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ABSTRACT 

Learning an Artificial Neural Network (ANN) is an optimization task since it is 

desirable to find optimal weight sets of an ANN in the training process. Different 

equations are used to guide the network for providing an accurate result with less 

training and testing error. Most of the training algorithms focus on weight values, 

activation functions, and network structures for providing optimal outputs. 

Backpropagation (BP) learning algorithm is the well-known learning technique that 

trained ANN. However, some difficulties arise where the BP cannot get achievements 

without trapping in local minima and converge very slow in the solution space. 

Therefore, to overcome the trapping difficulties, slow convergence and difficulties in 

finding optimal weight values, three improved Artificial Bee Colony (ABC) algorithms 

built on the social insect behavior are proposed in this research for training ANN, 

namely the widely used Multilayer Perceptron (MLP). Here, three improved learning 

approaches inspired by artificial honey bee's behavior are used to train MLP. They are: 

Global Guided Artificial Bee Colony (GGABC), Improved Gbest Guided Artificial Bee 

Colony (IGGABC) and Artificial Smart Bee Colony (ASBC) algorithm. These improved 

algorithms were used to increase the exploration, exploitation and keep them balance for 

getting optimal results for a given task. Furthermore, here these algorithms used to train 

the MLP on two tasks; the seismic event's prediction and Boolean function 

classification. The simulation results of the MLP trained with improved algorithms were 

compared with that when trained with the standard BP, ABC, Global ABC and Particle 

Swarm Optimization algorithm. From the experimental analysis, the proposed improved 

algorithms get better the classification efficacy for time series prediction and Boolean 

function classification. Moreover, these improved algorithm's success to get high 

accuracy and optimize the best network's weight values for training the MLP. 
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ABSTRAK 

Mempelajari Rangkaian Neural Buatan (ANN) merupakan satu tugas optimimasi bagi 

mencari set pemberat optima bagi ANN dalam proses latihan. Pelbagai algoritma 

digunakan bagi melatih rangkaian ini dalam menghasilkan keputusan yang jitu dengan 

pengurangan ralat latihan dan ujian. Kebanyakan algoritma pembelajaran mengfokus 

kepada nilai pemberat, fungsi pengaktifan, dan struktur rangkaian bagi menghasilkan 

keputusan yang optima. Algoritma  Rambatan Balik (BP)  merupakan satu teknik yang 

popular bagi melatih ANN. Walau bagaimanapun, beberapa masalah timbul apabila BP 

mudah terperangkap di dalam minima lokal dan menumpu secara sangat lambat dalam 

ruangan solusi. Oleh itu, bagi mengatasi masalah terperangkap dalam minima lokal, 

penumpuan yang lambat, serta kesukaran mencari nilai pemberat optima, maka tiga 

algoritma baru dibina bagi menambahbaik Artificial Bee Colony (ABC) yang 

berpandukan kepada perlakuan sosial serangga untuk melatih ANN; yang dinamakan 

Perseptron Multiaras (MLP). Di sini, tiga kaedah pelatihan terbaru ilham perangai lebah 

madu buatan dihasilkan bagi melatih MLP. Ini terdiri daripada algoritma Global Guided 

Artificial Bee Colony (GGABC), Improved Gbest Guided Artificial Bee Colony 

(IGGABC) dan Artificial Smart Bee Colony (ASBC). Algoritma yang ditambaik ini 

digunakan untuk menaikkan mutu pencarian, eksploitasi dan memberi keseimbangan 

bagi mendapatkan keputusan optima bagi kes tertentu. Untuk itu, algoritma ini 

digunakan untuk melatih MLP di dalam dua kes khusus, iaitu jangkaan peristiwa seismik 

dan klasifikasi fungsi Boolean. Keputusan dari simulasi MLP yang dilatih dengan 

algoritma yang ditambahbaik ini telah dibandingkan dengan kes yang dilatih melalui 

algoritma piawai iaitu BP, ABC, Global ABC, dan Particle Swarm Optimization. Dari 

analisa eksperimen, algoritma yang dicadangkan ini telah menunjukkan bukti 

penambahbaikan dari segi keberkesanan efikasi untuk fungsi Boolean dan jangkaan siri 

masa. Malah algoritma ini juga berjaya menghasilkan ketepatan yang tinggi dan nilai 

pemberat rangkaian yang optima bagi melatih MLP. 
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CHAPTER 1 

 

1 Introduction 

INTRODUCTION 

1.1 Research Background 

Though the rapid developments in various fields, life became easy and world is becoming 

virtually global village. Systems are happening progressively and more complex, whether it is 

engineering, transportation, communication resources, diseases, foods, power, water distribution 

and land division. These complexities may be due to the increase in number of components, 

increased interdependencies among various components, and population. The complexities 

further increases when these communications are subjected to natural or man-made disasters. 

According to the Centre for Research on the Epidemiology of Disasters (CRED), 336 natural 

disasters and 234 technological disasters were reported worldwide in 2011. In the history, these 

disasters created many problems to human communities. 

In the past decade, the fracture of earth, flow of rocks, movements of tectonic plates, heat 

waves temperature and the high range of sea waves has been focused by geologists, 

geophysicists and engineers. These sources may be the most important rule in earthquake, 

weather temperature, water level height and tsunami occurrence called seismic signals or natural 

hazards. Seismic events, especially earthquakes and tsunami are the most costly natural hazards 

faced by the nation in which they occur without prior warning and may cause severe injuries. 

The intensity of occurrence of such event creates disasters and can change human lives, animals 

as well as other social swarms.  

