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ABSTRACT

Crude palm oil (CPO), which is available in abundant in Malaysia, is used as

the feedstock in this research work. The work starts with the analysis of the

physical and chemical properties of the feedstock and the associated product to

obtain the major fatty acid compositions of triglyceride applicable in the crude

palm oil. The kinetic models describing the change in the concentrations of the

triglycerides, intermediates, alcohol, and the products during the reaction course

are formulated through the corresponding kinetic mechanism. By looking at the

kinetic mechanisms of the reaction, the chemical reaction is better understood.

The ultimately proposed kinetic models of the biodiesel production from crude

palm oil and methanol under the presence of a base catalyst follow the second

order differential equations without a shunt reaction. The emphasis of this re-

search work is on the study of the methanolysis of the crude palm oil under a base

catalyst (transesterification) to produce biodiesel at high quality and maximum

yield. The concentration profiles of the reactants and the products employed in

the transesterification are obtained by solving numerically the associated differ-

ential equations with introducing the published reaction rate constants applied in

a laboratory scale. The effect of the reversible transesterification reaction shows

that each concentration profile of the reactants and the products tends to achieve

an equilibrium after certain reaction time.

The simulation results of the kinetic models are implemented in the pilot plant to

produce biodiesel from CPO. Due to impurities such as unwanted gums and pig-

ment, the feedstock must first undergo a physical treatment including degumming

and bleaching processes. The high content of water and free fatty acid containing

in CPO requires an esterification process. The main objective of this process is

to lower that value to a minimum level to avoid the undesired effects such as

saponification and inefficiency of the catalyst. Methanolysis of triglyceride under

an alkaline catalyst, transesterification, can be subsequently carried out. Produc-

tion of biodiesel in a larger scale needs a particular material handling compared

to that in laboratory scale. Uncertainty of isothermal state during the reaction
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course, uniform mixing in the catalyst preparation, and the effect of the inert

gas as the process safety agent will affect adversely the conversion and also the

yield. Consequently, the transesterification process must be carried out in stages

to achieve a high conversion of palm oil to biodiesel. To attain this objective,

the molar ratio of palm oil to methanol for each stage can be adjusted to mini-

mize the methanol usage and the steam consumption. In a batch–mode operated

plant, the conversion can vary from a batch to a another batch process. With

this approach, it is expected that the high conversion above 96.5 % by weight,

as requested by EN 14214 standard, as well as a high yield of biodiesel can be

achieved.

Gas chromatography (GC) analysis method was used to determine the methyl

ester contents during the reaction progress. Based on these accurate experiment

data along with the simulation results, a validation was done. Technical im-

provements in the plant operation can therefore be deduced towards the best

plant performance and a high quality of biodiesel product.
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ABSTRAK

Di dalam kajian penyelidikan ini, minyak sawit mentah (CPO) yang tersedia

banyak di Malaysia digunakan sebagai bahan suapan. Penyelidikan ini diawali

dengan menganailisa sifat-sifat fizikal dan kimia bahan suapan dan produk berkai-

tan bagi mendapatkan kandungan asid lemak pada triglyceride di dalam minyak

sawit mentah. Model kinetik yang menggambarkan perubahan kepekatan dari-

pada triglyceride, produk antara, alkohol, dan produk utama selama berlang-

sungnya tindakbalas, dirumuskan berdasarkan pada mekanisma kinetik yang sesuai.

Melalui pengamatan mekanisma kinetik, tindakbalas kimia lebih mudah difa-

hami.

Model kinetik untuk menghasilkan biodiesel daripada minyak sawit mentah di-

cadang mengikut persamaan separa dua tanpa reaksi shunt. Tumpuan kerja

penyelidikan ini adalah kepada kajian metanolisis minyak sawit mentah dengan

katalis alkali (transesterifikasi) bagi menghasilkan biodiesel berkualiti tinggi dan

keluaran maksima. Profil kepekatan daripada reaktan dan produk di dalam proses

transesterifikasi ini diperolehi dengan menyelesaikan persamaan separa tersebut

secara numerik. Pekali kadar tindakbalas yang berlaku untuk skala makmal dan

telah tersiar diterapkan bagi tujuan tersebut. Pengaruh boleh balik proses trans-

esterifikasi dapat dilihat pada kecenderungan profil kepekatan menuju kepada

keadaan seimbang selepas masa tertentu.

Hasil simulasi daripada model kinetik digunakan di dalam ujikaji skala pilot. Ke-

rana bendasing seperti gam dan pigmen yang tidak dikehendaki wujud di dalam

minyak sawit mentah, ianya perlu dipisahkan melalui proses penyahangam dan

pelunturan. Tingginya kandungan air dan asid lemak bebas (FFA) di dalam

CPO, ia memerlukan proses esterifikasi. Tujuan utama proses ini adalah men-

gurangkan kadar kandungan kedua-dua parameter tersebut bagi mengelak kesan

negatif seperti saponifikasi dan ketidakberkesanan katalis. Proses selanjutnya

iaitu metanolisis dengan katalis alkali, atau transesterifikasi. Memproses biodiesel

dalam skala lebih besar daripada skala makmal memerlukan penanganan berbeza.

Meskipun gas unggul diperlukan untuk keselamatan proses, tindakbalas kimia di
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dalam skala pilot memerlukan keadaan operasi pada suhu malar dan campu-

ran sekata katalis di dalam metanol. Untuk mencapai objektif yang ditetapkan,

nisbah molar minyak sawit terhadap metanol untuk setiap peringkat dapat dis-

esuaikan. Ini penting bagi menjamin penggunaan metanol dan stim kepada paras

terendah.

