APPLICATION OF A NOVEL HIGH RESOLUTION WIDEFIELD SURFACE PLASMON MICROSCOPE IN CELL ENGINEERING, WOUND HEALING AND DEVELOPMENT OF NEW BINDING ASSAYS

M.M. ABDUL JAMIL

VOL I

PhD
2007

UNIVERSITY OF BRADFORD.
APPLICATION OF A NOVEL HIGH RESOLUTION WIDEFIELD SURFACE PLASMON MICROSCOPE IN CELL ENGINEERING, WOUND HEALING AND DEVELOPMENT OF NEW BINDING ASSAYS

The Widefield Surface Plasmon Resonance Microscope was used for high lateral resolution imaging of: binding events between micropatterned extracellular matrix proteins and antibodies, and the cell/surface interface.

Muhammad Mahadi Abdul Jamil
BEng (Hons) Medical Engineering

Supervisors: Dr. M. C. T. Denyer (School of Life Sciences)
and Dr. M. Youseffi (SoEDT)

Submitted for the degree of Doctor of Philosophy

School of Engineering, Design and Technology

University of Bradford

2007
STATEMENT OF ORIGINALITY

To the best of my Knowledge, the material or the contents presented in this thesis are original except where otherwise noted within the text. None of this research has been submitted in whole or in part for any degree at this or any other university.

Muhammad Mahadi Abdul Jamil
ACKNOWLEDGEMENTS

I would like to express my sincere and deepest gratitude to both my project supervisors Dr. Morgan Denyer and Dr. Mansour Youseffi first of all for allowing me to work on this excellent joint collaboration project between School of Engineering Design and Technology (SoEDT) and School of Life Sciences and their willingness to supervise me through out this study.

Words fail to express their contribution during this work since the day I began this research. Their continuous guidance and support with a high quality of supervision for which through their kindness and care so far, nine associated publications have been achieved from this research project and further publications are highly expected. The earliest publication was five months after commencing the research.

The attitude of both supervisors in demanding for regular meeting plus the setting of strict deadlines enabled the successful accomplishment of this research project. This certainly demonstrates their excellent etiquette of supervising postgraduate research students especially one like me coming from abroad who required a high motivational support to perform the research tasks allocated with a high degree of discipline. Indeed they have done their best and it is my believe that this collaboration will continue in the same way and in other directions, due to the valuable outcomes of this research program.

Nevertheless, these are only amongst the few great qualities of both supervisors which I am indebted to mention and I hopefully wish to adapt/follow these qualities especially when in the near future taking on the responsibilities of supervising postgraduate research students. Infinite amount of thanks also goes to both of them for their patience in correcting and proof reading this thesis.
I would also like to acknowledge the University Tun Hussein Onn of Malaysia (UTHM) and Ministry of Higher Education for the PhD scholarship award which made this postgraduate research possible.

Thanks also to the School of Pharmacy, SoEDT, and Institute of Pharmaceutical Innovation (iPi), for the award of travel grants for the attendance of conferences during this research project and the use of various equipment.

Thanks to the technical and secretarial Staff of the School of Pharmacy (Angela Tucny, Alan Lindley, Nosheen Sheikh, Jeff Boyce, Darren Brown) and SoEDT (John Purvis, Mick Cribb, Ian Mackay, Dij Chavda).

Prof Mike Somekh and his team at School of Electrical and Electronics Engineering, University of Nottingham for the collaboration work carried out especially with the newly developed 1.65NA objective lens based WSPR microscope.

Dr. Pete Twigg for his valuable time to assist with the Atomic Force Microscopy in SoEDT.

I would also like to thank my wife and family, for their patience, understanding, continuous support, motivation and encouragement which have made it possible for me to complete this study and I highly appreciate it. Last but not least I would like to thank all those people who have contributed directly or indirectly for the accomplishment of this postgraduate research program.

May God Bless You All.
I would like to dedicate this thesis to my beloved mother Aishah and father Abdul Jamil for their sacrifice in bringing me up and educating me since the day I was born, without their help it would not have been possible for me to reach this stage especially in pursuing a Doctorate Degree.