In recent years much has been learned from natural disasters and risk to infrastructure 

systems. It is estimated that, the total direct economic loss from natural disasters during the 

decade of 1987-1997 was 700 billion USD, an average loss of 70 billion USD per year. The 
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number of deaths caused by natural disasters (31,105) is the fourth lowest of the decade, much 

lower than the peaks of 2004 (242,010 deaths), 2008 (235,272) and 2010 (297,730). The 

deadliest natural disaster was the earthquake and subsequent tsunami in Japan in March, which 

killed 19,846 people. The number of deaths is much lower than those caused by the Indian Ocean 

tsunami in December 2004 (226,408 deaths) and the earthquake of January 2010 in Haiti 

(222,570 deaths). In 2011, natural disaster costs (US$ 365.6 billion) were the highest of the 

decade, accounting for almost 1.5 times the direct losses reported in 2005 (US$ 248 billion, 2011 

prices) (Ifrcrcs, 2012). 

The disasters caused by seismic events are beyond computation, location, time and 

intensity of a future seismic events occurrence are accurately predicted, and some appropriate 

precautionary measures can be carried out in advance. The countless lives in earthquake risk 

areas can be saved, and the human and economic losses caused by these events can be reduced. 

Each seismic event is related to a different source process, and its time and spatial distribution 

could be used as elements of an early-warning system of seismic occurrence (Gutierrez et al., 

2009; Suratgar et al., 2008). The predictions of these seismic events are really crucial to our 

continuation. The data of these occurring events are depending on geographical areas in real time 

series form. The behavior of seismic time-series data is quite different among the other data, so 

the prediction of this nature of data is quite challenging for a scientist. In this regard, to predict 

these events the scientist used to study the grounds of these trials. These grounds can be physical 

and non-physical parameters such as; water level changes of wells, temperature changes, radon 

emission changes, climate changes, weather, earthquake and the changes in earth magnetic fields 

(Donovan, 2012; Lin & Lin, 2010; William, 2011).  

Researchers have focused on seismic prediction using various applications such as 

geomagnetic field, space technology, satellite information, mathematical approach, 

electromagnetic fields, weather conditions, unusual clouds, radon or hydrogen gas content of soil 

or ground water, water level in wells, animal behavior and other methods (Adeli & Panakkat, 

2009; Botev & Glavcheva, 2003; Romano et al., 2009; Serebryakova et al., 1992). Seismologists 

have investigated the relationship of future earthquakes with different phenomena such as 

seismicity patterns (Brown et al., 1989) crustal movements (Mogi, 1984), gas emissions from the 

earth, large-scale changes in soil temperature (Tsunogai & Wakita, 1995), and changes in ion 



PTT
A

PER
PU
STA
KA
AN
 TU
NK
U T
UN
 AM
INA
H

3 

 

concentration in the ionosphere were used to apply the infrared waveband of the meteorological 

satellite in the research of earthquake precursors. 

 Although several works claimed to provide seismic prediction, according to a specific 

location area, specific span of time, specific magnitude range and specific probability of 

occurrence. That is, seismic event prediction should state when, where, how big, and how 

probable the predicted event is and why the prediction is made. Unfortunately, no general useful 

method developed to predict (seismic signals accurately) has been found yet (Clarence, 1982). 

And it may never be possible to predict the exact time when a destructive seismic activity will 

occur, because when enough strain has been built up, a fault may become inherently unstable, 

and any small background seismic occurrence may or may not continue rupturing and turn into a 

large seismic events (Reyes et al., 2013). Although, the great efforts are made and the multiple 

techniques are developed by different researchers but no successful system has been found yet, 

(due to having nature behavior of earthquakes). Also, it may never be possible to determine the 

correct time, magnitude and location of the next damaging earthquake (Tiampo & Shcherbakov, 

2012). The researchers reached to the point that classical techniques are not suitable for 

prediction of seismic events, and computational techniques like Artificial Neural Network 

(ANN) attracted them to predict the seismic signals through neural intelligence approach (Alarifi 

et al., 2012; Esteban et al., 2010).  

ANN incorporates powerful data modeling and predictor tools that is able to capture and 

represent complex input/output relationships. ANN is known to have the ability to represent both 

linear and nonlinear relationships and to learn these relationships directly from the Boolean to 

time series data. The application of ANN to simulation and/or forecasting problems can now be 

found in various disciplines. The application of ANN in time-series data prediction has shown 

improved performance in comparison to statistical methods because of their nonlinear and 

training capability and universal approximator's ability for complex mapping (Ho et al., 2002; 

Yümlü et al., 2005). ANN approach has been applied to the comprehensive seismic signal such 

as earthquake forecasting which obtained satisfying results.  

There are many factors, which arose from seismic events; it is very difficult to establish 

the physical model for their prediction. ANN technology has a unique advantage in constructing 

and predicting unknown object theoretical model, so it has been widely applied to the prediction. 

Therefore, ANN can behave as a model for the seismic process prediction tasks (Mart et al., 
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2011). Predictions of seismic event should specify time, intensity, location and probability. 

However, a statement that does not specify a time or magnitude or a statement that an earthquake 

will not occur in a particular place or time would be beneficial. ANN technique used by (Lakkos 

et al., 1994), which was simulated using the XERION software package and the Delta-Bar-Delta 

as the guidance algorithm to predict the magnitude of an impending earthquake and the 

geographical location. However, the authors do not clarify the magnitude range of the data used 

for training and testing. 

ANN techniques have been focused by many investigators to explore their potential as a 

tool for simulation of the performance of systems that are managed by nonlinear large 

multivariate data and generally unknown interconnections within a noisy and poorly-controllable 

physical environment. The benefit of this framework is that the ANN provides an advance black-

box technique, and the user does not need to know much about the nature of the process being 

simulated. The most widely used ANN models are the feed forward NNs, also called Multilayer 

Perceptron (MLP) (Rumelhart, 1986), which perform nonlinear regression and classification. 

The MLP is one of the earlier network models used for different problems such as classification, 

forecasting, seismic prediction, image processing and clustering (Adeli & Panakkat, 2009; Bock, 

1999; Ghazali et al., 2011). The training algorithms have the important role in ANN output. 

