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Chapter 1 

 

Introduction 

 

1.1 Background 

 

Due to industrialization and population growth, environmental contamination 

caused by organic pollutants is becoming an increasing problem worldwide. 

Environmental pollution on a global scale, particularly water pollution, has drawn 

scientists’ attention to the vital need for environmentally clean and friendly chemical 

processes. The demand for higher quality water has increased due to population growth, 

more stringent health regulations and economic development.
1-3

 Untreated wastewater 

contains a variety of organic compounds with variable toxicities as well as carcinogenic 

and mutagenic properties. Most contaminants in wastewater contain aromatic rings, 

which are generally resistant to chemicals, photochemicals and biological degradation. 

These compounds are very persistent in the environment and have a high potential to 

negatively affect human health and the ecosystem. Therefore, the removal or degradation 

of hazardous material and contaminants from wastewater is a significant global 

challenge.  
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Among various industries, the textile industry ranks first in the usage of dyes for 

fibre colouration.  In addition, textile activities are constantly expanding, thus leading to 

the high potential for pollutants.
4
 Pollution created by the textile industry attracts 

significant attention due to the consumption of large volumes of water and chemicals 

during wet textile processing.
5-7

 The chemical reagents used are very diverse in chemical 

composition, ranging from inorganic compounds to polymer and organic products.
8
 

These reagents include different colouring agents such as dyes, inorganic pigments, 

tannins and lignins, which impart colours.
9
 In all, 10,000 different textile dyes are 

commercially available worldwide, with an approximate annual production of 7x10
5 

metric tonnes.
10, 11

 Of these dyes, 30% are used in excess of 1000 tonnes per annum, and 

90% of the textile products are used at the level of 100 tonnes per annum or less.
12-14

  The 

presence of even a very low concentration of dye in the effluent is highly visible and 

undesirable
15

 because the dyes and their breakdown products are toxic, carcinogenic or 

mutagenic to lifeforms, mainly due to carcinogens such as benzidine, naphthalene and 

other aromatic compounds.  

Although the textile industry is required to minimize the release of chemicals 

resulting from the dying process, the presence of coloured discharge in wastewater 

cannot be eliminated. In general, wastewater treatments applied to overcome this problem 

include chemical oxidation, sorption, photo-oxidation and a combination of these 

treatments, as well as an activated sludge-type biological oxidation process.
12

 

Unfortunately, these methods are plagued with secondary problems. The most 

conventional treatment method for textile wastewater is biological activated sludge 

treatment, which sometimes accompanies the coagulation-flocculation process.
12

 Even 
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though this biological treatment is very beneficial because of its low cost and simplicity, 

it is generally not an effective method, especially when dealing with synthetic dyes, due 

to its resistance to aerobic bio-degradation.
16, 17

 The toxicity of target pollutants and their 

intermediates, as well as extreme experimental conditions, can also be lethal to the 

microorganisms intended to degrade the pollutants.
18

  

Physical treatments, such as coagulation and flocculation, suffer from the high 

operational costs related to the post-treatment of solid and coagulated waste.
17, 19-21

 In 

addition, chemical treatments also have some drawbacks, including the production of 

toxic and carcinogenic by-products, the high dosage of chemicals required throughout the 

process, low efficiency and incomplete mineralization.
16, 22

 Selected wastewater treatment 

methods for removing dye and colourant from industrial wastewater are summarized in 

Table 1.1
9, 12, 13

 Since all the current systems have limitations, the development of a 

significantly improved wastewater treatment method is of paramount importance to the 

textile industry’s long-term environmental viability. The most successful methods for 

removing colour generally involve the oxidative degradation of dyes. These methods are 

collectively known as advance oxidation processes (AOPs).  

The rationales of the AOPs are based on the in-situ generated of highly reactive 

transitory species (i.e H2O2, OH∙, O2∙
-
, O3) for mineralization of organic compounds, 

water pathogens and disinfection by-products.
23, 24

 The motivation behind this study 

originates from the vast number of research and development in the AOP in general and 

TiO2-based photocatalyst in particular in the past three decades. This chapter briefly 

describe the photocatalysis and the mechanism of photocatalytic process. Since many 

applications of TiO2 nanomaterials are closely related to their optical properties, this 
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chapter also present a section on the challenges and issues with possible solutions related 

with modification of TiO2. Lastly, this chapter also discussed on the targeted pollution 

that is being used throughout the study.    