The dedication also goes to my wife Azlina Hussin who has always been there for me and our children (Huzaifah & Hanzalah) with her continuous encouragement, support and especially enormous sacrifice to enable the accomplishment of this study which will never be forgotten.
LIST OF ASSOCIATED PUBLICATIONS

Other journal papers in preparations (to be submitted later in 2007):

Application of a Novel High Resolution Widefield Surface Plasmon Microscope in Cell Engineering, Wound Healing and Development of New Binding Assays

Muhammad Mahadi Abdul Jamil

Keywords: Bio-molecular interaction, Antigens/Antibody interactions, Laminin, Fibronectin, Micro-contact printing, Surface Plasmons Microscopy, Transformation Growth Factor β three (TGFβ3), Cell guidance, Tetramethylrhodamine Isothiocyanate (TRITC), High resolution imaging, Cell on a substrate, Live cell imaging.

ABSTRACT: Surface Plasmon (SP) microscope systems are mostly built around the prism based Kretschmann configuration. In these systems the generation of Surface Plasmons (SPs) is achieved by p-polarized light striking a metallised prism surface at a specific angle and then monitoring the intensity of the reflected light. Thus in these systems, an image of the material can be obtained in terms of an intensity map, in which the intensity of the image is dependent on the way the light couples into the SPs. The drawback of these systems is that lateral resolution relies on the ability of plasmons to propagate along the metallised layer. The lateral resolution is thus limited to a few microns. Therefore, a new microscope system was developed, i.e. the Widefield Surface Plasmon Resonance (WSPR) microscope, that is not only capable of analysing molecular interactions at high vertical resolutions, but also enables SP imaging at much higher lateral resolution than prism based systems. The functionality of the novel (WSPR) microscope has been investigated by imaging a sequence of binding events between micropatterned extracellular matrix proteins and their specific antibodies both in air and real-time. Using the WSPR system a change in contrast was observed with each protein binding events. Images produced via the WSPR system were analyzed and compared qualitatively and quantitatively. The preliminary results acquired for these binding studies between antibody/antigens demonstrate that the WSPR system capable of resolving features down to 260nm although the theoretically proven lateral resolution of the WSPR system is ~500nm. Cell surface interactions under two different culture conditions, i.e. HaCaTs cultured on SPR substrate with Transforming Growth Factor β3 (TGFβ3) (50ng/ml) and without TGFβ3 were also investigated. It was found that HaCaTs cultured in the presence of TGFβ3 showed enhanced division and motility along with decreased cell attachment as compared with cells maintained in TGFβ3 free media. It is believed that cellular signalling by TGFβ3 is very important for enhancing tissue development in wound repair. It is confirmed that the WSPR microscope described here can be used to study sequential monomolecular layer of antibody/antigen interactions binding events and examination of cell surface interfacial interactions at lateral scales of less than one micron without the need for traditional immunofluorescent labelling. These results have significant implications in the development of new breed fast binding assays system and in enabling high resolution detailed examination of the cell surface couplings and cell signalling processes involved in cell attachment and migration.
LIST OF ABBREVIATIONS

