

COMPARATIVE STUDY ON DATA SEARCHING IN LINKED LIST & B-TREE

AND B+TREE TECHNIQUES

AHMED ESHTEWI S GIUMA

A dissertation submitted in partial

fulfillment of the requirement for the award of the

 Degree of Master of Computer Science (Software Engineering)

The Department of Software Engineering

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

MARCH 2015

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iii

DEDICATION

Specially dedicated to…

My parents and my wife, who are always there during the most challenging times.

My friends, for the support and help throughout the projects. And to the unsung

persons who are involved directly or indirectly.

May God bless us always.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iv

ACKNOWLEDGEMENT

First and foremost I thank God for the strength and courage that had made this

humble effort a reality.

I would like to express my deepest gratitude to my final year project

supervisor Dr. Mohd Zainuri Saringat for his invaluable advices and guidance

throughout this project. His profound knowledge, ideas and support keeps on

motivating me to give my all for this project.

I wish to thank all my friends, staff and to those who has directly or

indirectly guided and helped me in this project. The knowledge and support that they

shared with me will always be remembered.

 Lastly, and most importantly I wish to dedicate my appreciation to my

beloved father, mother and brothers for always being there for me all these years.

Thanks for their unconditional love, encouragement, and support Universiti Tun

Hussein Onn Malaysia (UTHM) is also gratefully acknowledged.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

v

ABSTRACT

There are many methods of searching large amount of data to find one particular

piece of information. Such as finding the name of a person in a mobile phone record.

Certain methods of organizing data make the search process more efficient. The

objective of these methods is to find the element with the least time. In this study, the

focus is on time of search in large databases, which is considered an important factor

in the success of the search. The goal is choosing the appropriate search techniques

to test the time of access to data in the database and what is the ratio difference

between them. Three search techniques are used in this work namely; linked list, B-

tree, and B+ tree. A comparison analysis is conducted using five case databases

studies. Experimental results reveal that after the average times for each search

algorithms on the databases have been recorded, the linked list requires lots of time

during search process, with B+ tree producing significantly low times. Based on

these results, it is clear that searching in B- tree is faster than linked list at a ratio of

(1: 5). The searching time in a B+ tree is faster than B- tree at the ratio of (1: 2).

The searching time in a B+ tree is faster than linked list at the ratio of (1: 8). With

that, it can be concluded that B+ tree is the fastest technique for data access.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vi

ABSTRAK

Terdapat banyak kaedah dalam pencarian suatu maklumat dari satu kumpulan data

yang banyak. Contohnya seperti mencari nama dalam telefon bimbit. Sestengah

kaedah menguruskan data bagi menjadikan proses pencarian lebih efisien. Objektif

kaedah yang dibincangan adalah untuk mencari data dengan cepat. Dalam kajian ini,

tumpuan kajian adalah pada masa carian dalam pengkalan data yang besar dimana ia

adalah satu factor penting dalam menentukan kejayaan dalam carian. Matlamatnya

adalah memilih teknik yang paling sesuai dalam carian data didalam pengkalan data

dan perbandingan dalam peratus masa capaian diantara teknik teknik tersebut. Tiga

jenis carian dikaji iaitu linked list, B-tree dan B+ tree satu analisa perbandingan

dibuat dengan menggunakan lima kajian kes. Hasil kajian telah laporkan dimana

linked list memerlukan banyak masa dalam carian berbanding B+ tree. Berdasarkan

keputusan ini telah menunjukkan carian dalam B- tree adalah pantas berbanding

linked list dengan kadar (1:5). Carian masa dalam B+ tree adalah lebih baik

berbanding linked list dengan kadar (1:2). Sementara itu carian masa dalam B+ tree

adalah lebih laju berbanding linked list dengan nisbah (1:8). Dengan itu, dapatlah

dirumuskan B+ tree adalah teknik yang paling laju dalam capaian data.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vii

CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF TABLES xiii

LIST OF FIGURES xv

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Project Objectives 3

1.3 Project Scope 3

1.4 Outline of the Report 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introductions 5

2.2 Data Structure of Linked Lists 6

2.2.1 Searching in Linked List 7

2.2.2 Advantages and Disadvantages for Linked List 8

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

2.2.2.1 Advantages 8

2.2.2.2 Disadvantages 9

2.2.3 Implementing Linked Lists 9

2.3 Data Structure of B-Tree 10

2.3.1 Advantages and Disadvantages for B-Tree 11

2.3.1.1Advantages 11

2.3.1.2 Disadvantages 12

2.3.2 Implementing B-Tree 12

2.3.3 Searching in B-Tree 12

2.4 Data Structure of B+Tree 13

2.4.1 Advantages and Disadvantages for B+Tree 14

2.4.1.1 Advantages 14

2.4.1.2 Disadvantages 14

2.4.2 Implementing B+ Tree 14

2.4.3 Searching in B+ Tree 15

2.5 Related Work 16

2.6 Chapter Summary 18

CHAPTER 3 RESEARCH METHODOLOGY 19

3.1 Introduction 19

3.2 The Proposed Methodology for Comparative Study

on Database Speed Searching 20

3.2.1 Load of Data from the Source 21

3.2.3 Load Data to B-Tree 22

3.2.3 Calculate Searching Time Using B-Tree 22

3.2.4 Load Data to Linked List 22

3.2.5 Calculate Searching Time Using Linked List 22

3.2.6 Load Data to B+Tree 23

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ix

3.2.7 Calculate Searching Time Using B+tree 23

3.2.8 Comparative Study between Linked List & B-

Tree and B+ Tree 23

3.2.9 Calculate the Result 23

3.3 Performance Measure 23

3.4 Chapter Summary 24

CHAPTER 4 IMPLEMENTATION AND DISCUSSIONS OF RESULTS 25

4.1 Introduction 25

4.1.1 The Complexity 26

4.1.1.1 The Complexity of Using the Link List

Algorithm 26

4.1.1.2 The Complexity of Using the B-Tree

Algorithm 29

4.1.1.3 The Complexity of Using the B+Tree

Algorithm 31

4.1.2 The Inputs 32

4.1.3 The Queries 33

4.2 Data Source 33

4.2.1 Data Source for First Case Study (The World) 34

4.2.2 Data Source for Second Case Study(Employees) 35

4.2.3 Data Source for Third Case Study(Immigration) 36

4.2.4 Data Source for Fourth Case Study (Libyana) 38

4.2.5 Data Source for Fifth Case Study (Staff) 39

4.2.6 The Size Difference between the Databases 40

4.3 Load of Data from the Source 41

4.3.1 Load of World Database from the Source 41

4.3.2 Load of Employees Database from the Source 42

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

x

4.3.3 Load of Immigration Database from the Source 44

4.3.4 Load of Libyana Database from the Source 45

4.3.5 Load of Staff Database from the Source 47

4.4 Calculate Searching Time Using World Database 48

4.4.1 Calculate Searching Time Using Linked List 48

4.4.2 Calculate Searching Time Using B-Tree 50

4.4.3 Calculate Searching Time Using B+Tree 52

4.5 Calculate Searching Time Using Employees

Database 53

4.5.1 Calculate Searching Time Using Linked List 53

4.5.2 Calculate Searching Time Using B-Tree 55

4.5.3 Calculate Searching Time Using B+Tree 57

4.6 Calculate Searching Time Using Immigration

Database 58

4.6.1 Calculate Searching Time Using Linked List 58

4.6.2 Calculate Searching Time Using B-Tree 60

4.6.3 Calculate Searching Time Using B+Tree 62

4.7 Calculate Searching Time Using Libyana Database 63

4.7.1 Calculate Searching Time Using Linked List 63

4.7.2 Calculate Searching Time Using B-Tree 65

4.7.3 Calculate Searching Time Using B+Tree 67

4.8 Calculate Searching Time Using Staff Database 68

4.8.1 Calculate Searching Time Using Linked List 68

4.8.2 Calculate Searching Time Using B-Tree 70

4.8.3 Calculate Searching Time Using B+Tree 72

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xi

4.9 Results Discussions 73

4.9.1 Search Time Using World Database Case Study 74

4.9.1.1 The Application of Linked List on the

World Database 74