Table 1.1: The advantages and disadvantages of wastewater treatment methods.
25-32

 

Wastewater 

treatment method 

Advantages Limitations 

Precipitation, 

coagulation-

flocculation 

Short detention time and low 

cost; relatively good removal 

efficiency  

Agglomerates separation and post-

treatment 

Electrokinetic 

coagulation 

Cost-efficient High sludge production 

Fenton process Effective for soluble and 

insoluble coloured contaminants 

High sludge production 

Ozonation Effective for azo dye removal Not suitable for dispersed dye and 

short half-life of ozone 

Photochemical 

process 

No sludge production By-product formation 

Electrochemical 

oxidation 

No additional chemicals needed Not cost-effective; very high costs 

for electricity 

Ion exchange Regeneration with low loss of 

adsorbents  

Not effective for all types of dye 

Aerobic process Partial or complete 

decolourization of all types of 

dye 

Expensive treatment 

Fungal, algae or 

bacterial 

Good removal efficiency for low 

volume and low concentration of 

dye 

Not cost-effective for culture 

maintenance  

Membrane filtration Removal of all types of dye High running cost; concentrated 

sludge production; dissolved solids 

are not separated in this process 

Enzymatic 

treatment 

Effective for specific compounds Not cost effective; time-consuming 

in enzyme isolation and 

purification   
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1.1.1 Definition 

 

The initial interest in photocatalysis was generated by the discovery of the 

“Honda-Fujishima Effect” in the early 1970s.
33

 In general, the term ‘photocatalysis’ can 

be defined as the acceleration of a photoreaction  in the presence of catalyst activated by 

light.
34

 The overall process of semiconductor photoreactions can be summarized as 

follows: 

 

A + D                                     A + D
+
 

  

Equation 1.1 

 

As an AOP, heterogeneous photocatalysis is more favourable in wastewater 

treatment compared to the homogeneous system due to the ease of catalyst removal after 

the reaction.
34

    

 

1.1.2 Principle of semiconductor photocatalyst 

 

A semiconductor is a material with electric resistivity between an insulator and a 

conductor. It is usually characterized by an electronic band structure in which the highest 

occupied energy band, the valence band (VB), and the lowest empty band, the conduction 

band (CB), are separated by a band gap.
3
 The activation of the semiconductor 

photocatalyst is achieved through the adsorption of a photon light corresponding to the 

band gap energy, which results in the excitation of electrons in the valence band towards 

the conduction band thus leaving behind holes in the valence band.
34

 The activation of 

semiconduct

light 
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the semiconductor photocatalyst is achieved through the adsorption of a photon light 

corresponding to the band gap energy, which results in the excitation of electrons in the 

valence band towards the conduction band thus leaving behind holes in the valence 

band.
34

 Basically, when an energy photon higher or equal to the band gap is absorbed by 

the semiconductor particles, an electron (e
-
) from the VB is promoted to the CB with 

simultaneous generation of positive holes (h
+
) in the VB (see Figure 1.1). 

 

 

 

 

 

 

 

 

 

 

The e
- 
and the h

+ 
can recombine on the surface, or bulk, of the particles or can be 

trapped in surface states where they can react with an electron donor (such as an organic 

molecule or OH
- 

groups) or an electron acceptor (such as oxygen molecules or H
+
) 

adsorbed or close to the surface of the particles. The primary criteria for photocatalyst to 

be efficient is that the different interfacial electron processes involving electrons and 

holes must compete effectively with the major deactivation process involving electron-

hole recombination. Moreover, the use of a semiconductor as a photocatalyst depends 

acceptor 

acceptor ∙
- 

donor 
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h
+ 

Conduction band 

Valence band 

E
x
ci

ta
ti

o
n

 

R
ec

o
m

b
in

a
ti

o
n

 
Band gap hv ≥ band gap 
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Figure 1.1: Schematic illustration of the photoinduced holes and electrons over 

photon activated semiconductor photocatalyst. 
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upon its ease of production and use, cost-effectiveness, photo stability, non-toxicity for 

human beings and the environment, effective activation through solar light and ability to 

catalyse the reaction effectively.
35

  

 

A photocatalyst is characterized by its capability to adsorbed simultaneously two 

reactants, which can be reduced and oxidized by a photonic activation through an 

efficient absorption (hv ≥ Eg). Various semiconductors with different band gaps energies 

such as TiO2, ZnO, GaP, CdS and etc has been used in literature (Figure 1.2)
36

. They are 

used in photocatalysis because of the favourable combination of electronic structure, light 

absorption properties, charge transport characteristic and excited state lifetime.
37

 The 

surface area and the number of active sites offers by the photocatalyst for the adsorption 

of pollutant, plays an important role in deciding the overall rates of degradation.
30, 38

  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: Diagram of band gap and band edges (CB bottom and VB top) of some wide 

bandgap semiconductors. 
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1.2 Titanium dioxide (TiO2) 

 

1.2.1 Background 

 

Titanium dioxide (TiO2) belongs to the family of transition metal oxides and is 

used widely in technology.
39-41

 It is chemically and biologically inert, photocatalytically 

and thermally stable, has high photoconductivity, and is relatively easy to produce and 

use.
34

 TiO2-based nanomaterial had been broadly studied as the most promising 

photocatalyst for environmental remediation such as air purification, water purification, 

heavy metal degradation and hazardous remediation.
42-47

  

Table 1.2: The development of TiO2 in photoactivated processes. 