Kaedah analisis gas chromatography (GC) digunakan untuk menentukan kan-

dungan methyl ester selama proses tindakbalas kimia berlangsung. Berdasarkan

kepada data ujikaji yang tepat dan hasil simulasi, validasi dapat dilakukan. Pe-

nambahbaikan di dalam pengoperasian loji dapat dicadang bagi menghasilkan

prestasi terbaik loji dan hasil keluaran biodiesel berkualiti tinggi. Dapat disim-

pulkan, objektif reaktor di dalam usaha untuk mencapai kadar hasil maksima dan

kualiti tinggi produk biodiesel dapat dicapai dengan cara pengoperasian secara

berperingkat.
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CHAPTER 1

INTRODUCTION

This chapter deals with the research background, the problem statement, and

the associated objectives necessary for the research work. The subsequent section

sets the scope of works and the intended objectives for completing the tasks. At

the end of the chapter, the expected new scientific contribution to the body of

knowledge is given.

1.1 Research background

The scarcity of fossil fuels and increasing emissions of combustion–generated

pollutants as well as their fluctuate costs will make biomass resources more at-

tractive Gerpen and Knothe (2005). Many experts suggest that the current oil

and gas reserves would suffice to last only a few more decades. To fulfill the rising

energy demand and replace reducing petroleum reserves, fuels such as biodiesel

and bioethanol are in the forefront of alternative technologies. Accordingly, the

viable alternative for compression–ignition engines is the biodiesel, Demirbas

(2008). Palm oil is widely grown in southeast Asia; 90% of the palm oil pro-

duced is used for food and the remaining 10% for non-food consumption, such as

the production of oleo-chemicals Leng (1999).

A fact is that we are in the early phases of truly historic transition – from an

economy based largely on petroleum to a more diversified economy in which

renewable plant biomass will become a significant feedstock as an alternative

energy resource, (Dale and Kim (2006)). The development of the petroleum re-

fining industry over the past century provides many instructive lessons for the

future biobased economy. Malaysia is fortunate to have a plentiful supply of the

bioenergy resource. The golden crop of Malaysia, oil palm, is regarded as the

1
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most-effective oil crop with an average annual yield of 3.5 – 5.0 tons of palm oil

per hectare, Choo Yuen May (2005). It offers a potential environment-friendly

alternative energy.

With oil palm as the bio-based feedstock available in abundant, the suitable pro-

cess routes must be selected for production of biodiesel as an alternative energy

for fuel. Selection of the right process routes include physical, chemical and ther-

mal treatment of the feedstock for biodiesel production. The ultimate selection

determines the utility requirement and process equipment or unit operations to

be used. This kind of tasks is carried out at the beginning stage of process

plant design and supported by means of a Computer-Aided Process Engineering

(CAPE) software (Peter-Helmus, 2008).

In many countries including Malaysia the development of biodiesel production is

driven by the need to increase security of energy supply for the transportation

sector by having a renewable source at hand, have an environmentally friendly

fuel available for the diesel combustion engine, reduce health and security risks,

and provide the customer with a reliable fuel at a reasonable cost-benefit ra-

tio ,Reaney, Hertz, and McCalley (2005); MPICM (2006). Commercial fuels are

predominantly derived from fatty acids and their derivatives that are used as

biodiesel fuel and fuel components. Methyl esters of fatty acids or blends of fatty

acid methyl esters with conventional diesel fuels from fossil sources have been

used in the market. Although other esters have been studied as fuels, the relative

cost benefits and ease of preparing, methyl esters have allowed these sources to

dominate the current commercial production.

Universiti Tun Hussein Onn Malaysia (UTHM) has embarked a biodiesel produc-

tion pilot plant with a capacity of 1 metric ton (MT) per batch of production.

Crude palm oil is used as the feedstock and biodiesel with fuel grade quality is

the main product. The plant is designed to produce biodiesel from any vegetable

oil regardless of the oil sources. Fortunately, in Johor especially Batu Pahat, the

oil source is mainly originated from palm-based oil and additionally, the state of

Johor is the biggest producer of palm oil in the peninsular of Malaysia. There-

fore, using palm-based feedstock for biodiesel production is the practical choice

towards a sustainable green energy development.

This research study will elaborate on the performance of the reacting unit ope-

rations for the methanolysis of crude palm oil to produce biodiesel. These reacting

vessels represent the heart of the biodiesel plant, in which a high-value product is
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produced through chemical transformation. The chemical reactor therefore is a

crucial component of the entire plant, and its high performance must be ensured.

Plant engineers are concerned with each reactor’s specific yield, selectivity, safety,

environment, quality and purity as well as the degree to which reactors support

overall plant economic viability and optimal operational conditions.

For the methanolysis of crude palm oil, the performance of the reactor is mea-

sured on the basis of the conversion/consumption of the feedstock and the yield

or product. Reaction kinetics is a useful tool to describe the chemical reactions of

the reactants and the corresponding products inside a reactor during the course

of the overall reaction. Many active research studies have been done in biodiesel

production during the last two decades using a variety of feedstock. Darnoko and

Cheryan (2000a) has experimentally developed the reaction kinetic models of the

palm oil transesterfication in the laboratory scale. Devender S. Negi (2007) and

Noureddini and Medikonduru (1997) investigated the empirical kinetic behavior

of biodiesel production using palm oil and soy oil at the same scale. However,

published research data on the kinetic model of the methanolysis of crude palm

oil especially in a medium scale such as the UTHM pilot plant, are still not avail-

able. The kinetics of a reaction is determined by measuring concentrations of the

reactants and products as a function of time.

Following the stoichiometry, methyl ester or biodiesel is formed through a simple

catalyzed reaction of one mole of oil with three moles of methanol. Problems will

be encountered if the oil contains impurities and the product purity is of high

importance. In the pilot scale where its nature differs from the laboratory one,

suitable efforts must be done to prepare the oil free from impurities and useful

purification methods must be carried out to obtain the specified product quality.

1.2 Problem Statement

1. Kinetic Model of Biodiesel Production in a Pilot Scale is not available.

Driven by the lack of published literatures on the kinetic models deducted

from the reaction mechanism describing the methanolysis of crude palm oil

and triglyceride under presence of certain catalysts, it has led to an indis-

pensable need to get a suitable and practical tool for operating the plant

reactors towards a high performance. The expected tool should be able to

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4

help explain how the transformation of the reactants to both the products

and the byproducts as well the role of the associated catalyst.