3D three dimensional
Au Gold
Ag Aluminium
AFM Atomic force microscopy
ATP adenosine triphosphate
ATR attenuated total reflectance
Anti antibody
BFP back focal plane
BSA bovine serum albumin
BSE bovine spongiform encephalopathies
CCD charge-coupled device
DIC differential interference contrast microscope
DNA deoxyribonucleic acids
Dthiol 1,6-Hexanethiol
ER endoplasmic reticulum
EM electron microscope
ECM extra-cellular matrix
ESEM environmental scanning electron microscope
ELISA enzyme linked immunoabsorbant assay
FCS foetal calf serum
FGF fibroblastic growth factor
FIB fibronectin
GAGs glycosaminoglycans
HOBs human osteoblast
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>HaCaT</td>
<td>Human Keratinocytes</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s balanced salt solution</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>LAM</td>
<td>laminin</td>
</tr>
<tr>
<td>LCD</td>
<td>liquid crystal display</td>
</tr>
<tr>
<td>MCP</td>
<td>micro contact printing</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MIMIC</td>
<td>micromolding in capillaries</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acids</td>
</tr>
<tr>
<td>NA</td>
<td>numerical aperture</td>
</tr>
<tr>
<td>OWLS</td>
<td>optical waveguide lightmode spectroscopy</td>
</tr>
<tr>
<td>PCL</td>
<td>polycaprolactone</td>
</tr>
<tr>
<td>PEG</td>
<td>poly (ethylene glycol)</td>
</tr>
<tr>
<td>PEO</td>
<td>polyethylene oxide</td>
</tr>
<tr>
<td>PHA</td>
<td>polyhydroxykanoate</td>
</tr>
<tr>
<td>PHB</td>
<td>polyhydroxybutyrate</td>
</tr>
<tr>
<td>PLA</td>
<td>poly(lactic acid)</td>
</tr>
<tr>
<td>PLG</td>
<td>poly(glycolic acid)</td>
</tr>
<tr>
<td>PMNs</td>
<td>polymorphonuclear leukocytes</td>
</tr>
<tr>
<td>PPF</td>
<td>poly(propylene fumarate)</td>
</tr>
<tr>
<td>PPO</td>
<td>polypropylene oxide</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor</td>
</tr>
<tr>
<td>PDMS</td>
<td>polydimethylsiloxane</td>
</tr>
<tr>
<td>PLGA</td>
<td>poly(D,L-lactic-co-glycolic acid)</td>
</tr>
<tr>
<td>PLLA</td>
<td>Poly (L-lactic acid)</td>
</tr>
<tr>
<td>PDLLA</td>
<td>Poly (D,L-lactic acid)</td>
</tr>
</tbody>
</table>
PHSRN Pro-His-Ser-Arg-Asn
PLLACL Poly (L-lactic acid-co-e-caprolactone)
PDLLACL Poly (D, L-lactic acid-co-e-caprolactone)
QCM-D Quartz crystal microbalance with dissipation
RER rough endoplasmic reticulum
RGD Arg-Gly-Asp
RNA ribonucleic acids
RPMI Rosewell Park Memorial Institute
RRETAWA (Arg-Arg-Glu-Thr-Ala-Trp-Ala)
SP surface plasmon
SPs surface plasmons
SAM self assembled monolayer
SER smooth endoplasmic reticulum
SEM scanning electron microscope
SFM scanning force microscope
SPR surface plasmon resonance
STM scanning tunnelling microscope
SCOM scanning confocal optical microscope
TEM transmission electron microscope
TGF-β transformation growth factor beta
Thiol 2-Aminoethanethiol
TRITC tetramethylrhodamine isothiocyanate
UV ultra violet
WSPR Widefield Surface Plasmon Resonance
IWSPR Interferometer Widefield Surface Plasmon Resonance
TABLE OF CONTENTS:

STATEMENT OF ORIGINALITY .. II
ACKNOWLEDGEMENTS .. III
LIST OF ASSOCIATED PUBLICATIONS ... VI
LIST OF ABBREVIATIONS .. X
TABLE OF CONTENTS: .. X1II
LIST OF TABLES .. XVI1I
LIST OF FIGURES ... XIX
CHAPTER ONE .. 1
 1 INTRODUCTION AND LITERATURE REVIEW 1
 1.1 THE MICROSCOPE ... 1
 1.2 THE HISTORY OF MICROSCOPES ... 4
 1.2.1 The Light Microscopy .. 4
 1.2.2 The Early Biological Discoveries ... 5
 1.2.3 The Cell ... 5
 1.2.4 19th Century Advancement In LIGHT MICROSCOPY 6
 1.3 THE BASICS OF COMPOUND MICROSCOPE ... 7
 1.3.1 Human Eye ... 7
 1.3.2 Conventional Compound microscope .. 10
 1.3.3 Phase contrast Microscopy .. 13
 1.3.4 Differential Interference Contrast Microscopy 16
 1.3.5 Fluorescent microscope ... 18
 1.4 HIGH RESOLUTION SCANNING MICROSCOPY .. 20
 1.4.1 Electron Microscope ... 20
 1.4.2 Scanning Electron Microscopy .. 20
 1.4.3 Transmission electron microscopy ... 23
 1.4.4 The Environmental Scanning Electron Microscope 24
 1.4.5 Confocal Microscopy ... 25
 1.4.6 Scanning confocal optical microscopy .. 27
 1.4.7 Scanning Probe Microscopy ... 29
 1.5 SURFACE PLASMON SYSTEMS ... 32
 1.5.1 P-polarized and S-polarized light ... 33
 1.6 SURFACE PLASMON MICROSCOPY ... 35
 1.6.1 Application of Surface Plasmons Microscope 36
 1.7 AIMS AND OBJECTIVES ... 39
 1.8 OUTLINE OF THE THESIS ... 39