Year Reference Remarks 

1972 Fujishima and Honda
33

 The first photochemical cell for water splitting (2 

H2O → 2H2 + O2) using a rutile TiO2 

photoanode and Pt counter electrode  

1977 Frank and Bard
48, 49

 

 

The first implication of TiO2 in environmental 

purification in the reduction of CN
- 
in water 

1977 Schrauzer and Guth
50

 The photocatalytic reduction of molecular 

nitrogen to ammonia over iron-doped TiO2 

1983 Pruden and Ollis
51

 Implementation of semiconductor –sensitized 

reactions for organic pollutant oxidative 

mineralization 

1985 Matsunaga et. al.
52

 The application of TiO2 as a microbiocide which 

is effective in photo killing of Lactobacillus 

acidophilus, saccharomyces cerevislae and 

Escherichia coli 

1991 O’Regan and Gratzel
53

  Reported the efficiency of a solar cell using 

nanosize TiO2 particles 

 

TiO2 is of special interest science it can be use natural (solar) UV light because it 

has an appropriate energetic separation between its valance and conduction band (Figure 
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1.2) which can be surpassed by the energy content of a solar photon (390 nm > λ > 300 

nm).
54

  Some major cornerstones in the development of TiO2 in photoactivated processes 

are presented in Table 1.2. 

 

1.2.2 Properties of TiO2 semiconductor 

 

The crystalline structure and size of TiO2 has been reported as two factors 

affecting its performance.
55-57

 It is interesting to note that TiO2 exists in three commonly 

known polymorphs: anatase, rutile and brookite. In general, rutile is the most 

thermodynamically stable and common form of TiO2 at most temperatures and 

pressures.
58

 It is formed by edge sharing in octahedra to form long chains, while anatase 

is predominantly composed by point sharing in octahedra. Brookite, on the other hand, is 

formed by a combination of edge sharing and point sharing. Upon heating concomitant to 

coarsening, the anatase and brookite forms of TiO2 tend to convert to the rutile form.
3, 40, 

41
 Of these three TiO2 phases, anatase and rutile (see Figure 1.3

59
) are the most studied 

phases for photocatalytic applications.
60

  

 

Brookite has a major drawback in photocatalytic applications because it is often 

difficult to synthesize reliably
57

 and is generally photocatalytically inactive.
61, 62

 Although 

rutile has a lower band gap (3.0 eV) compared to anatase and brookite, the performance 

of rutile as a photocatalyst is generally poor.
58, 63

 The low photocatalytic activity in the 

rutile phase of TiO2 is believed to be due to the poor light absorption of this type of TiO2 

near the UV region.
60
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 Furthermore, the conduction and VB edges in rutile are not as advantageously 

positioned as in anatase.
60

  Anatase, on the other hand, is preferred over the other phases 

for photocatalytic applications
62, 64, 65

 because of its higher electron mobility, low 

dielectric constant, lower density, lower capacity to adsorbed oxygen and higher degree 

of hydroxylation compared to rutile and brookite
58, 66

  

 

1.2.2.1 Mixed-phase TiO2 

 

The photocatalytic activity performance of anatase and rutile TiO2 has widely 

been discussed in literature. Observation of comparable reactivity on anatase and rutile 

TiO2 nanoparticles point to greater need for understanding how issues such as 

morphology,
67

 surface structure and surface chemisty,
68, 69

 the properties of the targeted 

Figure 1.3: Basic crystalline structure of anatase and rutile TiO2. 
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molecules
70

 and the overall mechanistic details of a photocatalytic reactions
71, 72

 play 

their roles when comparing inherent photoactivities of anatase and rutile TiO2. It is 

becoming apparent that mixed-phase TiO2 shows interesting properties as compared to 

single phase TiO2.
73-79

 The widely acknowledge exceptional photoactivity of Degussa 

P25
62, 80-88

 is frequently attributed to a cooperative effect between its composite mixture 

of ~ 75% anatase and ~ 25% rutile. The enhancement in photocatalytic activity of P25 

and other anatase and rutile mixture is generally reported to be due to the interfacial 

properties between anatase and rutile TiO2.
80, 81, 89-93

 Chemical contact between particles 

of these phases has been shown to be necessary to obtain an enhancement from mixed-

phase TiO2.
88, 93, 94

 A widely held explanation of the need for anatase-rutile contact relates 

to their relative band edge position. Due to the differents band gap values for anatase 

rutile (3.2 eV and 3.0 eV respectively), there exist the possibilities for the formation of a 

heterojunction between the two in which electron transfer can occur.
75, 80, 89, 91, 92, 95-97

