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ABSTRACT 

 

 

 

This study deals numerical study of the effect of anti vortex generator (AVG) on the film 

cooling performance of a circular cooling hole which has diameter (d = 20 mm) on a flat 

plate. The interaction between the jet cooling air and mainstream will result kidney 

vortex which will eliminate the film cooling effectiveness. Two types of AVG with 

different heights (H = 0.5 d and 0.25 d) are designed to eliminate the kidney vortex and 

investigate best film cooling effectiveness, where each of them is mounted to the flat 

plate upstream of the cooling hole by changing its lateral positions (A = 0.0 d, 0.25 d, 

0.5 d and 0.75 d) with respect to the hole centerline and for each type has different 

distance respect to hole centerline. The changing of blowing ratio (BR = 0.5-1.5) was 

considered in this study. As for the validation, the present study was compared with the 

previous research done by other researchers using the results obtained from experimental 

data. The steady turbulence model shear stress transport (SST) that was used to simulate 

a film cooling configuration. The results have been presented in terms of laterally 

averaged film cooling comparison graphs, velocity field on x/d = 3.0, non-dimensional 

temperature on x/d = 3.0 and the vorticity on x/d = 3.0 which explained how the results 

obtained. Cases 04 and 07 gave the best positions for AVG where case 04 gave wide 

covered for laterally average film cooling effectiveness          , while case 07 gave 

the highest expand distribution and the maximum value for film cooling effectiveness 

        . 
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ABSTRAK 

 

 

 

Kajian ini membincangkan kajian berangka kesan penjana anti vorteks (AVG) kepada 

prestasi filem penyejukan lubang bulat yang mempunyai diameter (d = 20 mm) di atas 

pinggan rata. Interaksi antara jet penyejukan udara dan slirsn utama akan mengakibatkan 

kidney vortex yang akan menghilangkan keberkesanan filem penyejukan tersebut. Dua 

jenis AVG dengan ketinggian yang berbeza (H = 0.5 d dan 0.25 d) direka untuk 

menghapuskan kidney vortex dan menyiasat keberkesanan filem penyejukkan, di mana 

setiap daripadanya dipasang aliran atas plat rata lubang penyejukan dengan menukar 

kedudukan lateral (A = 0.0 d, 0.25 d, 0.5 d dan 0.75 d) berkenaan terhadap garisan 

tengah lubang dan bagi setiap jenis perbezaan jarak berkenaan terhadap garisan lubang 

tengah. Perubahan nisbah tiupan (BR = 0,5-1,5) telah dipertimbangkan dalam kajian ini. 

Sebagai pengesahan kajian, kajian ini telah dibandingkan dengan kajian terdahulu oleh 

penyelidik yang menggunakan keputusan yang diperolehi daripada data eksperimen. 

Steady Turbulence Model Shear Stress Transport (SST) telah digunakan untuk 

mensimulasikan konfigurasi filem penyejukan. Keputusan telah dibentangkan dari segi 

sisi purata graf filem penyejukan perbandingan, medan halaju pada x / d = 3.0, suhu 

tanpa dimensi pada x / d = 3.0 dan pusaran pada x / d = 3.0 yang menjelaskan bagaimana 

keputusan yang diperolehi. Kes 04 dan 07 memberikan kedudukan yang terbaik terhadap 

AVG di mana kes 04 memberi pelindungan menyeluruh terhadap purata keberkaesanan 

filem penyejukan         , manakala Kes 07 memberi taburan pengembangan yang 

tertinggi dan nilai maksimum untuk keberkesanan filem penyejukkan         . 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

In this chapter, the main idea of gas turbine and film-cooling technologies will be 

discussed. Some attention will be paid to existing experimental researches in order to 

obtain reliable results in the future. 

 

1.2 Background 

 

The interest to gas turbine appeared approximately a century and half ago, but the real 

success was achieved in 1930, when Frank Whittle got a patent award on the jet engine 

and made his static test of it in 1937. Two years later, a jet-engine- powered flight was 

demonstrated by Hans von Ohain. Gas turbines are successfully used by the aircrafts 

and the stationary power plants nowadays. Back in 1939, the combustion turbine (gas 

turbine) was used for generating electricity but today it becomes one of the most 

widely-used power generating technologies (Yunus Cengel and Micheal Boles, 2007). 

Usually, they operate as in open cycle as shown in Figure 1.1 below.  
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Figure 1.1: An open-cycle gas-turbine engine  

   

1.2.1 Gas turbine operation 

  

The fresh air comes to the compressor where temperature and pressure increase. The 

high pressure air flows into the combustion chamber where the fuel injected is burned 

with constant pressure. On the next stage, the high-temperature gases enter the turbine 

where they expand to the atmospheric pressure producing the power. After this, the 

exhaust gases leave the turbine to the ambient air. 

But the main idea for gas turbine is depending on the close cycle, what uses the 

ideal Brayton cycle or Joule cycle. In this cycle, the stages are equal to open cycle but 

there are differences in the combustion and exhaust processes. The first changes to the 

constant pressure heat addition process and the second to the constant pressure heat 

rejection process to the ambient air.  

There are four reversible processes in the Brayton’s cycle (Figure 1.2): 

 Isentropic compression(in a compressor) 

 Constant-pressure heat addition 

 Isentropic expansion (in a turbines) 

 Constant-pressure heat rejection 
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Figure1.2: A closed-cycle gas-turbine engine  

 

To improve gas-turbine efficiency, the turbine inlet temperature must be 

increased. Thus, such increase could be possible by the development of new materials 

and creation of cooling techniques.  