The reacting system occurs in a reactor. A batch-mode operating plant

consists of a sequence of reactors that work independently. A typical fea-

ture of a process plant operating in a batch mode is the inconsistent reactor

performance from batch to batch due to non-uniformities, time variants

conditions, unsteady-state production, and downtime for filling and dis-

charging. A chemical reactor performance is measured on the conversion

of the feedstock to the desired product and the selective yield regardless of

what various conditions. Any failure in the reactor performance will make it

difficult to take an appropriate action if the process engineering tool in form

of the applicable kinetic models for the biodiesel production is not at hand.

Additionally, operating a reactor under non–isothermal conditions for a

batch–mode operating plant is not advisable due to high energy consump-

tion and uncontrolled conditions that could lead to an unstable situation

as suggested in Korovski and Linniger (2005) However, the reaction rate

constants of the kinetics equations investigated in a laboratory scale can

be utilized to estimate the actual the concentration profiles of the react-

ing compounds during the reaction course. Owing to the difference in the

inherent nature of the two scales such as dimension, heat supply, mixing

intensity, and an uncertainty in the reaction condition, it will cause the re-

action behavior in the laboratory scale to be different than that in the pilot

scale. Additionally, a batch–mode processing plant enables a wide range of

products or product grades in the same equipment compared to the contin-

uous process, Ray Sinnot (2009).

2. Process Variables Settings for the Plant Operation with a capacity of 1 MT

are not defined.

Consequently, in the actual batch–mode plant operation, the right composi-

tion of the reacting components being processed must be set correctly from

a batch to another batch, or from a stage to another stage. The utmost at-

tention must be given to the molar ratio of methanol to triglyceride as well

as the catalyst usage during the transesterification process. To much use of

methanol will cause a high energy consumption in the methanol recovery,

otherwise, the reaction will be incomplete. Furthermore, a pilot plant at a
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scale of 1 MT is used for the research study.

3. Process Route in the Pretreatment of CPO needs to be selected.

Another technical issue in the production of biodiesel from crude palm oil

is the impurities contained in CPO must be first separated in the pretreat-

ment plant. In palm oil industries, CPO undergoes not only degumming,

bleaching, and neutralization process, but also a deodorizing treatment for

removal the naturally unpleasant odor due to odiferous matter. Therefore,

preparing CPO suitable for the esterification process must be also analyzed

and a proper synthesis route in the pretreament plant shall be selected.

1.3 Research Objectives

The objectives of the research study will achieve the following targets:

1. Process routes for biodiesel production commencing from the pretreatment

of crude palm oil and the subsequent steps up to purification of the product

are properly selected. The function of the unit operation and the desired

product specifications are also included.

2. Formulate the kinetic models of the methanolysis of the triglyceride de-

ducted from the reaction mechanism.

3. Solve the kinetic models of the methanolysis of triglyeride under an alkaline

catalyst numerically and simulate them to evaluate the methyl ester’s profile

during the reaction progress.

4. Examine experimentally the reactor performance in term of the conversion

of the palm oil by operating the pilot plant to transform the crude palm oil

to biodiesel under specific conditions.

5. Propose the useful process variables derived through both the simulation

results and the experimental validation in order to achieve the best perfor-

mance of the biodiesel production pilot plant.
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1.4 Scope of the Research Study

To achieve the mentioned research objectives, the scope of the research study

along with the related assumptions and limitations are listed as follows:

1. Assumptions and limitations:

a) The physical properties data of the feedstock and product are obtained

from the published data.

b) The fatty acids composition comprising the palm oil is limited to five

major components, myristic acid, palmitic acid, stearic acid, oleic acid

and linoleic acid. The other minor components are relative to their

mass percentage negligible.

c) The reaction rate coefficients necessary for solving the partial differen-

tial equations numerically are obtained from the experimentally pub-

lished data.

d) Transport effects on the rates of concentration change are excluded,

since these may complicate, or even obscure, the principal objectives

of the work. The concentration gradient within the reactor is therefore

spatially negligible.

e) The reactors in the UTHM pilot plant operates at an isothermal con-

dition and 1 metric ton (1 MT) of capacity.

2. Scope of works:

a) Only the methyl ester contents during the reaction progress are in-

vestigated by using GC analyze method. This component contributes

above 95% of biodiesel.

b) Purification of crude biodiesel to biodiesel for fuel uses a hot water

washing method to minimize the material cost.

1.5 New Scientific Contribution

The main expected scientific contribution of the research is the application of the

multistage methanolysis of crude palm oil in the reacting vessels. This method

enables the batch-mode operating pilot plant to deliver a high conversion of the

feedstock and a high yield of biodiesel under specific process variables. Having
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the right process variables in the hand, a process engineer can operate the plant

more convenient regardless of the various conditions encountered from a batch to

another batch, or from a stage to another stage of the transesterification process.

Moreover, the underlying knowledge lies in the kinetic models deducted from the

reaction mechanism that is better understood. This mechanism is a useful tool

to describe how the reacting compounds react with other under a particular con-

dition. The multistage methanolysis could be extended to a continuous biodiesel

production if a demand in a larger quantity would be in place.
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CHAPTER 2

LITERATURE REVIEW

The possibility of using vegetable oils as fuel has been recognized since the be-

ginning of diesel engines. Vegetable oil has too high a viscosity for use in most

existing diesel engines as a straight replacement of fuel oil. Transesterification (es-

ters exchange) is the most common method to solve the problem. It is a chemical

reaction of a fat or oil (triglyceride) with an alcohol to form esters and glycerol.

This chapter will elaborate the state of the art in the biodiesel production from an

initial feedstock to the final product through the literatures reviews. Moreover,

theoretical fundamentals in organic chemistry relevant to biodiesel production

are included.

2.1 Feedstock Properties

Biodiesel can be made from any plant oils with over 350 oil-bearing crops being

identified for the production of biodiesel, Ng, Ng, and Gan (2009). The selec-

tion of feedstock for biodiesel production depends primarily on region, price and

chemical properties. The dominant feedstock varies among countries, since the

suitability of vegetation is very much dependent on local climates. The pre-

dominant raw material in European countries is rape seed, while in the United

States (US) soybean is the most widely used feedstock. For a tropical climate

like Malaysia palm oil is the common feedstock for biodiesel production.