 

Hence, anatase-rutile interface can potentially facilitate charge separation. Further, 

literature also reported that after Fermi level alignment, the conduction band (CB) edge 

of rutile should be lower than that of anatase, resulting a favourable condition for electron 

transfer from anatase to rutile.
78, 89, 91, 95, 96, 98

 

 

Manipulation of the anatase-rutile ratio has been shown to vary the degree of 

enhancement in the mixed-phase TiO2. The “optimal” rutile TiO2 content for mixed-

phase TiO2 reported in literature varied over a wide range, from < 10% up to > 70% 

depending on the preparation method and the photocatalytic reaction of interest.
73, 79, 92, 93, 

99-101
 Method for differing the ratio of rutile-anatase mixture differs, including the use of 
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controlled sol-gel growth,
101

 etching of one phase relative to the other,
96, 102

 or thermal 

processing through the anatase to rutile phase transformation.
73, 79, 92, 103-105

 The anatase to 

rutile phase transition starts at the surface of anatse particles
106, 107

 or at anatase-anatase 

interface
108, 109

 at temperature above ~850 K.
108, 110-112

            

 

 

1.2.3 TiO2 in photocatalysis 

 

TiO2 is considered a benchmark semiconductor for photocatalysis because it is the 

most efficient and photocatalytically active photocatalyst compared to other 

semiconductors. Its hydroxyl radicals, a strong oxidizing agent are capable of degrading 

organic pollutants (such as dyes, polymers, pesticides, etc.) present at or near the surface 

of TiO2, which usually results in their complete mineralization into H2O and CO2 through 

irradiation with UV light.
34, 58, 113, 114

  

TiO2 possesses a quantum mechanical forbidden energy region called band gap 

(EBG) extending from the top of the valance band (VB) to the bottom of the conduction 

band (CB). TiO2 photocatalytic activity is due to the production of an excited electron–

hole pair when the material is exposed to UV light. The UV radiation leads to a charge 

separation due to the excitation of electron (e
-
) from the VB towards the TiO2 CB, thus 

simultaneously forming holes (h
+
) in the VB. The photoinduced holes in the VB will 

eventually diffuse to the TiO2 surface and react with adsorbed water molecules or 

hydroxide ions (OH
-
) in the aqueous solution to produce hydroxyl radicals (OH∙). 

Meanwhile, electrons in the CB typically participate in the reduction process; they react 
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with dissolved oxygen molecules to produce various species such as superoxide radicals 

(O2∙
-
), hydroperoxyl radicals (HOO∙), hydrogen peroxide (H2O2) and OH∙ radicals. Such 

oxygen-containing species can be photocatalytically active during the mineralization of 

organic contaminants. Akapan et al. reported that these radicals will readily oxidize most 

azo dyes.
115

 Reactions relevant to the photodegradation of organic dyes on the surface of 

TiO2 are shown in Equation 1.2 through Equation 1.8.
21

 

TiO2 (hvb
+
) + H2O → TiO2 + H

+ 
+ OH∙ Equation 1.2 

TiO2 (hvb
+
) + OH

- 
→ TiO2 + OH∙ Equation 1.3 

TiO2 (ecb
-
) + O2(surface) → TiO2 + O2∙

-
  Equation 1.4 

O2∙
-
 + H

+ 
→ HO2∙ Equation 1.5 

Dye + OH∙ → degradation products Equation 1.6 

Dye + hvb
+ 

→ oxidation products Equation 1.7 

Dye + ecb
-
 → reduction products Equation 1.8 

 

Among many other semiconductors, there is a general consensus among 

researchers that TiO2 is more superior. Okaomoto et. al. observed the greater 

photocatalytic activity for TiO2 compared to CdS catalyst for the decomposition of 

phenol as target organic species.
116, 117

 Sakthivel et. al.  reported that under similar study 

conditions, TiO2 had greater photocatalytic efficiency than α-Fe2O3, ZrO2, CdS, WO3, 

and SnO2.
118

 However, Augugliaro et. al. Indicates that although ZnO had a lower 

surface area compared to TiO2, it gives a higher activity. It was also reported in the same 

study that the TiO2 was photochemically more stable in aqueous media compared to 

ZnO.
119

 Further, Wu also observe higher photocatalytic activity for TiO2 compared to 

ZnO and SnO2.
120
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1.2.4 Drawbacks of TiO2 as a photocatalyst 

 