Many training techniques defined for MLP such as BP and Gradient Descent (GD) algorithm 

(Jordan & Rumelhart, 1992). 

Normally, ANN based BP training algorithm has a good success in solving many complex 

problems like classification and time series prediction. However, this method has some 

shortcomings, such as; the dependence of error surface shape, initial values of connection and 

parameters. Furthermore, MLP using BP for seismic time series prediction task failed to 

provided less training and testing error (Alhadi et al., 2011; Yue et al., 2004). 

In order to overcome the drawbacks of standard BP, many evolutionary, population based 

techniques have been used such as: Genetic Algorithms (Curilem et al., 2009; Sexton & Gupta, 

2000) Particle Swarm Optimization (PSO) (Alhadi,et al., 2011; Gudise & Venayagamoorthy, 

2003; Merkle & Middendorf, 2005), ACO (Blum & Socha, 2005), and ABC algorithm. ABC is 

more successful, and robust on multimodal functions included in the set with respect to 

Differential Evolution (DE) (Christian, 2005). The method of finding a way to search for the 

approximate optimal weight values as initial weights of training algorithm is needed, which can 
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avoid the BP's trouble of slow convergence speed, trapping local minima and oscillation effects. 

Furthermore, for getting better accuracy in Boolean function classification and seismic signals 

prediction, the improved ABC algorithms were used. In this research work, MLP used to train by 

an improved learning algorithms to predict future values of possibly seismic time series based on 

past histories and at the same time for Boolean function classification task.  

1.2 Problem Statement 

Multilayer Perceptron (MLP) is a universal approximator which has been used in various 

scientific and engineering tasks (Hornik et al., 1989). The performance of MLP depends on its 

training algorithm, weight values, network topology and activation functions. The most common 

supervised learning algorithm called BP is used to train the weights in order to provide the 

network with good mapping capability. BP has high achievement ratio in solving many 

computational problems such as system controller, classification, prediction, function 

approximation, mathematical modelling, feature selection and other optimization problems 

(Drndarevic, 2006; Khan et al., 2008; Qi & Tufts, 1997; Weiyang, 1999).  

Despite the general success of the BP algorithm, there are some drawbacks and 

restrictions that still exist (Ghaffari et al., 2006). These are the existence of temporary local 

minima resulting from the diffusion performance of the activation function, convergence speed is 

comparatively slow for network with two or more hidden layers, and some of the adjustments of 

BP algorithm require complex and costly calculations at each hidden layer and iteration, which 

offset their faster rates of convergence.  

The new system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) 

with a BP-ALM algorithm developed by Sun et al., (2007) for quick learning and global 

convergence than previous methods, and a superior performance in fault diagnosis compared to 

convectional BP-based neural networks. For improving the efficiency of the error minimization 

process, or in other words the training efficiency (Bishop, 1995) is used. The gain parameter 

used by (Nawi et al., 2006; Sperduti & Starita, 1993) which controls the steepness of the 

activation function. It has been shown that a larger gain value has an equivalent effect of 

increasing the learning rate. In computing dynamically the new optimal learning rate method was 

proposed (Roy, 1994). Although this method could improve the performance of standard BP, the 
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algorithm is computationally complex and might took longer to train MLP than standard BP. 

Due to these shortcoming in the standard BP, many improvements have been done by 

researchers to advance the performance of standard BP. 

From the last decade, researchers developed an interest in Swarm Intelligence (SI) 

techniques. These algorithms include Genetic Algorithm, Evolutionary Algorithm (EA), Co-

evolutionary Algorithm, Ant Colony Optimization and some other social hybrid algorithms used 

for training ANN (Blum & Socha, 2005; Carvalho & Ludermir, 2006; Ricardo, 2011). Swarm 

Intelligence based algorithms have high achievements in various research areas such as 

clustering (Bharne et al., 2011), prediction task (Ping et al., 2008), classification (Ozturk & 

Karaboga, 2011), numerical function optimization (Peng et al., 2011) and other mathematical 

and statistical problems. 

Furthermore, for the prediction of seismic signals, researchers used different ANNs 

models such as Probabilistic Neural Networks (PNN) (Adeli & Panakkat, 2009), Recurrent 

Neural Networks, Radial-Basis Function (RBF) (Connor et al., 1994; Romano et al., 2009), 

however no efficient technique has been establish yet for getting high accuracy and less 

prediction error (Reyes et al., 2013). Due to the random activities of seismic occurrence, it may 

never be possible to ascertain the exact time, magnitude and location of the next damaging 

earthquake (Panakkat & Adeli, 2008). These techniques failed to predict the fix location, size 

and time of seismic occurrence. The swarm based algorithms recently have been famous for 

prediction of seismic signal prediction such as earthquake magnitude for South California (Shah 

et al., 2011), volcanoes and so on (Martínez et al., 2011). These techniques used to train ANNs 

with optimal weight values using the intelligence behaviours of social insects like particles, ant 

and honey bees.  

From the last decade, honey bee population-based technique becomes famous for training 

ANN called Artificial Bee Colony (ABC) algorithm. The ABC algorithm is population-based 

technique that can be used to find approximate solutions to difficult optimization problems 

(Karaboga, 2005). It is inspired by the aforementioned described foraging intelligent behaviors 

of bee colonies. However, there is still deficiency in standard ABC algorithm regarding its 

solution search equation, which is good at exploration but poor at exploitation procedure (Zhu & 

Kwong, 2010). 
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To increase and balance the exploration and exploitation procedures of the standard ABC 

algorithm, and for improving the efficiency for Boolean function classification and time series 

prediction task, three improved algorithms called Global Guided Artificial Bee Colony 

(GGABC), Improved Gbest Guided Artificial Bee Colony (IGGABC) algorithms and Artificial 

Smart Bee Colony (ASBC) algorithm was developed based on honey bees intelligent behavioral 

approach. These proposed approaches used to update's weight values and bias for training MLP, 

to minimize the training error for classification of Boolean functions (XOR, 3 Bit parity and 4 

Bit Encoder / Decoder) and time-series prediction (earthquake, heat waves temperature and 

water level height). In this research work, these three improved approaches are going to be used 

to overcome the limitations of standard BP and ABC by global guided bees, improved gbest 

guided bees and smart bees for getting high efficiency for Boolean function classification and 

time series prediction tasks. 