CHAPTER TWO ... 42
 2 CELL PHYSIOLOGY AND ORGANISATION .. 42
 2.1 INTRODUCTION .. 42
 2.2 CELL COMPOSITION AND CHARACTERISTICS 43
 2.2.1 Nucleus .. 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 Mitochondria</td>
<td>45</td>
</tr>
<tr>
<td>2.2.3 Endoplasmic Reticulum</td>
<td>46</td>
</tr>
<tr>
<td>2.2.4 Golgi Apparatus</td>
<td>48</td>
</tr>
<tr>
<td>2.2.5 Endosomes, Lysosomes and Peroxisomes</td>
<td>49</td>
</tr>
<tr>
<td>2.2.6 Cell Membrane</td>
<td>50</td>
</tr>
<tr>
<td>2.3 CELL ADHESION</td>
<td>53</td>
</tr>
<tr>
<td>2.3.1 Cell adhesion proteins</td>
<td>54</td>
</tr>
<tr>
<td>2.4 CYTOSKELETON</td>
<td>56</td>
</tr>
<tr>
<td>2.5 EXTRACELLULAR MATRIX (ECM)</td>
<td>58</td>
</tr>
<tr>
<td>2.5.1 Collagens</td>
<td>59</td>
</tr>
<tr>
<td>2.5.2 Fibronectin</td>
<td>59</td>
</tr>
<tr>
<td>2.6 CELL ADHESION AND CELL MIGRATION</td>
<td>61</td>
</tr>
<tr>
<td>2.7 CELL CYCLE</td>
<td>63</td>
</tr>
<tr>
<td>2.7.1 Cell Injury and Regeneration</td>
<td>65</td>
</tr>
<tr>
<td>2.8 CELL SIGNALLING</td>
<td>67</td>
</tr>
<tr>
<td>2.8.1 Apoptosis</td>
<td>68</td>
</tr>
<tr>
<td>2.9 SUMMARY OF CELL PHYSIOLOGY AND ORGANISATION</td>
<td>71</td>
</tr>
<tr>
<td>2.10 PHYSIOLOGY OF THE SKIN</td>
<td>74</td>
</tr>
<tr>
<td>2.10.1 Keratinocytes</td>
<td>75</td>
</tr>
<tr>
<td>2.10.2 The Basal Lamina</td>
<td>77</td>
</tr>
<tr>
<td>2.11 WOUND HEALING</td>
<td>78</td>
</tr>
<tr>
<td>2.11.1 Introduction</td>
<td>78</td>
</tr>
<tr>
<td>2.11.2 The Categories of Wound Healing</td>
<td>79</td>
</tr>
<tr>
<td>2.11.3 Wound Healing Phases</td>
<td>80</td>
</tr>
<tr>
<td>2.11.4 Stem Cells in the Wound Healing Process</td>
<td>83</td>
</tr>
<tr>
<td>2.12 GROWTH FACTORS</td>
<td>84</td>
</tr>
<tr>
<td>2.13 TISSUE ENGINEERING</td>
<td>85</td>
</tr>
<tr>
<td>2.13.1 Scaffolds</td>
<td>86</td>
</tr>
<tr>
<td>2.13.2 Tissue Engineering Substrate Materials</td>
<td>87</td>
</tr>
<tr>
<td>2.14 SCAFFOLDS CHARACTERISTICS</td>
<td>88</td>
</tr>
<tr>
<td>2.14.1 Different types of Scaffold Materials</td>
<td>89</td>
</tr>
<tr>
<td>2.15 OVERVIEW OF CERTAIN NATURAL POLYMERS AND THEIR GENERAL PROPERTIES</td>
<td>92</td>
</tr>
<tr>
<td>2.16 BIORESORBABLE IMPLANTS</td>
<td>93</td>
</tr>
<tr>
<td>2.16.1 Bioreorbable Polymeric Materials as Bone Plates, Screws for</td>
<td>93</td>
</tr>
<tr>
<td>Fracture Fixation and also Cell/Tissue Engineering Application</td>
<td></td>
</tr>
<tr>
<td>2.17 BIORESORBABLE POLYMERS FOR FRACTURE FIXATION</td>
<td>95</td>
</tr>
<tr>
<td>2.17.1 Bone Plates and Screws</td>
<td>95</td>
</tr>
<tr>
<td>2.17.2 Advantages of Bioreorbable Implants</td>
<td>96</td>
</tr>
<tr>
<td>2.17.3 Disadvantages or Issues Concerning Bioreorbable Implants</td>
<td>97</td>
</tr>
<tr>
<td>2.17.4 Factors affecting degradation</td>
<td>97</td>
</tr>
<tr>
<td>2.17.5 Optimisation of PLLA degradation rate</td>
<td>97</td>
</tr>
<tr>
<td>2.18 BIOFACTORS IN TISSUE ENGINEERING</td>
<td>99</td>
</tr>
<tr>
<td>2.19 CELL AND ARTIFICIAL IMPLANT MATERIAL INTERACTIONS</td>
<td>100</td>
</tr>
<tr>
<td>2.19.1 Adhesive ligand</td>
<td>100</td>
</tr>
<tr>
<td>2.19.2 Direct non-receptor-mediated cell-material binding</td>
<td>101</td>
</tr>
<tr>
<td>2.19.3 Receptor-mediated binding via ECM molecules or their parts</td>
<td>101</td>
</tr>
</tbody>
</table>
CHAPTER THREE ... 104