Although TiO2 has some advantages that make it an excellent photocatalyst, it has 

some unattractive properties that impede its efficiency as a photocatalyst. First, TiO2 has 

a large band gap (~3.2 eV) and thus absorbs only a small portion (5–7%) of the solar 

spectrum in the UV region, thus leading to a low degradation rate and quantum 

efficiency.
34, 121, 122

 In addition, the use of a high-energy UV light or a strong oxidant can 

cause serious hazards to human beings and is expensive. Therefore, by sufficiently 

decreasing the band gap so the catalyst can absorb visible light, it may be possible to 

utilize up to 40% of the solar spectrum.
123

 Second, photoexcitation causes the formation 

of a region of positive charge density (hole) created by the removal of an electron from a 

site can cause a drop in photocatalytic activity of TiO2. The recombination process (the 

drop of electron into its original molecular orbital) to fill this hole is not desired in 

photocatalysis. The charge recombination in bulk and in surface defects can severely 

limit the photocatalytic activity of the material.
121, 124-126

 These drawbacks restrict the 

large-scale applications of TiO2.  

 

Therefore, it is necessary to modify TiO2 to improve its photocatalytic 

performance. In recent years, extensive research has focused on addressing the above-

mentioned problems. There has been great interest in modifying TiO2 to shift the band 

gap into the visible light region and/or to prevent the recombination of photogenerated 

electron–hole pairs using various methods, which will be discussed later in this 

chapter.
126-128
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1.3 Modification of TiO2  photocatalytic activity 

 

The improvement of the photocatalytic activity of TiO2 is one of the most 

important aspect of heterogeneous photocatalysis. TiO2 generally possesses numerous 

surface and bulk defect. These defect can behave as a recombination centre for the 

photoinduced electron-hole pairs and result in a decrease of photocatalytic activity.
129

 

Therefore, a highly crystalline samples with low number of defects suppresses electron-

hole recombination and consequently increases their availability to react with species 

adsorbed on ts surface. Further, the anatase phase is photocatalytically more active than 

rutile as explained earlier in this chapter. Hence, proper control of thermal treatment 

conditions leading to high crystallinity of anatase phase is crucial to obtain high 

photocatalytic activity. 

 

Photocatalytic activity of TiO2 can be enhanced by controlling the size of TiO2 

particles.
44

 Small particle size may provide a relatively small migration distance for 

charge carrier to reach the surface where they can react with adsorbed species. The 

decrease in particle size also plays an important role in modifying the band gap as well as 

other physical and chemical properties of TiO2.
44

  

 

A wide range of approaches has been conducted to enhance the photocatalytic 

efficiency of TiO2. This can be achieved by morphological modification, such as 

increasing the surface area and porosity, or by chemical modification, such as 

incorporating additional components in the TiO2 structure to shift the response and 
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increase the sensitivity of TiO2 towards the visible light region and/or increase the 

lifetime of the photoinduced electron-hole pairs.
121

 

 

1.3.1 Doping  

 

Attempts to improve the performance of TiO2 as a photocatalyst under UV 

illumination and extend its light absorption and conversion capacity into the visible 

portion of the solar spectrum have primarily concentrated on promoting it with foreign 

species. Doping is a commonly used method to narrow the band gap and change the 

electronic properties of TiO2. TiO2 is doped by loading other organic or inorganic 

components into the bulk material, thus modifying its optical activity. The literature has 

reported that TiO2 doping can be achieved using metal
3
 or non-metal substances.

3, 130-133
 

Doping with non-metal substances tends to raise the VB maximum energy level because 

most non-metallic dopants are less electronegative than oxygen. On the other hand, 

dopants with metallic elements tend to lower the CB minimum energy level because most 

metals used in doping are more electronegative than titanium. Noble metal dopants may 

also act as sinks for the photogenerated charge carriers and may support interfacial 

charge-transfer processes, thus inhibiting electron-hole recombination.
62

     

The electronic characteristic found in TiO2 is modified by creating a small band 

(mid-gap state) within the band gap (see Figure 1.4). This state allows the material to 

absorb energy  Eγ < EBG by exciting electrons from the VB to the mid-gap state (if it lies 

above the Fermi level) or from the mid-gap state to the CB (if it lies below the Fermi 

level).   
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When this method is employed, the chemical composition of TiO2 can be altered 

by replacing the cations (Ti
4+

) with other transition metals or the anions (O
2-

) with other 

anions. These changes affect not only the material’s electronic properties but also its 

thermal stability.
134

 The literature has reported attempts to improve the photoresponse of 

TiO2 by cationic doping with alkaline metal,
58, 135, 136

 transition metal,
58, 137-141

 post-

transition metal
142

 and noble metal.
58, 143

 Unfortunately, these types of doping have some 

drawbacks, including thermal instability and a high recombination rate.
144-146

 In contrast, 

Karakitsou and Verykios reported that TiO2 photoreactivity can be enhanced by doping 

with cations of valency higher than that of Ti
4+

.
147

  

A considerable amount of literature has reported on anionic TiO2 doping. 