Determining the chemical and physical properties of crude palm oil as the feed-

stock for biodiesel production is of importance for proper selection of the process

routes. A (2000) as cited in Morad, Aziz, and Zin (2006) has classified crude

palm oil into five physical and chemical groups as shown in Table 2.1. The main

component of crude palm oil is triglyceride which composes 90 – 98% of the to-

8
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Table 2.1: General Components of Crude Palm Oil

Group Components

Oil
Triglyceride, Diglyceride, Monoglyceride
Free Fatty Acid

Oxidized Products Peroxide

Non-oil but oil soluble Carotene, Tocopherol, Phospholipids

Impurities Metal particles

Water solubles
Water (Moisture)

Glycerol, Chlorophyl pigments

tal mass, Canakci and Sanli (2008). Some of the groups and components must

be removed partially or completely through refining process to meet the desired

feedstock specification. Free fatty acid (FFA) is the fatty acid that is not bound

on the glycerol backbone of triglycerides. FFA originates from the breakdown of

triglycerides into its component fatty acid and glycerol units, and results from

the exposure of triglycerides to moisture or from enzymatic processes. Copeland

and Belcher (2002) reveals that a high FFA in a vegetable oil generally indicates

that the oil was poorly processed or that there has been some triglyceride break-

down after refining. FFA also indicates the degree of purity of oil. A purer oil

posses a lower value of this number. Kima, Kim, Lee, and Tak (2002) recom-

mends that phospholipid commonly referred to as gums must be removed because

of their strong emulsifying action. This component causes an undesirable flavor

and a coloring pigment. The emulsifying action is therefore the main suspect

causing the oxidative instability of the crude palm oil. Moreover, phospholipids

contain phosphorus, nitrogen bases and sugars are the main suspect that needs to

be removed totally in the degumming by coagulating the phosphatides contents

with phosphoric acid as reported in Morad et al. (2006) and Akoh and Min (2008).

Peroxide is an oxidation product that causes rancidity when the oil reacts with

oxygen. The tocopherol and carotene content in oil acts naturally as an antioxi-

dant and makes the oil a reddish brown color. Wei, Maya, Ngan, and Hock (2004)

has investigated that trace metals such as iron (Fe) and copper (Cu) are unde-

sirable and usually resulted from the mechanical wear at the mills and refineries.

These metals are pro–oxidant and hence reduce the oil quality. The presence of

moisture in oil can hydrolyze the triglycerides into free fatty acids and glycerol
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Table 2.2: Typical Compositions of Crude Palm Oil

Composition Unit Value

Triglyceride % ≥ 95
FFA % 3.5
Diglycerides % 2 – 6
Colour - reddish brown
Moisture and Impurities % 0.25
Peroxide meq/kg O2 1.0
DOBI - 2 - 3.5
Phosphorus ppm 15
Iron ppm 5

leading to an adverse effect in the oil quality as shown in the following reaction:

C3H5(OOCR)3 + 3H2O → C3H5(OH)3 + 3RCOOH

Triglycerides Water Glycerol FFA

Where, R is the long chain fatty acid consisting of the carbon-hydrogen bonds.

Understanding the crude palm oil components as aforementioned is essential in

process engineering. The typical compositions of Malaysian crude palm oil is sum-

marized in Table 2.2 as reported in Basiron and May (2005). These compositions

certainly will determine the suitability of the crude oil for applications. As shown

in Table 2.2, triglycerides are the major component of a palm oil. As evaluated

in Basiron (2005), monoglycerides and diglycerides are also present in a small

amount as an artifact of the refining process. The fatty acid chains in triglyc-

eride can vary in number of carbons and in structure (single or double bonds).

These two factors affect greatly in the chemical and physical characteristics of

the palm oil. Knowledge about the detailed structures of the triglycerides present

in palm oil is necessary because they define some of the physical characteristics

of the oil. The melting points of triglycerides are dependent on the structures

and position of the component acids present. They also affect the emulsifying

behavior of the oil. The semi solid nature of palm oil at room temperature has

been attributed to the presence of the unsaturated fraction.

The partial glycerides are formed in the extraction process. Oil obtained from

unbruised sterilized fruits shows trace levels of partial glycerides. Random ana-

lyses of samples of refined palm oil, palm olein, and palm stearin have shown the

presence of about 6% diglycerides with trace amounts of monoglycerides, (Basiron
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(2005)). These partial glycerides are important as they are known to affect the

crystallization behavior of the oil. Furthermore, the semi solid present in the oil

at a normal condition is due to the process of solidification occurring in the oil as

a consequence of its chemical properties. The various structures in the molecular

triglyceride (saturated and unsaturated) with the associated chemical character-

istics reveal obviously the physical states at that temperatures, hence affecting

the melting behavior of the oil. A classical method to measure the degree of the

unsaturation in fats and oils is called an iodine value (IV) measurement. Hereby,

an iodine-bromide (Hanus reagent) or iodine monochloride (Wijs reagent) reagent

is reacted with the double bond and an excess reagent (as iodine) is then titrated

with sodium thiosulphate solution to obtain its level of unsaturation.

2.2 Fatty Acids Profiles in Crude Palm Oil

Triglycerides or triacylglycerol making off the major component of the vegetable

oils and animal fats are chemically a compound of triesters formed from three

molecules of fatty acids with a glycerol molecule as the backbone, as shown in

Figure 2.1, Smith (2012). Fatty acids consist of the elements carbon (C), hydrogen

(H) and oxygen (O) arranged as a carbon chain skeleton with a carboxyl group

(-COOH) at one end.