1.3 Aims of Research 

This research aims to develop improved learning techniques to train the MLP, for searching 

optimal weight values based on the artificial bee’s intelligence behavioural algorithms. These 

learning techniques increase the effectiveness through average amount of exploration and 

exploitation based on neighbour information. Furthermore, this research work seeks to find 

suitable network architecture, which maintains good performance for Boolean function 

classification and time series prediction, with less training and testing errors. The proposed 

learning techniques used for time series data prediction such as earthquake magnitude, water 

level height and heat waves temperature and for Boolean function classification such as XOR, 3 

bit parity and 4 bits Encoder / Decoder tasks. Furthermore, the proposed improved learning 

algorithms used to reduce the training, testing errors and get outstanding performance from 

standard ABC, PSO, GABC and BP in classification and prediction tasks.  
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1.4 Objectives of the Research 

In order to achieve the research aim, a few specific objectives are set as follows: 

(i) To implement and simulate the MLP trained with BP and swarm intelligence algorithms, 

namely the ABC and PSO for the prediction and classification tasks. 

(ii) To propose and construct a hybrid GGABC algorithm for increasing exploration in MLP 

training. 

(iii) To propose and construct an improved IGGABC algorithm for increasing exploitation in 

MLP training. 

(iv)  To propose a new ASBC algorithm for training the MLP with enough exploitation and 

exploration process. 

(v) To compare and evaluate the performance of the MLP trained with the proposed GGABC, 

IGGABC and ASBC algorithms against the benchmarked algorithms BP, ABC, GABC 

and PSO, in terms of their classification error, prediction error, classification accuracy, 

prediction accuracy and convergence rate. 

1.5 Significance of Research Contribution 

This research provides the following contributions to knowledge in the fields of swarm 

intelligence based learning algorithms for ANN. In SI based learning algorithms the performance 

depends, on exploration and exploitation procedures. 

(i) The proposed Global Guided Artificial Bee Colony (GGABC) algorithm used to increase 

the exploration procedure through global best and guided of neighbor bees, to find the 

optimal weight values for MLP, which will provide the high performance for Boolean 

classification and time series prediction. 

(ii) Also, the exploitation process increased by proposed Improved Gbest Guided Artificial 

Bee Colony (IGGABC) algorithm through improved gbest guided neighbor information 

to find best weight values for outstanding performance of Boolean function classification 

and time series prediction.  
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(iii) The new algorithm Artificial Smart Bee Colony (ASBC) used train MLP through smart 

neighbor bees, to find the optimal weighs values, which will provide the good 

presentation for Boolean classification and time series prediction. 

(iv) The GGABC, IGGABC and ASBC algorithms were used to provide best performance of 

Boolean functions classification and time series prediction.  

1.6 Scope  

The potential application of ANN in various applications with various types of learning 

algorithms is virtually limitless. In order to place boundaries around the vast topic of 

classification and prediction using these network models and algorithm, this research work 

covers and is limited to the training and testing of MLP with GGABC, IGGABC and ASBC 

algorithm, and their performance is benchmarked with the standard BP, ABC, GABC and PSO. 

All the algorithms used for the classification of XOR, 3 Bit Parity and 4 Bit encoder/decoder 

operators and the prediction of heat waves temperature, earthquake magnitude and water level 

height. The ability of the algorithms for training the MLP on both tasks were evaluated using 

five performance metrics, namely the Squared Error (MSE), Normalized Mean Squared Error 

(NMSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE) accuracy and Signal to Noise Ratio (SNR). 

1.7 Thesis Organization 

This thesis is organized and divided into six chapters as follows. The motivation, objectives, and 

contributions are highlighted in the Chapter One. Chapter Two provides an overview of an ANN, 

history, types of learning algorithms of MLP and swarm intelligence based algorithms such as 

PSO, ABC, and ACO learning algorithms. Methodology used to carry out the study 

systematically is discussed in Chapter Three. The proposed improved swarm based learning 

algorithms GGABC, IGGABC and ASBC are detailed in Chapter Four. The simulation results of 

Boolean function classification and time-series data prediction and analysis of data are included 

in Chapter Five. Finally, conclusion and suggestions for future works are explained in Chapter 

Six. List of references and appendices section are included at the end the thesis.
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CHAPTER   2 

2 Artificial Neural Networks 

LITERATURE REVIEW   

2.1 Introduction  

An Artificial Neural Network (ANN) can be defined as the information processing 

paradigm, which is inspired by the human biological nervous system. It is composed of a 

large number of highly interconnected processing elements known as neurons to solve 

computational problems. An important criterion of ANN is the ability of learning from 

the environment. Synaptic or weight connections that exist between the neurons in the 

nervous system are adjusted in order to learn. ANN consists of a number of artificial 

neurons which receive a number of inputs. A function called activation or cost function 

is applied to these inputs resultant in an activation level of a neuron. Knowledge about 

the learning task is given in the form of examples called training examples. ANN is 

defined by architecture, neuron model and the learning algorithm. Architecture refers to 

a set of neurons and links connecting neurons with weights. Neuron model refers to the 

information-processing unit of the ANN. Besides that, learning algorithms are used to 

train the ANN by modifying the weights in order to model a particular learning task 

correctly on the training examples. 
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2.2 From Biological to Artificial Neuron 

The human brain consists of a large number of neural cells that process information. 

