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ABSTRACT 

There are many methods of searching large amount of data to find one particular 

piece of information. Such as finding the name of a person in a mobile phone record. 

Certain methods of organizing data make the search process more efficient. The 

objective of these methods is to find the element with the least time. In this study, the 

focus is on time of search in large databases, which is considered an important factor 

in the success of the search. The goal is choosing the appropriate search techniques 

to test the time of access to data in the database and what is the ratio difference 

between them. Three search techniques are used in this work namely; linked list, B-

tree, and B+ tree. A comparison analysis is conducted using five case databases 

studies. Experimental results reveal that after the average times for each search 

algorithms on the databases have been recorded, the linked list requires lots of time 

during search process, with B+ tree producing significantly low times. Based on 

these results, it is clear that searching in B- tree is faster than linked list at a ratio of 

(1: 5).  The searching time in a B+ tree is  faster  than B- tree  at the ratio of  (1: 2).  

The searching time in a B+ tree is  faster  than linked list  at the ratio of  (1: 8). With 

that, it can be concluded that B+ tree is the fastest technique for data access. 
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ABSTRAK 

Terdapat banyak kaedah dalam pencarian suatu maklumat dari satu kumpulan data 

yang banyak. Contohnya seperti mencari nama dalam telefon bimbit. Sestengah 

kaedah menguruskan data bagi menjadikan proses pencarian lebih efisien. Objektif 

kaedah yang dibincangan adalah untuk mencari data dengan cepat. Dalam kajian ini, 

tumpuan kajian adalah pada masa carian dalam pengkalan data yang besar dimana ia 

adalah satu factor penting dalam menentukan kejayaan dalam carian. Matlamatnya 

adalah memilih teknik yang paling sesuai dalam carian data didalam pengkalan data 

dan perbandingan dalam peratus masa capaian diantara teknik teknik tersebut. Tiga 

jenis carian dikaji iaitu linked list, B-tree dan B+ tree satu analisa perbandingan 

dibuat dengan menggunakan lima kajian kes. Hasil kajian telah laporkan dimana 

linked list memerlukan banyak masa dalam carian berbanding B+ tree. Berdasarkan 

keputusan ini telah menunjukkan carian dalam B- tree adalah pantas berbanding 

linked list dengan kadar (1:5). Carian masa dalam B+ tree adalah lebih baik 

berbanding linked list dengan kadar (1:2). Sementara itu carian masa dalam B+ tree 

adalah lebih laju berbanding linked list dengan nisbah (1:8). Dengan itu, dapatlah 

dirumuskan B+ tree adalah teknik yang paling laju dalam capaian data. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Data is defined as a set of valuable information with certain similarities, which is 

usually sorted in such way where it may be easily retrieved by other relevant parties. 

The Internet or a library is a storage facility providing avenue for the accessibility of 

data, and such storages are known as databases. Every organization deals with a 

series of databases respectively. For instance, the police may have a database of 

criminal records, where a car showroom would have a database of vehicle history. 

The size of the database directly affects the effectiveness in searching the data. Thus, 

every data should be traced via a database, based on the following criteria: 

(i) Ability to search for a specific item. 

(ii) Ability to search for related items to a known item. 

(iii) Ability to search in a specific field or fields. 

(iv) Ability to combine search terms using Boolean logic. 

The most noticeable problem in the world of computer science and 

information technology would be the storage and retrieval of data. There are 

applications and search engines which are capable to access a large virtual database 

in a short period of time. Nevertheless, the scope of the hits on the desired data might 

be large, to an extent that the user still cannot find what he/she is looking for. 

However, there are certain infrastructures applicable for retrieval of data efficiently. 

The most common search structure would be the multi way balanced B-tree. As the 

name suggests, it consists of leaf and internal, or also known as the nodes. The 
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internal nodes are basically the trace index to the leaf nodes, whereas the leaf nodes 

are the data carrier. As for this infrastructure is by far the most effective method in 

the maintenance of disk data (Askitis et al., 2009 ). 

 Other search structures exist namely, the linked list and the B+ tree described 

in the following paragraphs. 

In the context of computer science, linked list are a structured data, used       

in retrieval of sequential objects, allowing flexibility to add or remove intermediate 

elements in the sequence. Instead of having a series of arrays, linked list consists     

of nodes, that stores value and reference of the next node. Though the insertion     

and removal of nodes are fast, the access to the elements could be slow since in order 

to access node ten, the link would go through the first nine nodes if no removals        

were made. Random access elements on the other hand are accessed                      

arbitrarily (John Wiley & Sons, 2010). 

A B+ tree consists of a root, which may be a leaf or a node with more than 

two children, in where the actual number of children for a node is denoted as m. The 

root is an exception. The primary value of a B+ tree is in the stored data for efficient 

retrieval in a block-oriented storage context such as the file systems. Unlike the 

binary search trees, B+ trees have high fan outs or pointers to children nodes in a 

certain node (Navathe et al., 2010).  

1.2 Problem Statement 

One of the problems that faces large databases users is the noticeable lateness of data 

retrieval which can lead to boredom and the loss of user's time by waiting for the 

completion of data access and retrieval process. In order to minimize the searching 

time and the loss of the data, many of the programmers and developers of software 

engineering development have designed several techniques that can help to increase 

the searching speed and also provide a good compromise for databases users. 

Developers have developed many of the algorithms that do the searching process and 

all the work to achieve the fastest time in the data retrieval process. But there is a 

difference between these algorithms in terms of speed, there are high-speed 

algorithms and other medium-speed and slow speed. That make databases designers 

find it difficult to determine which algorithm is faster. Because of that researchers 
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have compared between many of the techniques used in order to determine the fastest 

technique and facilitate the selection of any appropriate algorithm in the search 

process. In this research comparative study will be conduct on the three algorithms 

(linked list, B-tree and B + tree) to determine the fastest and also to determine the 

percentage difference between the three algorithms.  In this study research  five 

different sized databases will be used in order to get more accurate results. 