The functional groups, represented by R1,R2,R3, are fatty acids consisting of the

long-chains of carbon-hydrogen bonds. The identity of the three fatty acids in

HC

CH2 OH

CH2 OH

OH +

HO C

O

R1

HO C

O

R2

HO C

O

R2

HC

CH2 O C

O

R1

CH2 O C

O

R3

O C

O

R2

Glycerol Three Fatty Acids
Triacylglycerol

Three ester groups labeled in blue

1

Figure 2.1: Formation of triglycerides, Smith (2012)
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Figure 2.2: Skeletal structures of stearic acid and oleic acid, Man et al. (1999)

the triacylglycerol determines whether it is oil or fat. Increasing the number of

the double bonds in the fatty acid chain decrease the melting point of the tri-

acylglycerides. Fats have higher melting points, hence they are solid at room

temperature. Oil, in contrast, is liquid at room temperature due to its lower

melting points. This different physical phase is affiliated to the double bond of

the carbon chain. A large number of double bonds induce a liquid form, whereas

fats derived from a few number of double bonds or single carbon-carbon bonds

are solid. Fatty acids are called saturated, if they have all the hydrogens that

the carbon atoms can hold or do not have any double bond between the carbons.

Figure 2.2 illustrates the difference between two fatty acids in the skeletal struc-

ture, Smith (2012). Stearic acid consists only a single carbon-carbon bond, called

a saturated fatty acid, and oleic acid has one double carbon-carbon bond. It is

an unsaturated fatty acid. Hence, oleic acid is oil in room temperature, while

stearic acid is fat or solid. Furthermore, fatty acids are frequently represented

by a notation such as C18:1 for oleic acid. This notation indicates that the fatty

acid consists of an 18-carbon chain and 1 double bond or unsaturated. Stearic

acid has a notation C18:0 because it has 18 carbon chain and no double bond or

saturated.

The composition of fatty acids in triglycerides may vary depending upon the oil

sources. Triolein (C57H104O6) and tristearin (C57H110O6) are examples of simple

triglycerides derived from oleic acid and stearic acid, respectively. Man et al.

(1999) has observed that triglycerides of palm oil comprise naturally of vari-

ous fatty acids. It makes the triglycerides being a complex chemical compound.

Moreover, fatty acids may combine with any of the three hydroxyl (-OH) groups

of the glycerol to create a wide diversity of compounds.
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1

Figure 2.3: Triolein, Diglyceride and Monoglyceride

Figure 2.3 shows that diglyceride or diacylglycerol (DG), each of which has two

fatty acid, oleic acid or palmitic acid, respectively. A monoglyceride or monoacyl-

glycerol (MG) has only one fatty acid bond to the glycerol molecule. Therefore,

replacing a functional group R1 with an hydroxyl group in a triglyceride yields a

MG, whereas a MG is formed by replacing the second functional group (R2) with

another hydroxyl group. Referring to Figure 2.3, the functional group bonded to

the glycerol,R2, comes from oleic fatty acid. The structure of DG is illustrated in

the middle of the figure. Crude palm oil may contain up to 6% of this compound.

According to M.Snäre and P.Maki-Arvela (2009) and Edem (2002) the fatty acid

or composition of palm oil are shown in Table 2.3. The major constituents of

palm oil are formed by palmitic and oleic acids, 45% and 39% by weight, respec-

tively. The greater the carbon number of the fatty acid, the higher is the melting

point (MP). Moreover, the saturated fatty acids have higher melting points than

the unsaturated counterparts. In other words, the unsaturated content causes the

Table 2.3: Common fatty acid profiles of palm oil, Edem (2002)

Fatty acid Chemical structure % MP
[℃]

BP
[℃]

Myristic
(14:0)

CH3(CH2)12COOH 1 54 163.5

Palmitic
(16:0)

CH3(CH2)14COOH 45 62 309.0

Stearic
(18:0)

CH3(CH2)16COOH 4 69 332.6

Oleic
(18:1)

CH3(CH2)7CH=CH(CH2)7COOH 39 13 334.7

Linoleic
(18:2)

CH3(CH2)4CH=CH(CH2)CH=CH(CH2)7COOH 11 -9 230.0
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fatty acids to have characteristics of a liquid. With the 50 – 50 % composition

of the saturated and the unsaturated components in the crude palm oil, it causes

the semi solid phase of the oil at the normal condition. Linoleic acid content

contributes to the low melting point of the crude palm oil. With this component

distribution, CPO is suitable in a tropical country.

Table 2.4: Fuel Properties of CPO, M.Snäre and P.Maki-Arvela (2009)

Properties Testing Method Unit Mean Value

Viscosity at 50 ℃ D 445 cSt 25.6
Flash Point D 93 ℃ 268
Density at 50℃ D 1298 kg/L 0.889
Gross Heat of Combustion D 240 kJ/kg 39,690
Sulphur Content D 4294 wt. % 0.03

Table 2.4 lists the fuel properties of crude palm oil along with the associated

testing method, M.Snäre and P.Maki-Arvela (2009) and Edem (2002). The high

kinematic viscosity of CPO compared to the viscosity of biodiesel specification

(1.9–6.0 cSt) is the main reason of the transesterification which its function is to

lower its value to meet the specification for fuel. Flash point of CPO is also too

high compared to the fuel specification (130 ℃ minimum).

2.3 Physical Properties of the Feedstock and

Product

The typical properties of the crude palm oil with the corresponding methyl es-

ters as the products of the transesterification reaction, are tabulated in Table

2.5, WebBookNIST (2013). Referring to this table, the viscosity of the product

(methyl ester) reduces significantly after transesterification reaction compared to

the corresponding feedstock. The average viscosity of methyl esters owing to the

various composition of the components in biodiesel is listed in Table 2.4. Its

value is ideally at around 4.4 mPa·s that matches the EN specification (3.5 - 5.0),

Gerhard Knothe (2005).
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Table 2.5: Physical Properties of Feedstock and Product

Feedstock

Fatty Acid
Chemical M Density Viscosity MP BP

Structure [kg/kmol] [kg/m3] [mPa·s] [℃] [℃]

Myristic C14H28O2 228.37 862.2 5.83 (70 ℃) 58 250.5

Palmitic C16H32O2 256.42 849.0 7.80 (70℃) 64 271.5

Stearic C18H36O2 284.48 847.0 7.79 (80 ℃) 70 291

Oleic C18H34O2 282.46 854 19.91 (40 ℃) 14 285

Linoleic C18H32O2 280.45 903 13.46 (40 ℃) -9.5 229

Product

Methyl Ester
Chemical M Density Viscosity MP BP

Structure [kg/kmol] [kg/m3] [mPa·s] [℃] [℃]

Methyl Myristate C15H30O2 242.40 855 3.3 18 323

Methyl Palmitate C17H34O2 270.45 852 4.38 28 211.5 (30 mmHg)

Methyl Stearate C19H38O2 298.50 840 5.85 39 215 (15 mmHg)

Methyl Oleate C19H36O2 296.49 870 4.51 -5 219 (15.2 mmHg)

Methyl Linoleate C19H34O2 294.47 889 3.65 -35 192 (4 mmHg)

The melting point of each product decreases relative to the initial source. This is

advantageous for fuel injection. Only the biodesel component of methyl strearate

has a high melting point which in turn is disadvantage compared to diesel fuel.