Although the visible light response of anion-doped TiO2 was reported as early as 1986 by 

Sato,
148

 recent work by Asahi et al.
144

 reignited interest in this system. Few innovative 

preparation methods have been discussed in the recent literature for nitrogen-,
144, 145, 149-

152
 phosphorus-,

153-155
 sulphur-,

149, 156-158
 iodine-,

159, 160
 fluorine-

156, 161, 162
 and chlorine-

doped
135

 TiO2 catalysts. Among other anionic dopants, nitrogen doping is the most 

popular dopant, especially for enhancing the photocatalytic activity of TiO2. A summary 

of photocatalytic activity studies on N-doped TiO2 is presented in Table 1.3. 

EBG EFermi 

Eγ < EBG 

Figure 1.4: The addition of dopants can improve the photoresponse of the semiconductor 

by introducing the mid-gap state. 
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Table 1.3: Previous studies on photodegradation activity of N-doped TiO2. 

Reference Application 

Gole et al.
163

 

Sathish et al.
164

 

Chen et al.
165

 

Sathish et al.
166

 

Photocatalytic degradation of methylene blue using different 

types of N-doped TiO2  

Naik et al.
167

 

Yang et al.
168

 

Peng et al.
169

 

Photocatalytic degradation of methyl orange using different 

types of N-doped TiO2 

 

 

Kitano et al.
170

 

Huang et al.
171

  

Photocatalytic degradation/decomposition of isopropyl alcohol 

Shang et al.
172

 

Buzby et al.
173

  

Photocatalytic degradation of 2-chlorophenol 

Wang et al.
174

 Photocatalytic degradation of phenol 

Asahi et al.
144

 Photocatalytic decomposition of acetaldehyde  

 

While the introduction of dopants may increase the photoresponse of the material, 

it also introduces a bulk defect, which encourages electron-hole recombination.
175

 It is 

generally observed that photoactivities increases with dopant concentration to a given 

point, after which activity decreases due to excessive recombination.
58, 126, 176

 

 

1.3.2 Dye sensitization and noble metal deposition 

 

The photoassisted catalytic decomposition of organic pollutants in water and 

wastewater employing semiconductors as photocatalyst is a promising method.
34, 63

 

Although TiO2 has positive attributes, a few drawbacks
177, 178

 are associated with it, as 

discussed earlier in this chapter. Therefore, in order to circumvent these limitations, a 

number of strategies have been proposed. The literature has reported that surface 

derivatization of TiO2 with a number of organic dyes extends the sensitivity of TiO2 in 

the visible region
179

 through the injection of electrons from an excited level of the dye 
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into the semiconductor band. Photocatalytic TiO2 activity can also be enhanced by 

loading noble metals on the surface of the semiconductor. Many investigators have 

demonstrated that enhanced photocatalytic activity is made possible by impregnating 

depositing a noble metal on the TiO2 surface. 

 

1.3.2.1 Dye sensitization 

 

Modifying TiO2 with dye is an interesting research area because dye is capable of 

absorbing visible light as a photosensitizer for transferring energy to TiO2 or O2. Thus, 

this makes the reaction mixture more sensitive to light and therefore promotes the 

degradation efficiency of pollutants.
180

 This process of transferring electrons or holes 

from a dye to a catalyst, such as TiO2, can be incredibly efficient when a monolayer of 

dye is absorbed on the TiO2 surface by covalent bonding, ion pair association, 

physisorption, entrapment in cavities or hydrophobic interaction.
58, 181, 182

  This has been 

used extensively, especially in the production of TiO2 solar cells.
183

 The literature has 

reported that the incorporation of dye in TiO2 photocatalytic systems is the most efficient 

way to extend the photoresponse of TiO2 into the visible region.
58, 184-186

 This is due to the 

prominent photophysical properties of dyes.
187

  

The initiation process of solar photocatalytic degradation with the aid of TiO2 as a 

photocatalyst is described in Equation 1.9 through Equation 1.11, where the generated 

hydroxyl radicals will eventually oxidize the pollutant. For a dye-synthesized solar 

photocatalytic system, the initiation of this process could proceed through the 

mechanisms shown in Equation 1.12 and Equation 1.13 in addition to the previously 
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mentioned process. In this additional process, the adsorbed dye on the TiO2 surface is 

excited by solar irradiation. The excited dye then transfers the adsorbed energy to TiO2 or 