Each cell works like a simple processor and only the massive interaction between all 

cells and their parallel processing makes the brain's abilities feasible (Byrne, 1991; Giles 

& Maxwell, 1987). ANN show the parallel processing ability of human brain system, 

such as Central Processing Unit which is referred to as the computer brain. Simply 

because their performance is inspired by the way in which human brain process 

information (Byrne, 1991;  Fogel et al., 1966). Figure 2.1 shows the basic structure of 

the biological neurons. 

 

Figure 2.1: Basic structure of biological neuron (Fraser, 1998) 

ANN is also referred to as ―neural nets," ―artificial neural systems," ―parallel 

distributing processing element‖ and ―connectionist system". ANN information is 

simulated by using inspiration of human brain’s skill and nature of processing 

information. The inspiration behaviors have the abilities to take a decision for the best 

solution. The human brain process information that is called neurons using the following 

function such as, Dendrites, Synapses and Axon (Byrne, 1991; Holland, 1975). The 

dendrites' function used for getting input from the environment or from other neurons 
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and send for processing to synapses step. Information is transported between neurons in 

the form of electrical stimulations along the dendrites. Synapses search the favorable 

solution with random hidden information. The axon will give a response either good or 

otherwise. Synapses are the elementary structural and functional units that are 

subsequent to the interconnection between neurons.  

The body of the cell contains the nucleus of the cell and transmits the 

biochemical alterations necessary to synthesize enzyme. It is typically several microns in 

diameter (a micron is a millionth of a meter). The signal of most real neurons is 

chemical, and it consists of spikes, short pulses of electric activity. In ANN, these spikes 

are replaced by continuing variable xj which may be think of as temporal average pulse. 

The majority of neurons encodes their outputs as a series of brief voltage pulses. A 

biological neuron may have as many as 10,000 different inputs and may send its output 

to many other neurons up to 200,000. The ANN also works and developed using human 

brain processing techniques using the following model (McCulloch & Pitts, 1943). From 

the Figure 2.2, the inputs which are shown at start node called input node.  

 

Figure 2.2: Simple mathematic model for neuron (McCulloch, 1943) 

It has been established in 1943, that the neuron model proposed by McCulloch 

and Pitts is implemented as a threshold unit. Weighted inputs to the unit are summed to 

produce an activation signal, and if the activation signal exceeds some threshold value 

the unit produces some output response. However if the activation signal does not 
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exceed the threshold, no output is produced by the unit. For instance if there are n inputs 

to the threshold unit with weights w1, w2.... wn  and signals x1, x2 ...... xn. The activation α 

of the unit. 

   



n

i

ii xw
1

  
       

(2.1) --------------------------------------------------------------------  

The output O of the threshold unit is given by 

             









θαif0

θαif1
O  

       
(2.2) --------------------------------------------------------------------  

where θ is the threshold and often equal to zero. 

2.3 The Working of Artificial Neural Networks 

Certainly, ANN can often provide a suitable solution for problems that are generally 

characterized by nonlinear, high dimensionality, noisy, complex, imprecise, imperfect 

and/or error-prone sensor data, poorly understood physical and statistical models, and 

lack of clearly stated mathematical solution or algorithm (Zaknich, 2003). Mostly ANN 

approaches are capable of solving scientific, electrical engineering, earth knowledge, 

mathematical and of course statistical tasks (Karaki & Chedid, 1994). 

The determination of the network architecture is one of the most important steps 

in developing a model for a given problem. Although ANN construction has been 

extensively investigated by various researchers, there is no known procedure or 

algorithm for this process for the general case. Two approaches have been proposed, 

namely constructive and destructive methods. In both constructive and destructive 

methods, the numbers of hidden nodes are considered. 

The fundamental composition block of every ANN is the artificial neuron. That 

is, a simple mathematical functions or model combination such as multiplication, 

summation and activation. At the doorway of an artificial neuron, the input signals are 

weighted, implying that every input value is multiplied by individual weight values. The 

center distribution of an artificial neuron is addition function that sums all weighted 

values, input signals and bias values. The final step or output layer of an artificial neuron 

is the sum of earlier weight values; input signals and bias are passing through transfer 
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function also called activation function for getting target values. There are different 

activation or transfer function uses for getting the best target which depends on the 

output and behaviors of the data. Figure 2.3 shows the universal ANN structure 

(McCulloch & Pitts, 1943). 

 

Figure 2.3: Artificial neuron working model (Stamatios, 1996) 

 Each input has an associated weight w, which can be modified in order to model 

synaptic learning. The unit computes some function f of the weighted sum of its inputs 

by equation (2.3) as: 

              







 



n

i

iiii biasxwfy
1

 
       

(2.3) --------------------------------------------------------------------- 

Figure 2.3 shows the working principle of an artificial neuron with the three 

mathematical functions such as summation, multiplication and activation function.  The 

output can be linear and nonlinear depending upon the behavior of data and activation 

function.  While from the above working principle's model and simple set of rules of the 

artificial neurons appear to have nothing special, the full perspective and calculation 

ability of these models proved to be capable of solving different difficulties, 

experimentation and analysis when it starts to communicate them into ANN. 
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2.4 Advantages of Neural Networks 

Depending on the nature of the application and the strength of the internal data patterns a 

network can generally be expected to train quite well. This applies to problems where 

the relationships may be quite dynamic or non-linear. ANN provides an analytical 

alternative to conventional techniques which are often limited by strict assumptions of 

normality, linearity, variable independence etc. Because an ANN can capture many 

kinds of relationships it allows the user to quickly and relatively easily model, which 

otherwise may have been very difficult or impossible to be explained. ANN shows the 

benefits in some important difficulties (Haykin, 1999). These are: 

Neurobiological Analogy: The design of ANN is motivated by analogy with the 

brain, which shows the fault-tolerant parallel processing which is not only physically 

possible but fast and powerful (Christodoulou et al., 2012). 