3 THE WSPR MICROSCOPE ... 104

3.1 INTRODUCTION .. 104
3.2 WSPR SETUP AND CONFIGURATION ... 106
 3.2.1 Main difference between the standard SPR and WSPR system 107
 3.2.2 Sample holder .. 109
 3.2.3 Heated sample chamber ... 110
 3.2.4 Servo controlled sample stage ... 112
 3.2.5 Laser beam source and Rotatable Diffuser 112
 3.2.6 Lenses: L1 and L2 .. 113
 3.2.7 Liquid Crystal Display (LCD) Adjustable Mask 113
 3.2.8 Lenses: L3 and L4 .. 115
 3.2.9 Oil Immersed High Numerical Aperture (NA) Lens 116
 3.2.10 The Imaging Arm ... 116
 3.2.11 CCD camera and Closed-Circuit TeleVision 117

3.3 WSPR IMAGING METHOD .. 119
 3.3.1 Optimization of SPs angle of illumination 121

3.4 SYSTEM ALIGNMENT ... 123
 3.4.1 Alignment steps ... 123
 3.4.2 Verification of the process of WSPR system alignment 128

CHAPTER FOUR .. 130

4 WSPR MICROSCOPE RESOLUTION ANALYSIS .. 130
 4.1.1 Introduction ... 130
 4.2 STAMPING TECHNIQUE OPTIMISATION .. 132
 4.3 MATERIALS AND METHODS ... 132
 4.3.1 Casting of plain PDMS stamps ... 132
 4.3.2 Immunostaining for Qualitative Analysis 132
 4.3.3 Protein stamping ... 133

4.4 WSPR MICROSCOPE RESOLUTION ANALYSIS 134
 4.5 MATERIALS AND METHODS ... 134
 4.5.1 Template preparation and Stamp casting 134
 4.5.2 SPR substrate preparation ... 135

4.6 RESULTS AND DISCUSSION .. 137
 4.6.1 Casting of plain PDMS stamps ... 137
 4.6.2 Protein stamping .. 138
 4.6.3 Protein stamping and Immunostaining for Qualitative Analysis 144

4.7 WSPR MICROSCOPE RESOLUTION ANALYSIS 145
 4.7.1 Stamp Fabrication for Micro Contact Printing 145
 4.8 SPR SUBSTRATE PREPARATIONS .. 147
 4.8.1 Micro-contact printing methods .. 147
 4.8.2 The WSPR microscope lateral resolution analysis 148

CHAPTER FIVE .. 152

5 PROTEIN BINDING IN AIR .. 152
 5.1 INTRODUCTION ... 152
5.2 MATERI AL S AND METHODS ... 153
 5.2.1 SPR substrates preparation ... 153
 5.2.2 Binding Studies .. 153
 5.2.3 Imaging with AFM .. 154
 5.2.4 Analysis of binding events using the WSPR Microscope 154
 5.2.5 Peroxidase and Immunofluorescent staining of the Laminin and
 Fibronectin pattern .. 155

5.3 RESULTS AND DISCUSSION .. 157
 5.3.1 SPR substrate preparation .. 157
 5.3.2 Binding Studies .. 157
 5.3.3 AFM image Analysis ... 161
 5.3.4 Analysis of binding events using the WSPR Microscope 162
 5.3.5 Peroxidase and Immunofluorescent staining of the Laminin and
 Fibronectin pattern .. 164

