival analysis might give further insight on 

handling the censored observations.  
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