 Nonlinearity, which is a very important property of ANN especially if the 

system which ANN tries to model, is naturally nonlinear. ANN performs the best 

performance for nonlinear problems (Olyaee et al., 2012). 

 Input Output Mapping: ANN gets input and train with weight values using 

different algorithms and output as the target. The ANN training methods will try to get 

the target in supervised or unsupervised learning if the ANN can not find the target; the 

weights value changes and train repeatedly until it finds another best target value. ANN 

is a powerful data-modeling approach that is able to capture and represent complex 

input/output relationships (Lawrence, 1994). 

Adaptively: ANN has a built-in capability to adapt their synaptic weights to 

changes in the environment where they operate. This property leads ANN to human 

brain processing or thinking properties. 

Fault Tolerance: Fault tolerance refers to the capability of a system to function 

adequately despite the failure of components. ANN has the ability to recover from a 

tragic failure without disrupting its operations (Jain et al., 2000). ANN implemented in 

hardware form has the potential to be inherently a fault tolerant in the sense that the 

performance is degraded gracefully under adverse operating condition. ANN show fault 

tolerance since the information spreads in the connections during the network. Even if 
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few relations are cracked or a few neurons are not working, the information is still 

conserved due to the spreading nature of the encoded information. Fault tolerance in 

ANN computing takes several appearances. The first is an inherent tolerance in the exact 

computation of the network. The second is tolerance to the inexact mapping of the 

network for the implementation, including the possible malfunction of portions of the 

implementation, such as failure of individual units (Panduranga et al., 2007). 

2.5 Learning Algorithms 

Artificial Neural Networks is based on human brain processing techniques and gets 

decision using neuron, and it is connection values to find better results. The most 

significant aspect of ANN is its ability to learn from its environment, and to improve its 

performance through learning. ANN learns about its environment or a dynamic system 

through an iterative process of adjustments applied to its weights and biases. One of the 

most important characteristics in ANN is its knowledge ability, which makes it generally 

suitable for the computational purpose whose organization is known or unknown. The 

decision is based on the synapse's learning strategy. The network becomes more 

―knowledgeable‖ about its environment after iteration of the learning process. Like 

human beings and animals that learn more things. ANN learning is an inferred process 

which can not be perceived directly, but can be assumed to have happened by observing 

changes in performance (Zurada, 1992). 

Learning in the context of ANN is defined as a process by which the free 

parameters of ANN are adapted through a process of presenting signals from the 

environment in which the network is embedded. The type of learning is determined by 

the way the parameter changes take place (Simon, 1994). The notion of learning in 

ANN, is the process of guiding the network to provide a particular output or response for 

a specific given input. Learning is necessary when information about the input-output 

relationship is unknown or incomplete a-priori. The learning objective is to minimize the 

cost function which is the difference between desired output and neural network output. 

The networks were trained for finding optimal weights, which reduce the error until the 

convergence.  
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There are two different types of learning, namely supervised and unsupervised 

learning, which identifies or creates pattern-class information about the learning 

outcome. In this case, no desired or target classes are known beforehand, and thus no 

output information is known a-priori. Meanwhile, a supervised learning deals with the 

desired set of responses, outputs or classes for given inputs which are known and 

provided during the learning process. In this case, the neural has to learn the function, 

mapping or transformation that will produce the desired output for new inputs (Zurada, 

1992). Supervised and unsupervised learning can thus be distinguished as follows:  

The main principle of supervised learning is to ―guide or practice‖ a network to 

print the good behavior of a system. In this case, there is always a need to have a 

―training‖ data set. The network topology and the algorithm that the network is trained 

with are highly interrelated. In general, a topology of the network is chosen first, and 

then a proper training approach is used to tune the weights (Brandt & Feng, 1996; 

Gallant, 1993), which integrates an external teacher, so that each output unit is told what 

it's required answer to input signals ought to be.  

On the other hand, the unsupervised learning uses no external teacher and is 

based upon only local information. It is also referred to as self-organization, in the sense 

that it self-organizes data presented to the network and detects their emergent collective 

properties. This group of network training attempts to cluster around input data without 

the need for the traditional ―learn by example‖ technique that is commonly used for 

ANN. Note that, clustering applications tend to be the most popular type of applications 

that these networks are normally used.  

2.6 Backpropagation (BP) Learning Algorithm 

Backpropagation (BP) is a renowned supervised form of learning algorithm for 

obtaining the optimal weight's values in ANN applications, developed by (Rumelhart et 

al., 1986). BP algorithm is widely used to solve many engineering modelling problems 

(Najaf et al., 2013; Zweiri et al., 2002). The basic BP algorithm is based on minimizing 

the error of the network using the derivatives of the error function. The BP used to adjust 

the network’s weight and threshold so as to minimize the error for the different task such 
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as classification, clustering and prediction on the training set. The major advantage of 

the BP algorithm over the Least Mean Squared Error (LMSE) and perceptron algorithms 

is in expressing how an error at an upper (or outer) layer of a multilayer network can be 

propagated backwards to nodes at lower (or inner) layers of the network. 

BP algorithm presented in three stages for training MLP. Firstly, the feed-forward 

phase the input signals are propagated through the input and hidden layers of processing 

elements, generating an output pattern in response to the input pattern presented. 

Secondly, in Back-forward phase as shown in Figure 2.4 , each output node compares its 

activation with the desired output based on these differences, the error is propagated 

back to all previous nodes Delta Rule. Thirdly, weights of all links are computed 

simultaneously based on the errors that were propagated back. The three layers MLP 

with BP learning algorithm is shown in the Figure 2.4. 