1.3  Project Objectives 

The objectives of this research are summarized as follow: 

(i) To develop and implement linked list, B-tree and B+tree by using one of the 

programming languages. 

(ii) To compare the three proposed techniques using the five case studies 

depending on the different sizes of the data. 

(iii) To evaluate and analysis results based on time and identify any faster 

technique , and calculate the amount of the difference between them. 

1.3 Project Scope 

This research focuses on the problem of time search in databases. Therefore, linked 

list, B-tree and B+tree techniques will be used to test the speed of access to data in 

the database and will be compared using the five case studies. 

1.4 Outline of the Report 

This research consists of five chapters. Chapter 1 is an overview of the project and 

the main objectives of the project. It consists of the scope of work covered and the 

project’s objectives. Chapter 2 illustrates the literature review of the project. It also 

gives a brief explanation in general information about automated testing for database 

system in this project. Chapter 3 discusses the methodology used to obtain the entire 

objectives of this project and tools. Chapter 4 explains the implementation and the 
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detailed steps in this work as well as the results and discussion. Chapter 5 includes 

the objectives achieved, disadvantages, future work, and conclusion of the project. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introductions   

Historically, memory limit was restricted, so extensive information accumulations 

must be put away on databases, which utilize information structures, for example, 

linked list and B-trees. With the accessibility of expansive memories, this 

confinement has been loose. Correspondingly, various new requisitions have risen in 

such fields as bio-informatics and computational semantics that oblige looking 

immense accumulations in memory. A B-tree-like information structure implicit 

memory is still a great answer for such issues (Helen, 2011).  

Nodes are arranged in a certain way that they communicate sequentially in a 

linked list. In a basic structure, under the least complex structure, every previous 

node acts as a predecessor of the current node, and every current node acts as a 

successor of the previous node. Removal and addition of nodes are dynamic, where it 

could be done from any point in the list.  

Connected records are easily comparable as they store information beneficial 

to the customer. A similar structure of connected records would store the similar type 

of data. The interchange methodologies and the functionality of connected records 

would be a good research to conduct on (Nick, 2010).  

A linked list stockpiling is effective in such way that a client does not  have to 

worry about the relevancy of data acquired. Linked list rundown information 

stockpiling is where the information are retrieved haphazardly. The incorporation of 
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linked list in corresponding channels, organization of binary trees, stack building, 

queues in programming, and overseeing social databases creates an ease in access.  

The exhibits are the most widely recognized information structure used to 

store data. Mostly, clusters are helpful in terms of linguistic assistance in getting to 

any component via its record number  (Nick, 2010).  

B-tree is a tree information structure that keeps information sorted, where 

logarithmic insertions and cancellations are easy. The B-tree is a generalization of a 

binary inquiry tree in that a node can have more than two branches. Unlike the 

common tree structures, the B-tree have improved framework and composes 

numerous information. It is commonly used in databases and document frameworks. 

It is an effective method in placing and retrieving records in a database. However, 

the significance of the alphabet B has not been theoretically expressed. The B-tree 

calculation saves time since a medium exist to run through the existing records, with 

a fast moving algorithm (Margaret, 2009). 

2.2 Data Structure of Linked Lists  

Linked lists consists of data and link. Via the link, each data element contains 

location information about the next immediate element. The index name is basically 

the pointer variable name in the linked list. The following Figure 2.1 illustrates a 

linked list, addressed as scores, which consists of four elements. An example of an 

empty linked list, or a null pointer is shown in Figure 2.1. 

 

 

 

Figure 2.1: Linked Lists ( Behrouz & Firouz, 2008) 
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Each linked list should be named in such way that it could be differentiated 

from the elements and the nodes itself. Figure 2.2 displays the name of a selected 

linked list, which is the head pointer that directs the link to the first node                  

in the linked list. A node would only have implicit rather than explicit                  

name (Behrouz & Firouz, 2008). 

 

 

Figure 2.2: The Name of a Linked List Versus The Names of Nodes 

2.2.1 Searching in Linked List  

Two separate pointers, known as previous (pre) and current (cur) are used in nodes. 

In the initial stage of a search, the pre pointer would be null, whereas the cur pointer 

would be linked to the first node of the link. The algorithm of this search structure 

links these two pointers all the way towards the end of the list. If the target           

value is bigger than the values in the entire list, the movement of the pointers would 

be slow. Figure 2.3 illustrates a linked list search algorithm with the pre and cur 

pointers (Behrouz & Firouz, 2008). 
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Search algorithm for linked list 

Algorithm : Search linked list (target, list) 

Purpose : Search the list using two pointers: per and cur    

Post : None 

Per : The linked list (head pointer ) and target value 

Return : the position of per and cur pointers and the 

value of the flag (true or false )  

{ 

Per ←  null The previous value= null 

Cur ←  list Current value  

While (target  < (*cur).data )  

{ 

Per ←  cur Cur ←  (*cur).link  

} 

If the Current value = flag= true 

If ((*cur).data=target ) flag ← true  

Else flag ← false 

Return (cur ,per ,flag) 

} 

Figure 2.3: Search Algorithm for Linked List ( Behrouz & Firouz, 2008) 

2.2.2 Advantages and Disadvantages for Linked List 

In simple terms, linked lists are a basic chain containing nodes or data, linked via 

pointers that points the current data towards the next data. 

2.2.2.1 Advantages 

All data linked in the list are from the similar group or search field. These are some 

advantages of linked list: 

(i) The information structure consumes low external memory during run time as 

it is a real time system.  
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