4.9.1.2 The Application of B-Tree on the

World Database 75

4.9.1.3 The Application of B+Tree on the

World Database 75

4.9.2 Analysis of the Results of the Application of

Algorithms on World Database 76

4.9.3 Search Time Using Employees Database Case

Study 78

4.9.3.1 The Application of Linked List on the

Employees Database 78

4.9.3.2 The Application of B-Tree on the

Employees Database 78

4.9.3.3 The Application of B+Tree on the

Employees Database 79

4.9.4 Analysis of the Results of the Application of

Algorithms on Employees Database 80

4.9.5 Search Time Using Immigration Database Case

Study 81

4.9.5.1 The Application of Linked List on the

Immigration Database 81

4.9.5.2 The Application of B-Tree on the

Immigration Database 82

4.9.5.3 The Application of B+Tree on the

Immigration Database 83

4.9.6 Analysis of the Results of the Application of

Algorithms on Immigration Database 83

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xii

4.9.7 Search Time Using Libyana Database Case Study 85

4.9.7.1 The Application of Linked List on the

Libyana Database 85

4.9.7.2 The Application of B-Tree on the

Libyana Database 86

4.9.7.3 The Application of B+Tree on the

Libyana Database 87

4.9.8 Analysis of the Results of the Application of

Algorithms on Libyana Database 87

4.9.9 Search Time Using Case Study Staff Database 89

4.9.9.1 The Application of Linked List on the

Staff Database 89

4.9.9.2 The Application of B-Tree on the Staff

Database 90

4.9.9.3 The Application of B+Tree on the Staff

Database 91

4.9.10 Analysis of the Results of the

Application of Algorithms on Staff

Database 91

4.11 Chapter Summary 93

CHAPTER 5 CONCLUSIONS 94

5.1 Objectives Achievement 94

5.2 Conclusion 94

5.3 Future Work 95

REFERENCES 96

APPENDIX 98

VITA 156

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiii

LIST OF TABLES

4.1 Complexity Connected to the Database and Load Data 27

4.2 Complexity of Linked List Algorithm 28

4.3 Complexity Connected to the Database and Load Data 29

4.4 Complexity of B-Tree Algorithm 30

4.5 Complexity Connected to the Database and Load Data 31

4.6 Complexity of B+ Tree Algorithm 32

4.7 Specifications for the Database World 35

4.8 Specifications for the Database Employees 36

4.9 Specifications for the Database Immigration 37

4.10 Specifications for the Database Libyana 38

4.11 Specifications for the Database Staff 39

4.12 The Size of the Databases 40

4.13 Application of Linked List on the World Database Results 74

4.14 Application of B-Tree on the World Database Results 75

4.15 Application of B+Tree on the World Database Results 75

4.16 The Results of the Application of Algorithms on World Database 76

4.17 Application of Linked List on the Employees Database Results 78

4.18 Application of B-Tree on the Employees Database Results 79

4.19 Application of B+Tree on the Employees Database Results 79

4.20 The Results of the Application of Algorithms on Employees

 Database 80

4.21 Application of Linked List on the Immigration Database Results 82

4.22 Application of B-Tree on the Immigration Database Results 82

4.23 Application of B+Tree on the Immigration Database Results 83

4.24 The Results of the Application of Algorithms on Immigration

 Database 84

4.25 Application of Linked List on the Libyana Database Results 86

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiv

4.26 Application of B-Tree on the Libyana Database Results 85

4.27 Application of B+Tree on the Libyana Database Results 85

4.28 The Results of the Application of Algorithms on Libyana

 Database 88

4.29 Application of Linked List on the Staff Database Results 90

4.30 Application of B-Tree on the Staff Database Results 90

4.31 Application of B+Tree on the Staff Database Results 91

4.32 The Results of the Application of Algorithms on Staff 92