The Brayton’s cycle can be performed by temperature–entropy diagram (Figure 

1.3). The cycle consists of an isentropic compression of the gas from state 1 to state 2; a 

constant pressure heat addition to state 3; an isentropic expansion to state 4; and an 

isobaric closure of the cycle back to the initial state. (Yunus Cengel and Micheal Boles, 

2007) 
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Figure 1.3: Temperature–Entropy Plot of Ideal Brayton Cycle 

 

The industrial gas turbine structure is demonstrated on the Figure 1.4. It consists 

of compressor, combustor and turbine. After incoming air is compressed in the 

compressor, it supplied to the combustor. There high pressure air is mixed with the fuel 

and burned. The results of the combustion are the high pressure, temperature and 

velocity gas. The object of the turbine is extracting the energy from the gas. 

 

Figure 1.4: Industrial Gas Turbine (www.article4ever.wordpress.com) 
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The thermal efficiency of the Brayton’s cycle can be presented by equation 

below, where      ,      ,  , and     are the net work produce by the cycle [W], the 

heat supplied to the cycle [W], inlet temperature of the turbine [K], and the exit 

temperature of the turbine [K], respectively. The higher turbine inlet temperatures 

produce higher overall thermal efficiency of the cycle. (Yunus Cengel and Micheal 

Boles, 2007) 

 

 

            
     

   
   

  
  

                                                                     

                          

This formula can be written as follow: 

            
        

   
   

    

   
   

           

           
           

So, last formula will become as follow: 

              
       

       
                                                                         

 

1.2.2  Turbine cooling 

  

The increasing demand for better performance gas turbine provokes the turbine inlet 

temperature rising. Nowadays, the gas turbines work at the temperature range around 

1800K- 2000K, what is much higher than the melting temperature of the turbine 

components materials. Such increasing of the turbine inlet temperature became possible 

because of application of cooling scheme on the turbine components. Film cooling is the 

injection of cold air to provide a layer of cool fluid between the hot gases and the blade 

surface, reducing heat transfer to the surface.  

Actually, gas turbine blades can be cooled by internally and externally. Internal 

cooling can be done by the coolant pass through several enhanced serpentine passages 
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inside blades and the heat from the surface will be extracted. Examples of internal 

cooling method are jet impingement and pin-fin cooling. On the contrary, film cooling 

is belongs to external cooling. The cool air is being ejected through the film cooling 

holes, and from a layer of coolant film that protects the wall surface of turbine blades 

from hot gases. This technique helps to avoid the hot gases directly contact with turbine 

blades, which will cause damage if the direct contact happens.  

Figure 1.5 shows how the film cooling works on turbine blades. Cool air is 

drawn from compressor and being injected through the inlet of film cooling hole onto 

the blade surface to protect it from contact with hot gas. The direction of the blade 

rotation must be opposite with direction of mainstream (hot gas) and the film cooling 

layer while the film cooling effect can be perform.  

 

 

Figure 1.5: Film cooling on a turbine blade (Bogard, 2006) 
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1.3 Problem statement  

 

Thermal efficiency of a gas turbine can be unswervingly improved by means of higher 

turbine inlet temperature (TIT). Most of the modern gas turbines are now operating with 

high (TIT) in the range of 1800K to 2000K, which far surpasses the melting temperature 

of the turbine components material. Sophisticated cooling scheme is required to help 

protecting the turbine components from thermal failure.  

This high temperature will exceed the thermal limits of the gas turbine 

components and these high temperatures also will reduce this components lifespan 

            But the main problem that needs to find solution for it is, jet and main stream 

interaction made complicated vortex as kidney vortices, i.e. a pair of counter rotating 

vortices. This vortex will eliminate to investigate high performance for film cooling 

effectiveness. 

 

1.4 Objectives of study 

 

The objectives of this study are: 

1. To generate a counter vortex in order to eliminate the counter rotating vortex 

pair (CRVP) by using an anti vortex generator (AVG).  

2. To determine the best positions for (AVG) to investigate the high performance 

of film cooling effectiveness.  

 

1.5 Scope of Study 

 

The scopes of this study are: 

i. ANSYS CFX Workbench 15.0 for computational fluid dynamics. 

ii. The testing inclination angle for cylindrical hole is 35
o
. 

iii. The data of the simulations depends on the experimental data that is already 

available. It consists the on the mainstream velocity and temperature also density 

ratio (DR). 
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iv. The blowing ratios being tested at M = 0.5, 1.0 and 1.5.  

v. The turbulence model that used is shear stress transport (SST). 

vi. Using 2 types of an anti vortex generator (AVG) with different laterally 

positions.  
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1  Introduction 

 

The demand of engines with a higher output to satisfy the needs of today has created a 

challenge to engineers to come up with ways to improve the efficiency of engines. To 

make this happen, higher turbine inlet temperature (TIT) is needed. However, higher 

TIT increases thermal load to its hot section components, damaging turbine blades and 

reducing their life span. Therefore, a cooling technology such as film cooling is required 

especially for high pressure turbine blades. There are many parameters that may 

influence on the film cooling performance including inclination angle and the shape of 

inclination hole, velocity ratio, blowing ratio, pressure ratio, temperature ratio, density 

ratio, momentum ratio and turbulence intensity.  
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