O2, thus leading to the production of more electron–hole pairs to promote higher 

degradation efficiency.
180, 185

 This mechanism is further explained in Figure 1.5.
121

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

TiO2 → h
+ 

+ e
- 

            Equation 1.9 

e
-
 + O2 → O2∙

- 
Equation 1.10 

h
+ 

+ OH
- 
→ OH∙  Equation 1.11 

Dye(adsorbed) → Dye(adsorbed)
*
  Equation 1.12 

Dye(adsorbed)
*
 + TiO2 → Dye(adsorbed) + h

+ 
+ e

- 
Equation 1.13 

hv
 

HOMO 

LUMO 

CB 

VB 

Dye∙
+ 

OH
- 

OH∙ 

e
- 

O2 
 

O2∙
-
/HOO∙/H2O2/OH∙ 

 

Figure 1.5:  Mechanism of the dye-sensitized TiO2 photocatalyst. An electron is 

excited from the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO) of a dye with the absorption of visible light. The excited dye 

transfers an electron into the TiO2 conduction band, while the dye itself is converted to 

its cationic radicals. The injected electrons hop over to the surface of TiO2 where they 

are scavenged by molecular oxygen to form superoxide radicals (O2∙
-
), hydroperoxyl 

radicals (HOO∙), hydrogen peroxide (H2O2) and hydroxyl radicals (OH∙).  
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1.3.2.2 Noble metal deposition on metal oxide 

 

TiO2 is known to exhibit photocatalytic activity due to photogenerated charge 

carriers (negative electrons (e
-
) and positive holes (h

+
)).

188
 Although TiO2 photocatalytic 

activity is among the highest of all semiconductors, one of the critical drawbacks of TiO2 

is its high photogenerated electron–hole pair recombination rate, which hinders its 

photocatalytic efficiency.
60, 189

 Many attempts have been made to improve the 

photocatalytic activity of TiO2 by doping with noble metals, which act as electron 

acceptors. Capturing photogenerated electrons from noble metals is thought to repress the 

recombination of electron–hole pairs and facilitate the transfer of holes on the TiO2 

surface, thus enhancing the TiO2 photocatalytic activity.
144, 182, 190

  Because the deposition 

of noble metals on TiO2 is of great interest, many reviews have been published 

illustrating the behaviour of noble metals in photocatalysis (see Table 1.4).  

Basically, noble metals such as Pt, Pd, Au, Ag and Ir deposited on the TiO2 

surface act as electron sinks because their Fermi levels are lower than that of TiO2. 

Therefore, photoexcited TiO2 can act as an electron source for these clusters, which in 

turn provides charge separations for TiO2.
58, 175

 Bulk Au in particular has long been 

regarded as a highly inert metal with little or no chemical and catalytic activity.
191, 192

 

However, Haruta et al. found that Au can exhibit surprisingly high catalytic reactivity 

when it is highly dispersed on selective metal oxide (Au/ metal oxides).
193, 194

 Up till 

now, Au/metal oxide catalyst have become one of the hottest system in catalysis, being 

widely applied to many important processes such as CO oxidation, selective oxidation of 
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propene, nitrogen oxide reduction and most importantly photocatalytic oxidation used for 

environmental clean-ups.
194-197

  

Table 1.4: Brief summary of research directions discussed in the recent reviews focused 

on the use of noble metal nanoparticles in photocatalysis.   

Reference Remarks 

Pelaez et al.
121

  Focused on the development of different strategies to 

modify TiO2 for the utilization of visible light. 

 This includes metal doping, non-metal doping, dye 

sensitization and coupling semiconductors. 

Hou et al.
198

  Focused on the studies performed on plasmon-enhanced 

photocatalytic water splitting and the reduction of CO2 

with H2O to form hydrocarbon fuels. 

 Also touches on the degradation of organic molecules. 

Zhou et al.
199

  Focused on the different methods employed in the 

synthesis and photocatalytic properties of noble metal-

based plasmonic composites under visible light. 

Linic et al.
200

  Focus on water-splitting reaction on plasmonic-metal 

semiconductors. 

 Also discussed the mechanism of the effect of surface 

plasmon resonance (SPR) on the photocatalytic activity of 

the semiconductor.  

Kumar et al.
185

  Focused on modified TiO2 photocatalysis. 

 Also touches on the advancements made in enhancing the 

surface-electronic structure of TiO2 with high efficiency. 

Xuming et al.
201

  Focused on the major mechanism in plasmonic 

photocatalysis. 

 Also discussed various material systems that have superior 

photocatalytic performance.  

Kowalska et al.
202

  Focused on explaining the mechanism of photocatalytic 

reaction on Au/TiO2 under visible light. 

 Also discussed in detail the properties of photocatalysts 

required for a high level of activity. 

Wang et al.
203

  Focused on recent synthetic methods and photocatalytic 

reactions with the aid of different types of plasmonic 

photocatalysts.  