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xv

LIST OF FIGURES

2.1 Linked Lists 6

2.2 The Name of a Linked List Versus the Names of Nodes 7

2.3 Search Algorithm for Linked List 8

2.4 B- Tree Work 10

2.5 B-Tree Search Algorithm 13

2.6 B+Tree Search Algorithm 15

3.1 Steps Involved in the Research 20

3.2 Distribution of Database Load of Data 21

4.1 Authentication Required 33

4.2 Data Source 34

4.3 Database World Specifications 35

4.4 Database Employees Specifications 36

4.5 Database Immigration Specifications 37

4.6 Database Libyana Specifications 38

4.7 Database Staff Specifications 39

4.8 The Difference in Size between Databases 40

4.9 Load of World Database from the Source by Using the Country Code 41

4.10 Load of World Database from the Source 42

4.11 Load of Employees Database from the Source by Using the Employee

 Number 43

4.12 Load of Employees Database from the Source 43

4.13 Load of Immigration Database from the Source by Using the Id No 44

4.14 Load of Immigration Database from the Source 45

4.15 Load of Libyana Database from the Source by Using the

 Phone Number 46

4.16 Load of Libyana Database from the Source 46

4.17 Load of Staff Database from the Source by Using the Id Number 47

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvi

4.18 Load of Staff Database from the Source 48

4.19 Load a Copy of the World Database to Linked Llist 49

4.20 How to Search by Linked List and View Searching Time 50

4.21 Load a Copy of the World Database to B-Tree 50

4.22 How to Search by B-Tree and View Searching Time 51

4.23 Load a Copy of the World Database to B+Tree 52

4.24 How to Search by B+Tree and View Searching Time 53

4.25 Load a Copy of the Employees Database to Linked List 54

4.26 How to Search by Linked List and View Searching Time 55

4.27 Load a Copy of the Employees Database to B-Tree 55

4.28 How to Search by B-Tree and View Searching Time 56

4.29 Load a Copy of the Employees Database to B+Tree 57

4.30 How to Search by B+Tree and View Searching Time 58

4.31 Load a Copy of the Immigration Database to Linked List 59

4.32 How to Search by Linked List and View Searching Time 60

4.33 Load a Copy of the Immigration Database to B-Tree 60

4.34 How to Search by B-Tree and View Searching Time 61

4.35 Load a Copy of the Immigration Database to B+Tree 62

4.36 How to Search by B+Tree and View Searching Time 63

4.37 Load a Copy of the Libyana Database to Linked List 64

4.38 How to Search by Linked List and View Searching Time 65

4.39 Load a Copy of the Libyana Database to B-Tree 65

4.40 How to Search by B-Tree and View Searching Time 66

4.41 Load a Copy of the Libyana Database to B+Tree 67

4.42 How to Search by B+Tree and View Searching Time 68

4.43 Load a Copy of the Staff Database to Linked List 69

4.44 How to Search by Linked List and View Searching Time 70

4.45 Load a Copy of the Staff Database to B-Tree 70

4.46 How to Search by B-Tree and View Searching Time 71

4.47 Load a Copy of the Staff Database to B+Tree 72

4.48 How to Search by B+Tree and View Searching Time 73

4.49 Time of Each Search Algorithms for Executing Queries for World

 Database 77

4.50 Time of Each Search Algorithms for Executing Queries for

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvii

 Employees Database 81

 4.51 Time of Each Search Algorithms for Executing Queries for

 Immigration Database 85

4.52 Time of Each Search Algorithms for Executing Queries

for Libyana Database 89

4.53 Time of Each Search Algorithms for Executing Queries for

Staff Database 93

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER 1

INTRODUCTION

1.1 Background

Data is defined as a set of valuable information with certain similarities, which is

usually sorted in such way where it may be easily retrieved by other relevant parties.