This adversely affect is fortunately compensated by the very low melting point

of methyl oleate and methyl linoleate. Finally, the biodiesel has a low melting

point, approximately 8.54 ℃ on average. Furthermore, each methyl ester contains

oxygen atom implying lower air consumption for fuel combustion in an engine,

and hence lower pressure is required for ignition. Fatty acids have a higher

melting point than ester due to their stronger intermolecular forces caused by

the hydrogen bonding when comparing them with compounds of the similar size,

Smith (2012).
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2.4 Biodiesel Properties

Triglyceride means tri–esters of glycerol. Therefore, palm oil contains three es-

ter functional groups (RCOOR1), where R and R1 represent the alkyl groups.

Breaking these tri–esters from the glycerol backbone yields biodiesel. The chemi-

cal structure of biodiesel is similar to fossil diesel containing a long chain of carbon

and hydrogen. Biodiesel however, contains a few oxygen atoms. As biodiesel is

made up from various fatty acids components, petrodiesel or diesel fuel comes

naturally in a mixture of different petroleum-derived components, consisting of

paraffins, isoparaffins, napthenes, olefins and aromatic hydrocarbons, each with

their own physical and chemical properties. Petroleum diesel fuels with 9 to 20

carbon atoms have a boiling range between 170 ℃ and 350 ℃, Knothe (2006),

whereas biodiesel’s boiling points are in the range of 190 ℃ to 323 ℃, as listed

in Table 2.5 .

Diesel fuel must satisfy a wide range of engine types, differing operating con-

ditions and duty cycles, as well as variations in fuel system technology, engine

temperatures and fuel system pressures. It must also be applicable for a vari-

ety of climates. The properties of each grade of diesel fuel must furthermore

be balanced to provide satisfactory performance over an extremely wide range

of circumstances. In some respects, the substantial quality standards represent

certain compromises so that all the performance requirements can be satisfied.

By controlling specifications and properties, it is possible to satisfy the require-

ments of compression ignition engines with a single grade of diesel fuel. The

most commonly used guidelines for diesel fuel quality are established by ASTM

International in the United States and EN (European Committee for Standard-

ization, CEN) in the European Union. The difference of these two standards are

subtle. EN standards are selected for this research purpose because they spec-

ify the minimum methyl ester content of biodiesel in the test method. Selected

parameters of biodiesel specifications following EN 14214 are listed in Table 2.6 .

Official methods of physical analysis used to characterize conventional diesel are

applicable and meaningful when applied to biodiesel and provide useful infor-

mation. Biodiesel chemistry leads to a number of physical characteristics that

are unique when compared with diesel fuels. Most biodiesel preparations have

higher viscosity, density, initial boiling point, final boiling point, cold-filter plug-

ging point, and flash point than conventional diesel fuels. Virtually all of these

characteristics are due to the high average molecular weight of the component

esters of biodiesel. Boiling point and flash point, for example, are related to vapor
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Table 2.6: Biodiesel Fuel Standard, EN 14214,Knothe (2006)

Property
Testing
Method

Value Unit

Ester content EN 14103 96.5 min. (% w/w)
Kinematic viscosity, 40℃ EN ISO 3104 3.5 – 5.0 mm2/s
Density, 15℃ EN ISO 3675 860 – 900 kg/m3

Flash point EN ISO 3679 120 min. ℃
Sulfur content EN ISO 20846 10 max. mg/kg

Cetane number EN ISO 5165 51 min. -
Water content EN ISO 12937 500 max. mg/kg
Oxidation stability, 110℃ EN I4112 6 min. h
Acid value EN 14104 0.50 max. mg KOH/g
Iodine value EN 14111 120 max. g I2/100 g

Linolenic acid content EN 14103 12.0 max. % (w/w)
Polyunsaturated (≥ 4 dou-
ble bonds)
Methyl Ester EN 14103 1 max. % (w/w)
Methanol content EN I4110 0.20 max. %(w/w)
MG content EN 14105 0.80 max. %(w/w)
DG content EN 14105 0.20 max. %(w/w)

TG content EN 14105 0.20 max. %(w/w)

Free glycerol
EN 14105 EN
14106

0.020 max. %(w/w)

Total glycerol EN I4105 0.25 max. %(w/w)
Phosporus content EN I4107 10.0 max. mg/kg

pressure.

The technical definition of biodiesel is a fuel suitable for use in compression

ignition (diesel) engines that is made of fatty acid monoalkyl esters derived from

vegetable oils or animal fats. When methanol is used as the alcohol, the biodiesel

is produced from these types of oil are called fatty acid methyl esters (FAME).

Biodiesel standards are in place in a number of countries in an effort to ensure

that only high-quality biodiesel reaches the marketplace. Moser (2009) lists the

EN 14214 (European Committee for Standardization, CEN) in the European

Union, and summarized in Tables 2.6.

Kinematic viscosity is the primary reason why biodiesel is used as an alternative

fuel instead of neat vegetable oils or animal fats. In general, viscosity is defined

as the resistance by one portion of a material moving over another portion of
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the same material. Dynamic viscosity (η) is defined as the ratio of shear stress

existing between layers of moving fluid and the rate of shear between the layers.