CHAPTER SIX .. 168
6 WSPR MICROSCOPE REAL-TIME HIGH RESOLUTION IMAGING
 OF BIO-MOLECULAR INTERFACIAL INTERACTIONS 168
 6.1 INTRODUCTION ... 168
 6.2 MATERIALS AND METHODS ... 169
 6.2.1 SPR substrate preparation ... 169
 6.2.2 Imaging with 1.65NA WSPR ... 170
 6.2.3 Analysis of binding events using the 1.65NA WSPR Microscope .. 171
 6.2.4 Immunostaining .. 171
 6.3 RESULTS AND DISCUSSION .. 172
 6.3.1 Imaging with 1.65NA WSPR ... 172
 6.3.2 Immunostaining ... 176

CHAPTER SEVEN .. 178
7 WSPR SENSITIVITY STUDY ... 178
 7.1 INTRODUCTION ... 178
 7.2 MATERIALS AND METHODS ... 180
 7.2.1 SPR substrate preparation: For Micro-contact Printing (MCP) and
 Self Assembled Monolayer (SAM) ... 180
 7.2.2 Imaging the binding events with the WSPR 182
 7.2.3 Analysis of binding events using the WSPR Microscope 183
 7.3 RESULTS AND DISCUSSION .. 184
 7.3.1 Imaging with WSPR: Fibronectin MCP test 184
 7.3.2 Laminin MCP test ... 185
 7.3.3 Fibronectin and Laminin SAM test 190

CHAPTER EIGHT .. 196
8 CELL IMAGING IN AIR .. 196
 8.1 INTRODUCTION ... 196
 8.2 MATERIALS AND METHODS ... 198

xvi
CHAPTER NINE ... 216

9 LIVE CELL IMAGING .. 216

9.1 INTRODUCTION... 216

9.2 MATERIALS AND METHODS .. 218

9.2.1 Live imaging of HaCaTs cell ... 218

9.3 RESULTS AND DISCUSSION .. 219

9.3.1 Live imaging of HaCaTs cell ... 219

CHAPTER TEN ... 223

10 THE OVERALL CONCLUSIONS .. 223

10.1 FURTHER FUTURE WORK ... 225

10.1.1 Technical developments .. 225

10.1.2 Biological Applications .. 227

REFERENCES: .. 229

APPENDIX A: RELEVANT MOVIES FILE FOR THE TIME LAPSE RECORDINGS .. 247

APPENDIX B: PUBLISHED JOURNAL AND CONFERENCE PAPERS 248
LIST OF TABLES

Table 2-1: Major cell adhesion protein families and the corresponding ligands (Martini et al., 2001) .. 56

Table 2-2: Demonstrate different components and organelles of cell, and their definitions and functions (Martini et al., 2001)... 73

Table 2-3: General Properties of Certain Natural Polymers. Adapted from (Ratner et al., 2004). .. 92

Table 2-4: Scaffold Processing Techniques. Adapted from (Ratner et al., 2004). 93

Table 2-5: Scaffold Materials and their Applications. Adapted from (Ratner et al., 2004). .. 98

Table 4-1: Shows feature number against feature dimensions as measured via Scion Image .. 150
LIST OF FIGURES

Figure 1-1: Diagrammatic representation of plant cell structure. Adapted from (http://sps.k12.ar.us/assengale/, 2007). ... 1

Figure 1-2: Illustration of complex anatomy of an animal cell showing various different compartment and components. Adapted from (http://micro.magnet.fsu.edu/, 2006). .. 2

Figure 1-3: A) Diagram showing the ray path focusing on the human eye during the process of image formation through a simple single lens magnifier. B) The prototype of the very first microscope by Antony Van Leeuwenhoek. Adapted from (Abramowitz, 2003) .. 4

Figure 1-4: A) Drawing of Robert Hooke's compound microscope. Adapted from (Wredden, 1947). B) Examples of Hooke's detailed drawings illustrating cellular structure of cork slice. Adapted from (http://askabiologist.asu.edu, 2006) 6

Figure 1-5: Diagram showing the visible and invisible wavelengths of light. Adapted from (Abramowitz, 2003). ... 7