The Internet or a library is a storage facility providing avenue for the accessibility of

data, and such storages are known as databases. Every organization deals with a

series of databases respectively. For instance, the police may have a database of

criminal records, where a car showroom would have a database of vehicle history.

The size of the database directly affects the effectiveness in searching the data. Thus,

every data should be traced via a database, based on the following criteria:

(i) Ability to search for a specific item.

(ii) Ability to search for related items to a known item.

(iii) Ability to search in a specific field or fields.

(iv) Ability to combine search terms using Boolean logic.

The most noticeable problem in the world of computer science and

information technology would be the storage and retrieval of data. There are

applications and search engines which are capable to access a large virtual database

in a short period of time. Nevertheless, the scope of the hits on the desired data might

be large, to an extent that the user still cannot find what he/she is looking for.

However, there are certain infrastructures applicable for retrieval of data efficiently.

The most common search structure would be the multi way balanced B-tree. As the

name suggests, it consists of leaf and internal, or also known as the nodes. The

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

internal nodes are basically the trace index to the leaf nodes, whereas the leaf nodes

are the data carrier. As for this infrastructure is by far the most effective method in

the maintenance of disk data (Askitis et al., 2009).

 Other search structures exist namely, the linked list and the B+ tree described

in the following paragraphs.

In the context of computer science, linked list are a structured data, used

in retrieval of sequential objects, allowing flexibility to add or remove intermediate

elements in the sequence. Instead of having a series of arrays, linked list consists

of nodes, that stores value and reference of the next node. Though the insertion

and removal of nodes are fast, the access to the elements could be slow since in order

to access node ten, the link would go through the first nine nodes if no removals

were made. Random access elements on the other hand are accessed

arbitrarily (John Wiley & Sons, 2010).

A B+ tree consists of a root, which may be a leaf or a node with more than

two children, in where the actual number of children for a node is denoted as m. The

root is an exception. The primary value of a B+ tree is in the stored data for efficient

retrieval in a block-oriented storage context such as the file systems. Unlike the

binary search trees, B+ trees have high fan outs or pointers to children nodes in a

certain node (Navathe et al., 2010).

1.2 Problem Statement

One of the problems that faces large databases users is the noticeable lateness of data

retrieval which can lead to boredom and the loss of user's time by waiting for the

completion of data access and retrieval process. In order to minimize the searching

time and the loss of the data, many of the programmers and developers of software

engineering development have designed several techniques that can help to increase

the searching speed and also provide a good compromise for databases users.

Developers have developed many of the algorithms that do the searching process and

all the work to achieve the fastest time in the data retrieval process. But there is a

difference between these algorithms in terms of speed, there are high-speed

algorithms and other medium-speed and slow speed. That make databases designers

find it difficult to determine which algorithm is faster. Because of that researchers

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

3

have compared between many of the techniques used in order to determine the fastest

technique and facilitate the selection of any appropriate algorithm in the search

process. In this research comparative study will be conduct on the three algorithms

(linked list, B-tree and B + tree) to determine the fastest and also to determine the

percentage difference between the three algorithms. In this study research five

different sized databases will be used in order to get more accurate results.

1.3 Project Objectives

The objectives of this research are summarized as follow:

(i) To develop and implement linked list, B-tree and B+tree by using one of the

programming languages.

(ii) To compare the three proposed techniques using the five case studies

depending on the different sizes of the data.

(iii) To evaluate and analysis results based on time and identify any faster

technique , and calculate the amount of the difference between them.

1.3 Project Scope

This research focuses on the problem of time search in databases. Therefore, linked

list, B-tree and B+tree techniques will be used to test the speed of access to data in

the database and will be compared using the five case studies.