The resistance to flow of a liquid under gravity (kinematic viscosity, ν) is the

ratio of (η) to the density (ρ) of the fluid, as formulated in Equation 2.4.1.

ν =
η

ρ
(2.4.1)

The high kinematic viscosities of vegetable oils and animal fats ultimately lead

to operational problems such as engine deposits when used directly as fuels. The

kinematic viscosity of biodiesel is approximately an order of magnitude less than

typical vegetable oils and is slightly higher than petrodiesel, Moser (2009); Ger-

pen and Knothe (2005). If fuel viscosity is low, the leakage will correspond to

a power loss for the engine. If fuel viscosity is high, the injection pump will be

unable to supply sufficient fuel to fill the pumping chamber. Again, the effect will

be a loss in power. However, Crabbe, Nolasco-Hipolito, Kobayashi, Sonomoto,

and Ishizaki (2001) reported that the viscosity of crude oil is about 10 times or

higher that of No.2 diesel fuel. This is associated with large triglyceride molecule

and its higher molecular mass. After transesterification, biodiesel derived from

palm has a viscosity value of 5.0 cSt at 40℃, Demirbas (2006) with the density of

880 kg/m3 at 15.5℃. Gerhard Knothe (2005) investigated the kinematic viscosi-

ties of the biodiesel fuel components related to the fatty acid parents. Table 2.7

shows the data for the common fatty acids and the corresponding methyl esters

measured at 40 ℃.

Table 2.7: Viscosity of Fatty Acids and Methyl Esters [mm2/s]

Fatty acid/Ester
Fatty Acid Structure

C14:0 C16:0 C18:0 C18:1 C18:2

Triglycerides nd nd nd 32.94 24.91

Acid nd nd nd 19.91 13.46

Methyl 3.30 4.38 5.85 4.51 3.65

The viscosity of the lower fatty components is not detected (nd) at 40℃ due to

their high melting point, see Table 2.3. The kinematic viscosity of each methyl

ester component is in the range of 3 – 5 mm2/s that are applicable for diesel

engines.
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Ester content indicates the completeness of the transesterification. Even after a

fully complete transesterification reaction, small amounts of tri-, di-, and monoa-

cylglycerols will remain in the biodiesel product. The glycerol portion of the

acylglycerols is summarily referred to as bound glycerol. When the bound glyc-

erol is added to the free glycerol remaining in the product, the sum is known

as the total glycerol. Limits for bound and total glycerol are also included in

biodiesel standards. EN 14214 requires not more than 0.25% of total glycerol in

the final biodiesel product that can be measured using a gas chromatographic

(GC) method.

Cetane number or ignitibility is one of the most important properties of a diesel

fuel imparting its readiness to auto ignite at the temperatures and pressures

present in the cylinder when the fuel is injected. It represents the ignition quality

of a diesel fuel. It measures also an ignition delay of a fuel. Ignition delay is a time

period between the start of injection and start of combustion of the fuel. Fuels

with a higher cetane number have shorter ignition delays, providing more time for

the fuel combustion process to be completed. The cetane number scale clarifies an

important aspect of the composition of the molecular structure of the compounds

comprising diesel fuel. Long chain, unbranched, saturated hydrocarbons (alkanes)

have high cetane number and good ignition quality while branched hydrocarbons

(and other materials such as aromatics) have low cetane number and poor ignition

quality. The term cetane number is derived from a straight chain alkane with 16

carbons (C16H34), or hexadecane, also called cetane, as shown in Figure 2.4.
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The long unbranched hexadecane is the high quality standard on the cetane scale

and has been assigned as having a cetane number of 100. On the other hand,
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highly branched alkanes are low quality compounds on the cetane scale and have

low cetane numbers. Biodiesel’s long chain fatty acids methyl ester are similar

to long chain alkanes with number of carbons ranging from 14 to 22, for example

the oleic acid methyl ester as shown in Figure 2.5. The cetane scale clarifies

why triacylglycerols as found in vegetable oils and derivatives thereof are suitable

as alternative diesel fuel. The key is the long, unbranched chains of fatty acids,

which are similar to those of the n-alkanes of good conventional diesel fuel,Gerpen

and Knothe (2005). Demirbas (2006) reported the Cetane Number of palm-based

biodiesel at a value of 62 whereas the standard value is 51 minimum.

Water content affects both the oxidative and hydrolitic stability of biodiesel dur-

ing the storage. Water can be present in a fuel as dissolved water and free water.

Petroleum-based diesel fuel can absorb only ≈ 50 ppm of dissolved water, whereas

biodiesel can absorb as much as 1500 ppm. Although this dissolved water can

affect the stability of the fuel, free water is more strongly associated with corro-

sion concerns. The EN standard limits the amount of water content to 500 ppm.

However, biodiesel must be kept dry. Furthermore, water can also contribute to

microbial growth in the fuel. This problem can result in acidic fuel and sludge

that will plug fuel filters. Higher acid value is caused by the oxidation of biodiesel

with air . This change is accompanied by a darkening of the biodiesel color from

yellow to brown and the development of a paint smell. In the presence of wa-

ter, more over the esters can hydrolyze to a long-chain FFA, which also cause

the acid value to increase. The reason for auto oxidation is the presence of the

double bonds in the chains of many fatty acid compounds. The auto oxidation of

unsaturated fatty compounds proceed at different rates depending on the num-

ber and position of the double bonds. The species formed during the oxidation

process cause the fuel to eventually deteriorate. Excess water in the fuel can lead

to not only corrosion but it can also foster the growth of microorganisms.

Flash point for pure biodiesel (120 ℃) is much higher than for petroleum diesel

(70 ℃). Minimum flash points of both biodiesel and petrodiesel are required to

meet fire safety specifications. Minimum flash point is set to assure that excess

methanol was removed during the manufacturing process, since methanol reduces

the flash point. In addition, presence of methanol in biodiesel can also affect fuel

pumps, seals and elastomers, and can result in poor combustion properties.