 

Figure 2.4: Artificial Neural Network with BP learning algorithm 

Each node, or artificial neuron (Threshold Logic Unit), is composed of two 

sections. The first section generates a sum of the products of the weights multipliers and 

input signals. The second section takes the result of the first section and puts it through 

its activation function, with scales input to a value between 0 and 1. Signal e is the 

output of the first section, and y = f(e) is the output of the second section. Signal Y is 

also the output signal of an artificial neuron. There are several types of activation 
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function, the most common activation function of a neuron f (x) is a sigmoid function 

(Wang et al., 2004) as shown below: 

   
jnetj

e
)net(f




1

1
 

       (2.4)  

where: 

𝑛𝑒𝑡𝑗 =  𝑤𝑖𝑗 𝑎𝑖 , 

 𝑎𝑖   is the input activation from unit i, and 

 𝑤𝑖𝑗   is the weight connecting unit i to unit j.  

In the next algorithm step, the output signal of the network y is compared with 

the desired output value (the target). The difference is called error signal of output layer 

neuron, which is calculated as: 
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 E = error vector, tnk is the actual output and ynk is the network value. In order to derive 

the BP learning rule, chain rule use to rewrite the error gradient for each pattern as the 

product of partial derivatives. Thus, the error gradient becomes: 
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The partial derivative reflects the change in error as a function of the net input; 

the second partial derivative reflects the effect of a weight change on a change in the net 

input. By using the chain rule with respect to weight and biases, in the BP algorithm, is 

determined as follows: 
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(2.7)  

where: 

 wij     is the weight from neuron j to i, 

Si     represent the output of neuron and  

net i  is the weighted sum of the inputs of neuron i. 
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The weight will update with the gradient rules, learning rate with derivative to 

minimize the error function as: 

          )t(
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E
)t(W)t(W

ij

ijij



 1  

       
(2.8)  

where: 

 Wij (t+1)   shows the new weight value,  

Wij  represents the old weight values and   represents the learning rate, which can 

control the learning and has important effect on convergence time.   

The learning rate is a constant used in error BP learning that affects the speed of 

learning. The smaller the learning rate, the more steps it takes to get to the stopping 

criterion. A too large or too small   will cause negative inferences to converge . If it is 

too small, the learning process can be very slow (Knight, 1990). The different 

combinations of the learning rate and momentum are introduced to try to find the right 

combination that will allow the solution to escape local minima but not skip over the 

global solution. To make the learning process more stable, the momentum term is used 

to the weight changes as: 
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(2.9)  

where, )t(WijΔ = )t(W)t(W ijij 1 and the momentum term represented by , 

where the momentum factor 0<  <1, usually sets around 0.9 (Wasserman, 1989). Using 

high learning rate, momentum term can avoid the oscillation.  

Although the back propagation algorithm is a powerful technique applied to 

classification, combinatorial problems and for training MLP. The problem’s complexity 

increases (due to increased dimensionality and/or greater complexity of the data), 

performance of back propagation falls off rapidly because gradient search techniques 

tend to get trapped in local minima the performance of back propagation falls off rapidly 

because of the fact that complex space have nearly global minima which are sparse 

among the local minima. Gradient search techniques tend to get trapped at local minima 

(Montana & Davis, 1989). When the closely global minima are well hidden among the 

local minima, back propagation can end up bouncing between local minima, especially 
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for those non-linearly separable pattern classification problems or complex function 

approximation problem. A second shortcoming is that the convergence of the algorithm 

is very sensitive to the initial value. So, it often converges to an inferior solution and 

gets trapped in a long training time.  

There are several approaches developed for recovering and updating BP 

algorithm for different problems. An improved BP algorithm with stochastic attenuation 

momentum factor proposed by (Jia & Dali, 1993) and compared with the standard BP 

algorithm, the algorithm claims to effectively cancel the negative effect on the 

momentum of a network. However, the calculation of this approach is complex since it 

uses the correlation matrix in defining the momentum. For evolving convergence speed, 

an adaptive learning rate and momentum coefficient is proposed (Chien & Bin, 2002). In 

this proposed technique for fast convergence BP used with Adaptive Learning rate and 

Momentum factor (BPALM). Thus, from avoiding the local minima trapping problem 

proposed an improved BP where each training pattern has its own activation functions of 

neurons in the hidden layer and the activation functions are adjusted by the adaptation of 

gain parameters during the learning procedure (Wang,et al., 2004). However, this 

approach did not produce good results on large problems and practical applications. 

Due to all these problems in BP, for the last decade swarm Intelligence, an 

artificial intelligence discipline, is concerned with the design of intelligent multi-agent 

systems, such as ants, termites, fish, birds, bees, and wasps, by taking inspiration from 

the collective behaviors of social insects and other animal societies used for different 

combinatorial tasks (Kennedy et al., 1995; Dorigo, 1999; Karaboga et al., 2007). They 

are characterized by a decentralized way of working that mimics the behavior of the 

swarm. The researchers have replaced the BP algorithm with SI based learning 

algorithm in order to avoid local minima and slow convergence problems. 

2.7 From Artificial Neural Networks to Swarm Intelligence 

The ANN working model has different tasks such as, multiplication, summation and 

activation. In multiplication stage the weights are multiplied by an input signal. The 

input signals are predefined values while weight values are initialized with different 
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techniques. Initially, weights were chosen randomly but with the passage of time 

researchers started taking an interest to get optimal weight in weight equation. 