Figure 1-6: Anatomy of the human eye and enlarged microstructure of the retina showing the presence of various cells and direction of the light conveyed through the lens. Adapted from (Abramowitz, 2003) ... 8

Figure 1-7: A) long distance and B) short distance. In A) the ciliary muscles are relaxed and the suspensory ligaments are under tension thus flattening the lens whereas b) the opposite is the case. Adapted from (Abramowitz, 2003). 9
Figure 1-8: A) An example of conventional microscope composed of basic optical components. Adapted from (Abramowitz, 2003). B) Shows the beam path in which light from a source is reflected via a mirror through the condenser lenses and focused on the object from where the light is magnified by the objective and the eyepiece lenses. Adapted from (Rochow and Tucker, 1994).

Figure 1-9: Illustration (with virtual specimen) showing an example of the magnification process involved in a compound microscope. Adapted from (Abramowitz, 2003).

Figure 1-10: A) Example of Phase Contrast microscope and B) The beam path are influenced by the phase plate and condenser annulus. Adapted from (http://www.microscopyu.com/, 2006b).

Figure 1-11: A) showing the amplitude phase shift that occurs between the specimen and water as a result of inclusion of a condenser annulus in the beam path and B) the subtraction of the diffracted wave from the incident direct wave giving rise to the resultant wave by the phase plate (Oldfield, 1994).

Figure 1-12: Schematic diagram showing the two beam path occurs in a DIC system and how a differential interference signal is achieved. Adapted from (Oldfield, 1994).

Figure 1-13: Schematic diagram showing example of the excitation beam path in a fluorescent microscope, where the figure shows UV light filtering. Adapted from: (http://www.uiowa.edu/~cemrf/, 2006).
Figure 1-14: Complete schematic diagram showing the excitation of electron beam and the detection process on the television. Figure adapted from (Rochow and Tucker, 1994).

Figure 1-15: The presence of different mode for electron scattering in the typical Electron Microscope (Rochow and Tucker, 1994).

Figure 1-16: M. Minsky Prototype of the Double focussing stage scanning microscope. Adapted from (Minsky, 1988).

Figure 1-17: Schematic diagram showing laser beam path in a typical SCOM. A) The presence of the pinhole in front of the detector acts as a spatial filter. Geometrically defines a three dimensional volume from which light could be detected; B) Off-axis light does not hit the pinhole and is blocked at the pinhole.

Figure 1-18: Simplified setup of a confocal microscope where light from the laser is passed through the pinhole and scanned across the specimen by the rotating mirrors. Adapted from (Semwogerere and Weeks, 2005).

Figure 1-19: Detailed diagram showing the beam path in a SCOM and how the out of focus fluorescent light eliminated by the detector pinhole allows the generation of in focus beam. Adapted from (http://www.microscopyu.com/, 2006a).

Figure 1-20: Schematic diagram showing the optical lever for detecting cantilever deflection in an AFM. Adapted from (Rochow and Tucker, 1994).

Figure 1-21: Schematic drawing of the typical Kretschmann configuration used to excite surface plasmons (Kano and Knoll, 1998).
Figure 1-22: Graph showing the modulus of the reflection coefficient for a substrate consisting of a gold layer sandwiched between glass and matching oil. Gold thickness = 43.5 nm. The optical wavelength used was 633 nm. Solid line represent = p-incident polarisation, fine dashed line represent = s-incident polarisation. Adapted from (Somekh, 2003).

Figure 2-1: Detailed illustration of a cell with its organelles. Adapted from (www.biology.eku.edu/, 2005).

Figure 2-2: Detail diagram of Nucleus. Adapted from (http://biology.uwinipeg.ca/, 2005).

Figure 2-3: Mitochondrian and inner structures within mitochondria; attempting to show a 3D structure of mitochondrian. Adapted from (www.bio.miami.edu, 2005c).

Figure 2-4: Shows the endoplasmic reticulum as seen under light microscope. Adapted from (www.bio.miami.edu, 2005a).

Figure 2-5: Shows the Golgi apparatus along with transport vesicles from ER. as seen under light microscope. Adapted from (www.bio.miami.edu, 2005b).

Figure 2-6: Shows details of Nucleus and Lysosome under light microscope. Adapted from (http://fajerpc.magnet.fsu.edu/, 2005).

Figure 2-7: Drawing of cell membrane composition. Adapted from (www.biologylessons.sdsu.edu/, 2005).