1.4 Outline of the Report

This research consists of five chapters. Chapter 1 is an overview of the project and

the main objectives of the project. It consists of the scope of work covered and the

project’s objectives. Chapter 2 illustrates the literature review of the project. It also

gives a brief explanation in general information about automated testing for database

system in this project. Chapter 3 discusses the methodology used to obtain the entire

objectives of this project and tools. Chapter 4 explains the implementation and the

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

detailed steps in this work as well as the results and discussion. Chapter 5 includes

the objectives achieved, disadvantages, future work, and conclusion of the project.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER 2

LITERATURE REVIEW

2.1 Introductions

Historically, memory limit was restricted, so extensive information accumulations

must be put away on databases, which utilize information structures, for example,

linked list and B-trees. With the accessibility of expansive memories, this

confinement has been loose. Correspondingly, various new requisitions have risen in

such fields as bio-informatics and computational semantics that oblige looking

immense accumulations in memory. A B-tree-like information structure implicit

memory is still a great answer for such issues (Helen, 2011).

Nodes are arranged in a certain way that they communicate sequentially in a

linked list. In a basic structure, under the least complex structure, every previous

node acts as a predecessor of the current node, and every current node acts as a

successor of the previous node. Removal and addition of nodes are dynamic, where it

could be done from any point in the list.

Connected records are easily comparable as they store information beneficial

to the customer. A similar structure of connected records would store the similar type

of data. The interchange methodologies and the functionality of connected records

would be a good research to conduct on (Nick, 2010).

A linked list stockpiling is effective in such way that a client does not have to

worry about the relevancy of data acquired. Linked list rundown information

stockpiling is where the information are retrieved haphazardly. The incorporation of

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

linked list in corresponding channels, organization of binary trees, stack building,

queues in programming, and overseeing social databases creates an ease in access.

The exhibits are the most widely recognized information structure used to

store data. Mostly, clusters are helpful in terms of linguistic assistance in getting to

any component via its record number (Nick, 2010).

B-tree is a tree information structure that keeps information sorted, where

logarithmic insertions and cancellations are easy. The B-tree is a generalization of a

binary inquiry tree in that a node can have more than two branches. Unlike the

common tree structures, the B-tree have improved framework and composes

numerous information. It is commonly used in databases and document frameworks.

It is an effective method in placing and retrieving records in a database. However,

the significance of the alphabet B has not been theoretically expressed. The B-tree

calculation saves time since a medium exist to run through the existing records, with

a fast moving algorithm (Margaret, 2009).

2.2 Data Structure of Linked Lists

Linked lists consists of data and link. Via the link, each data element contains

location information about the next immediate element. The index name is basically

the pointer variable name in the linked list. The following Figure 2.1 illustrates a

linked list, addressed as scores, which consists of four elements. An example of an

empty linked list, or a null pointer is shown in Figure 2.1.

Figure 2.1: Linked Lists (Behrouz & Firouz, 2008)

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

7

Each linked list should be named in such way that it could be differentiated

from the elements and the nodes itself. Figure 2.2 displays the name of a selected

linked list, which is the head pointer that directs the link to the first node

in the linked list. A node would only have implicit rather than explicit

name (Behrouz & Firouz, 2008).

Figure 2.2: The Name of a Linked List Versus The Names of Nodes

2.2.1 Searching in Linked List

Two separate pointers, known as previous (pre) and current (cur) are used in nodes.