There are different techniques uses for finding optimal weight values such as BP, 

and modified version of BP (Nazri et al., 2010), Gradient Descent (Baldi, 1995; Yu & 

Chen, 1997), Differential Evaluation (DE) (Slowik & Bialko, 2008), Genetic algorithm 

(GA) (Qiang et al., 2005), Improved BP (Nazri et al., 2010) and other mathematical 

approaches. While these algorithms have been shown to be an effective method for 

training ANN, it typically has a slow convergence rate, and is known to suffer from local 

minima (Nazri et al., 2010). To overcome these limitations, researchers took interested 

in Swarm Intelligence approaches such as PSO (Kennedy & Eberhart, 1995), Ant 

Colony Optimization , ABC, Improved ABC algorithm, Hybrid Artificial Bee Colony 

(Karaboga et al., 2007) and some others hybrid such as BP and Levenberq-Marquardt 

with ABC algorithm (Bitam et al., 2010; Blum & Socha, 2005; Ozturk & Karaboga, 

2011). These learning techniques show that ANN processed to swarm based behaviors in 

the basic part of ANN. These algorithms are easy to implement and found to be robust 

compared to the standard BP.  

2.8 Swarm Intelligence 

Swarm Intelligence (SI) is a recent technique, which deals with natural social insects and 

artificial systems that composed of many individuals’ agents based on the study of 

collective behaviour in decentralized and self-organized systems like the movement and 

behaviour of natural swarm workers (Bonabeau et al., 1999). The ant colonies, bees and 

bird flocking that can be effectively applied to computational intelligent systems are the 

basic agent of SI. 

2.9 Fundamentals of Swarm Intelligence 

SI has two fundamental notions; self-organization and division of labour or agents. The 

two basic notations, having necessary and sufficient properties to obtain swarm agent's 

behaviour such as distributed problem solving systems that is self-organized and adapt 
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to the given environment (Karaboga et al., 2005). Also flexibility and robustness is 

influenced by self-organization with SI techniques for different task (Abraham et al., 

2006). These two fundamentals of SI are discussed below. 

1) Self-organization can be defined as a set of dynamical mechanism, which 

results in structures at the global level through a system by means of interactions among 

its low-level elements (Bonabeau et al., 1999). Through self-organization, the behavior 

within the group emerges from collective interactions of all individuals. These 

mechanisms demonstrate basic guidelines for the interactions between the components 

within the system. The rules ensure that the interactions are executed based on purely 

local information without any relation to the global method. The social insects seem to 

have two key priorities in their life time, finding food and defending against enemies. It 

seems to be a simple life as compared to human beings  

2) Inside a swarm, there are different tasks performed simultaneously by 

specialized individuals. This kind of phenomenon is called division of workers for given 

tasks. Simultaneous task performance by cooperating specialized individual is believed 

to be more efficient than the serial task performance by unspecialized individuals. 

Division of agents also enables the swarm to respond to changed conditions within the 

search space. The above two fundamental concepts for the collective performance of a 

swarm presented are necessary and sufficient properties to obtain environment behavior 

of SI agent to get optimal solution for given problems. 

2.10 Types of Swarm Intelligence Algorithms 

There are various types of Swarm Intelligence (SI), these include Particle Swarm 

Optimization (PSO) inspired by the social behaviour of bird flocking or fish schooling 

(Kennedy & Eberhart, 1995), Ant Colony Optimization which is inspired by the 

foraging behaviour of ant colonies (Dorigo, 1992), Bee Swarm Optimization (BSO) 

(Davidović et al., 2012; Teodorovic et al., 2006), Artificial Bee Colony algorithm which 

is inspired by the foraging behaviour bee colonies and Cuckoo Search (CS) algorithm 

which is inspired by the behaviour of cuckoo bird (Yang and Deb 2009). Researchers 

have widely used SI through hybridization with many other techniques. The PSO 



PTT
A

PER
PU
STA
KA
AN
 TU
NK
U T
UN
 AM
INA
H

24 

 

algorithm improved by researchers with different new and hybrid strategies (Jun & 

Xiaohong, 2009; Mohammadi & Jazaeri, 2007). ACO hybrid with BP, LM, PSO, GA 

and other optimization algorithms for different tasks (Biswal et al., 2011; Jung & Lee, 

2003; Xiao et al., 2009).  

Researchers have extends standard ABC algorithm to the Modified Artificial Bee 

Colony (MABC) (Zhang et al., 2011), an Improved Artificial Bee Colony (IABC) (Shah 

and Ghazali., 2011), PSO-ABC (Tarun et al., 2011), the Global Hybrid Ant Bee Colony 

(GHABC) algorithm, the Hybrid Artificial Bee Colony (HABC), the Hybrid Artificial 

Bee Colony (Shah et al., 2010, 2011, 2012), the Discrete Artificial Bee Colony (DABC), 

a Combinatorial Artificial Bee Colony (CABC), the parallel Artificial Bee Colony 

(PABC) (Narasimhan, 2009), the Novel Artificial Bee Colony (NABC), Application 

Artificial Bee Colony (AABC) and many other types of recent improvements for 

different mathematics, statistical and engineering problems. Undoubtedly, all types of SI 

are extremely renowned and focused upon by the researchers for further improvement 

and increasing their applicability to mathematical, statistical and optimization problems. 

The ACO, PSO and ABC have the highest ratio of interest as compared to other swarms 

based approaches (Abraham,et al., 2006; Kennedy & Eberhart, 1995). There are many 

other types of SI approaches, however, the distinguished PSO, ACO, and ABC 

algorithms are detailed in the following sections. 

2.10.1 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a population based stochastic optimization method 

inspired by social behaviour of bird flocking or fish schooling developed (Kennedy & 

Eberhart, 1995). PSO is a robust technique based on the movement and intelligence of 

swarms. The system is initialized with a population of random solutions and searches for 

optima by updating generations. Each particle is treated as a point in an N-dimensional 

space which adjusts its ―flying‖ according to its own flying experience as well as the 

flying experience of other particles. However, unlike GA, PSO has no evolution 

operators such as crossover and mutation (Gudise & Venayagamoorthy, 2003).  
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