 

Gold nanoparticles have been reported to display distinctive visible-light 

absorption due to surface plasmon resonance effects,
204-206

 which can be used to inject 
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electrons into the TiO2 CB.
207-209

 These injected electrons can further be transferred to the 

adsorbed molecular oxygen to form superoxide radical anions O2∙
-
 (Equation 1.15), 

followed by protonation, thus producing hydroperoxyl radicals HOO∙ (Equation 

1.16).
210-212

 The production of superoxide radical anions and hydroperoxyl radicals plays 

an important role in enhancing the photocatalytic activity of this type of catalyst.  

 

 

 

1.3.2.3 Photocatalysis by gold supported on metal oxide 

In plain TiO2, absorption of a photon whose energy is larger than the band gap 

produces the creation of electrons and holes to migrate from the place in which initial 

event of charge separation has occurred to the surface of the particles. The surface of 

TiO2
213

 plays a key role in the photocatalytic activity. Several strategies have been 

developed to further enhance the photocatalytic efficiency of pure TiO2 and modification 

of TiO2 with gold nanoparticles has attracted many researchers.
214-219

 Further, a larger 

number of studies has reported the enhancement in photocatalysis over TiO2 from the 

addition of Au as a co-catalyst.
220-228

 It has also been confirmed by various studies that 

the catalytic properties of Au/metal oxide catalyst depends significantly on the size of 

Au particles, the interaction between Au and the supporting oxide, as well as the 

nanostructure of the active site.
194, 229, 230

 For the purpose of obtaining structure which 

can facilitate high performance catalyst, many chemical ad physical method such as co-

precipitation,
229

 chemical vapour deposition,
231

 co-sputtering,
232

 deposition-

precipitation
194, 221

 and photodeposition
233-239

 Deposition-precipitation has been 

Au-TiO2 → Au-TiO2 (e
-
cb + h

+
vb) Equation 1.14  

Au-TiO2 (e
-
) + O2 → Au-TiO2 + O2∙

-
  Equation 1.15 

O2∙
- 
+ H

+ 
→ HO2∙ Equation 1.16 
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demonstrate to be one of the most successful method for depositing highly dispersed Au 

nanoparticles because it allows the size of the gold particles to be adjusted by controlling 

the pH of the preparation and calcination temperature.
237

 

Modifying nanoscale wide-band gap  semiconductor such as TiO2 with palsmonic 

nanoparticles introduce visible-light activity, expanding the applicability of these 

aqueous stable oxide for solar-driven technologies.
202, 240-245

 Since the pioneering work 

of Haruta shows the unique catalytic activity of Au/TiO2 for the selective low 

temperature CO oxidation,
194

 the number of reports describing the use of Au/TiO2 as 

heterogeneous catalyst for thermal reactions has grown considerably.
246, 247

 Although 

low temperature CO oxidation obey different laws compared to photocatalysis, having a 

stable noble metal nanoparticles strongly anchored onto the surface of TiO2 as an 

independent phase typically used in heterogeneous catalysis could in principle enhance 

the photocatalytic activity of TiO2.  

Deposition of nanosized noble particles on the surface of the TiO2 lead to an 

efficient charge separation of light generated electron-hole pairs in a semiconductor and 

to an increase of the lifetime resulting in an improved diffusion to the surface.
236, 248, 249

 

Noble metal nanoparticles such as Au nanoparticles are very effective traps for the 

electron due to the formation of Schottky barrier at the metal-semiconductor contact 

hence preventing electron-hole recombination in photocatalyst. Further, it could be 

assumed that upon depositing noble metal nanoparticles on the surface of TiO2 the 

increase of quantum yield of the photodegradation of dye is mainly due to the increased 

separation of electrons and holes, the higher rate of OH∙ radicals formation and 
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 Poster presentation, “Effect of reaction parameters on photodegradation efficiency of 

reactive dye RB19 by TiO2”, MacDiarmid Institute Student and Post-Doc Symposium. 

(Christchurch, New Zealand: November 2012). 

 Poster presentation, “Effect of reaction parameters on photodegradation efficiency of 

reactive dye RB19 by TiO2”, Advance Material and Nanotechnology 6 (AMN6). 

(Auckland, New Zealand: February 2013). 

 Oral presentation, “Enhanced photocatalytic activity in F-TiO2: Effect of solvent and 

fluorine modifiers towards the morphology of TiO2”, 38
th

 Condensed Matter and Material 

Meeting. (Waiheke Island, Auckland, New Zealand: February 2014). 

 

In addition, the author has contributed to the paper on work related to but not directly relevant to 

this thesis 

 M.Z. Ahmad, V.B. Golovko, R.H.Adnan, F.A. Bakar, J.-Y. Ruzicka, D.P. Anderson, 

G.G Andersson and W. Wlodraski “Hydrogen ensing using gold nanocluster supported 

on tungsten trioxide thin films.”
380
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