In the initial stage of a search, the pre pointer would be null, whereas the cur pointer

would be linked to the first node of the link. The algorithm of this search structure

links these two pointers all the way towards the end of the list. If the target

value is bigger than the values in the entire list, the movement of the pointers would

be slow. Figure 2.3 illustrates a linked list search algorithm with the pre and cur

pointers (Behrouz & Firouz, 2008).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

8

Search algorithm for linked list

Algorithm : Search linked list (target, list)

Purpose : Search the list using two pointers: per and cur

Post : None

Per : The linked list (head pointer) and target value

Return : the position of per and cur pointers and the

value of the flag (true or false)

{

Per ← null The previous value= null

Cur ← list Current value

While (target < (*cur).data)

{

Per ← cur Cur ← (*cur).link

}

If the Current value = flag= true

If ((*cur).data=target) flag ← true

Else flag ← false

Return (cur ,per ,flag)

}

Figure 2.3: Search Algorithm for Linked List (Behrouz & Firouz, 2008)

2.2.2 Advantages and Disadvantages for Linked List

In simple terms, linked lists are a basic chain containing nodes or data, linked via

pointers that points the current data towards the next data.

2.2.2.1 Advantages

All data linked in the list are from the similar group or search field. These are some

advantages of linked list:

(i) The information structure consumes low external memory during run time as

it is a real time system.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

96

REFERENCES

Achakeev, Daniar, & Bernhard Seeger. (2013). "Efficient bulk updates on

multiversion B-trees." Proceedings of the VLDB Endowment, 6(14), pp.

1834-1845.

Askitis, N., Zobel, J. (2009). B-tries for disk-based string management. VLDB J. 18,

pp.157–179.

Behrouz Forouzan & Firouz Mosharraf. (2008). Foundations of Computer Science,

2nd edition, Thomson Learning. UK. pp. 11.27-11.50.

Blevins, Jason R. (2009). "A generic linked list implementation in Fortran 95". ACM

SIGPLAN Fortran Forum. Vol. 28. No. 3.

Braginsky, Anastasia & Erez Petrank. (2012). "A lock-free b+ tree." Proceedings of

the 24th ACM symposium on Parallelism in algorithms and architectures.

Helen A. (2011). “The universal B-Tree for multidimensional indexing. General

concepts,” World Wide Computing and its Applications, pp. 198–209.

John Wiley & Sons.(2010). Horstmann, Cay S. Java Concepts: Compatible with Java

5, 6 and 7, Congress Cataloging. USA, pp. 630-631.

Lefteris Kellis & Dani Mart. (2013). B- Tree. Laxmi Publications, pp.10.

Margaret Rouse. (2009). “The ubiquitous B-tree,” ACM Computing Surveys, vol. 11,

no. 2, pp. 121–137.

Nick Parlante. (2010). “Linked List Problems”. Acta Informatica, vol. 9, pp. 1–21.

Prabhakar Gupta & Vineet. (2010). Design and analysis of algorithms. PHI Learning

Private Limited, pp.170–171.

Ramez Elmasri & Shamkant B. (2010). Fundamentals of database systems (6th

ed).Upper Saddle River, N.J. Pearson Education, pp. 652–660.

Rize, Jin, Hyung-Ju Cho & Tae-Sun Chung. (2013). "A group round robin based b-

tree index storage scheme for flash memory devices." Proceedings of the 8th

International Conference on Ubiquitous Information Management and

Communication. ACM.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

97

Satinder, Bal. Gupta & Aditya Mittal. (2009). Introduction to Database Management

System. Laxmi Publications, pp. 67.

Thomas Cormen, Charles Leiserson, Ronald Rivest, & Clifford Stein. (2009).

Introduction to Algorithms. (3rd ed). MIT press. USA, pp. 441.

Timnat, Shahar, Alex Kogan & Erez Petrank. (2012). "Wait-free linked-lists."

Principles of Distributed Systems. Springer Berlin Heidelberg, pp. 330-344.

Timnat, Shahar & Erez Petrank. (2014). "A practical wait-free simulation for lock-

free data structures." Proceedings of the 19th ACM SIGPLAN symposium on

Principles and practice of parallel programming. ACM.

Yuxing, Zhu & Jun Gong. (2014). "A real-time trajectory indexing method based on

MongoDB." Fuzzy Systems and Knowledge Discovery (FSKD), 11th

International Conference on. IEEE.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