Sulfur content is limited in order to reduce sulfate and sulfuric acid pollutant

emissions and to protect exhaust catalyst systems.
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Acid number is primarily an indicator of free fatty acids in biodiesel and increases

if a fuel is not properly manufactured or has undergone oxidative degradation.

Fuel system deposits and reduced life of fuel pumps and filters contribute to an

acid number higher than 0.80 that exceeds the maximum value of 0.50.

Free and total glycerin numbers are a measure of the unconverted (triglyceride)

or partially converted triglycerides (monoglycerides and diglycerides) as well as

by-product triglycerols present in the fuel. High amounts of free and total glyc-

erin can cause fouling in storage tanks, fuel systems, and engines, along with

plugging filters and producing other problems.

Phosphorous content in biodiesel, even in a small amount, can damage catalytic

converters. Phosphorous levels above 10 ppm are present in some vegetable oils,

and this requirement ensures that a phorous level reduction process is conducted.

Carbon residue measures the tendency of a fuel to form carbon deposits in an

engine.

Thus, biodiesel esters are characterized by their physical and fuel properties in-

cluding density, viscosity, iodine value, acid value, cloud point, pour point, gross

heat of combustion, and volatility. Biodiesel fuels produce slightly lower power

and torque and consume more fuel than No. 2 diesel (D2) fuel. Biodiesel is

however better than diesel fuel in terms of sulfur content, flash point, aromatic

content, and biodegradability, Ng et al. (2009).

2.5 Chemical Reaction Principles

A chemical reaction is represented by a chemical equation using one or two arrows

sign between the reactants and the products. For a simple reaction. the reaction

takes place in only one direction or called irreversible, and a unidirectional arrow

represents the reaction. Many chemical reactions in a batch reactor, however,

occur in a complex manner such as reversible, parallel and series reactions of the

contributing substances. An example for a parallel reaction is:

P +Q→ PQ

P +R→ PR

}
parallel reaction
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and a series reaction of the reactants and an intermediate products:

P +Q→ PQ

PQ+R→ PQR

}
series reaction

If the reaction take place in one phase alone, the system is called a homogeneous.

A reaction is heterogeneous if it requires the presence of at least two phases in

the course of reaction. A reaction with a supply of heat to the system is called

endothermic, otherwise an exothermic reaction that releases heat to the surround-

ing. Hydrocarbon cracking reaction is an example of an endothermic reaction.

In process engineering the chemical reactions take place with or without a cata-

lyst. The reaction is carried out in either a batch, semi batch, or continuous

process. The task of a process engineer is among other things is to select the

suitable reactor for a particular process. Transesterification process in this re-

search work is a reversible, homogeneous reaction under presence of a catalyst

that is carried out in a batch reactor of a biodiesel production plant.

2.6 Catalysis

Reactions occurring very slow under normal conditions can be accelerated using a

catalyst. A catalyst is a substance that increases the reaction rate without itself

being consumed or changed at the end of the reaction. Hence, the catalyst can be

recovered and removed in the subsequent purification process. The phenomenon

of catalyst in accelerating a chemical reaction is called catalysis.

If the property of catalyst changes during the reaction, its activity or function will

reduce the effectiveness or even become inactive. Practically, a substance that

speeds up the rate of a reaction can be considered as a catalyst with or without

being chemically changed during the reaction course. The chemical equilibrium is

achieved faster with a catalyst, but the position of the equilibrium is unchanged.

The presence of a catalyst reduces the activation energy by introducing a new

route as depicted in Figure 2.6. Reducing the energy barrier or the activation

energy, the reaction may be faster. The presence of a catalyst, X, in the reaction

(2.6.1):

P + Q −→ PQ (2.6.1)
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Figure 2.6: Influenece of Catalyst on Activation Energy during the Reaction
Course,D K Chakrabarty (2009)

taking place very slow, it can be described through the following reaction steps:

P + X −→ PX (2.6.2a)

PX + Q −→ PQ + X (2.6.2b)

The advantage of a catalyst in the reaction is obviously the reduction in the

energy consumption and it leads to better selectivity and less waste compared to

the reaction without catalyst.

2.6.1 Homogeneous Catalysis

Catalysts can be divided into two main types – homogeneous and heterogeneous.

In a heterogeneous reaction, the catalyst is in a different phase from the reactants.

In a homogeneous reaction, the catalyst is in the same phase as the reactants.

Hence, an extra treatment is required for the removal of a homogeneous catalyst

from the product after completing the reaction.
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2.6.1.1 Acid Catalysis

An acid catalysis reaction can be described as follows:

P + HA 
 HP+ + A− (2.6.3a)

HP+ + Q −→ S + H+ (2.6.3b)

H+ + A− 
 HA (2.6.3c)

In the reversible Equation (2.6.3a) a proton transfer from the acid catalyst HA

which acts as the catalyst, to the reactant or substrate P. The transfer of a

proton, leading to the formation of a new reactive intermediate bonding complex,

HP+. The intermediate bonding reacts then with the reactant Q by releasing the

proton to generate the product S. At the end of the reaction, the acid catalyst is

regenerate as shown in the Equation (2.6.3c). The concentration of the catalyst

additionally shall remain constant that is required in a catalytic reaction.

2.6.1.2 Para Toluene Sulfonate Acid, PTSA

PTSA (CH3C6H4SO3H) is a sulfonic acid of an organic compound and a derivate

of a tosyl group(TsOH). Sulfonic acid is acidic due to the hydrogen atom, and is

stronger (pKa = −2.8) than a carboxylic acid and is soluble in alcohol and water.

PTSA can be used as the homogeneous catalyst in the esterification reaction.

The tosylate ion (CH3C6H4SO3
−) is the leaving group in the reaction. If water is

present, a toluene and sulfuric acid will be generated according to the following

hydrolysis:

CH3C6H4SO3H + H2O −→ C6H5CH3 + H2SO4 (2.6.4)

In the hydrolysis process, the sulfuric acid formed can be utilized as the acid

catalyzed. The strong acidity of the sulfuric acid (pKa = −3) keeps the catalyst

effectiveness active and the esterification is always catalyzed along the course of

reaction without worrying about the decreasing of the catalysis effectiveness due

to water.
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