

ANALYSIS OF DIJKSTRA’S AND A* ALGORITHM TO FIND THE SHORTEST

PATH

AMANI SALEH ALIJA

A thesis submitted in

fulfillment of the requirements for the award of the

Degree of Master of Computer Science (Software Engineering)

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

SEPTEMBER, 2015

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

v

ABSTRACT

There are so many algorithms used to find the shortest path such as Dijkstra, A*

algorithm, Genetic algorithm, Floyd algorithm and Ant algorithm. In this study, two

algorithms will be focused on. This study compares the Dijkstra’s, and A* algorithm

to estimate search time and distance of algorithms to find the shortest path. It needs

the appropriate algorithm to search the shortest path. Therefore, the purpose of this

research is to explore which is the best shortest path algorithm by comparing the two

types of algorithms. Such that it can be used to solve the problem path, search to

analyze their efficiency in an environment based on two dimensional matrix which is

best because of lookup time. This study implements the algorithm in visual C++ 2008

and design interface for the algorithms that allow the user to find the shortest path with

the search time and the distance by determine the size of map, starting node and the

destination node. The experimental result showed the search time of A* algorithm is

faster than Dijkstra’s algorithm with average value 466ms and the distance is same of

the both of algorithms.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vi

ABSTRAK

Terdapat banyak algoritma yang digunakan untuk mencari laluan terpendek seperti

Dijkstra dan algoritma A*, algoritma genetic, algoritma Floyd dan algoritma Ant.

Untuk kajian ini, dua jenis algoritma akan ditekankan. Kajian ini akan

membandingkan masa carian daripada Dijkstra dan algoritma A * untuk mengetahui

algoritma yang paling pantas apabila mencari laluan terpendek. Ia perlu algoritma yang

sesuai untuk mencari laluan terpendek. Oleh itu, tujuan kajian ini adalah untuk

meneroka laluan algoritma terpendek yang terbaik dengan membandingkan dua jenis

algoritma yang boleh digunakan untuk menyelesaikan masalah laluan carian untuk

dianalisa kecekapannya. Lingkungan berdasarkan matriks dua dimensi adalah yang

terbaik oleh kerana masa pencariannya. Kajian ini akan menggunakan algoritma visual

C++ 2008 dan reka bentuk antaramuka untuk algoritma yang membolehkan pengguna

untuk mencari laluan terpendek dengan carian masa dan jarak dengan menentukan saiz

peta, nod permulaan dan destinasi nod.Keputusan experimental menunjukkan carian

masa bagi algoritma A* adalah lebih pantas daripada algoritma Djikstra dengan nilai

purata 466ms dan mempunyai jarak yang sama. Bagi kebanyakkan komputer moden,

memori tidak begitu penting, dan jika ia penting sekalipun, kawasan yang tidak

digunakan boleh disembunyikan dan dimuaturun bila diperlukan. Untuk

membandingkan jalan algoritma terpendek di antara dua algoritma yang digunakan,

satu antaramuka telah direkabentuk. Ini adalah supaya perbandingan dapat ditentukan

dan algortima yang mana yang lebih sesuai untuk mencari laluan terpendek.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vii

TABLE OF CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF TABLE x

LIST OF FIGURES xi

CHAPTER 1 1

INTRODUCTION 1

1.1 Background of study 1

1.2 Problem Statement 3

1.3 Objectives of the Research 3

1.4 Scope of Research 4

1.5 Motivation 4

1.6 Research Outline 4

CHAPTER 2 5

LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Application Areas of Path Finding Algorithms 5

2.2.1 PFAs in Games and Virtual Tours 6

2.2.2 Robot Motion and Navigation 7

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

2.2.3 Driverless Vehicles 8

2.2.4 Transportation Networks 10

2.2.5 Human Navigation 11

 2.3 Shortest path analysis 14

 2.4 Shortest path algorithm 14

2.4.1 Dijkstra’s algorithm 15

2.4.2 Depth-first search algorithm 20

2.4.3 A* algorithm 20

2.4.3.1 Manhattan distance 23

2.4.3.2 Diagonal distance 25

2.4.3.3 Euclidean distance 25

2.5 Comparison of A* and Dijkstra’s 26

2.6 Review of the techniques 27

2.7 Summury 31

CHAPTER 3 32

RESEARCH METHODOLOGY 32

3.1 Introduction 32

3.2 The flow chart for the project work 32

3.2.2 Finding the shortest path using Dijkstra algorithm 35

3.2.2 Finding the shortest path using the A* algorithm 35

3.2.3 Compare the result 37

3.3 Summary 37

CHAPTER 4 38

PSEUDO CODE FOR THE AND IMPLEMENTATION 38

4.1 Introduction 38

4.2 Dijkstra's algorithm 38

4.2.1 Pseudo code for Dijkstra's algorithm 39

4.2.2 Implementation of Dijkstra's algorithm 40

4.3 A* algorithm 41

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ix

4.3.1 Pseudo code for the A * algorithm 42

4.3.2 Implementation of A* algorithm 43

4.4 Summary 44

CHAPTER 5 45

RESULT AND DISCUSSION 45

5.1 Introduction 45

5.2 Comparative Analysis 45

5.3 Summary 50

CHAPTER 6 51

CONCLUSIONS 51

6.1 Objectives Achievement 51

6.2 Summary 51

6.3 Future Work 52

REFERENCES 53

VITA 56

APPENDIX I 57

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

x

LIST OF TABLES

2.1 Difference between A* algorithm and Dijkstra’s algorithm 26

2.2 Comparison of finding path algorithm 30

5.1 Comparison between A* algorithm and Dijkstra’s algorithm in search time 50

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xi

LIST OF FIGURES

2.1 3D Model of latiff and Hassan 6

2.2 (a) Grid vs (b) Framed-Quadtreee approach in D* algorithm 8

2.3 Autonomuos vehicle used in D* algorithm test 9

2.4 Champion DARPA challenge race 2005 10

2.5 (a) Dijkstra’s search, (b)A* search on road network of Dallas Ft-Worth urban

 Area 11

2.6 Kulyukin’s Robotic Aid 12

2.7 Wearable interface for Finger-Braille 12

2.8 Drishti’s navigation system 13

2.9 Dijkstra’s search 16

2.10 First step of Dijkstra’s algorithm 16

2.11 Second step of Dijkstra’s algorithm 17

2.12 Third step of Dijkstra’s algorithm 17

2.13 Step 4 of Dijkstra’s algorithm 18

2.14 Fifth step of Dijkstra’s algorithm 18

2.15 Step6 of Dijkstra’s algorithm 19

2.16 Shortest path by Dijkstra’s algorithm 19

2.17 Starting and Destination point in A* algorithm 21

2.18 Starting the A* search algorithm 21

2.19 Putting the neighboring cells to the open list 22

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xii

2.20 Parent relation of Starting Node 22

2.21 Manhattan distance calculation 24

2.22 Diagonal distance calculation 25

2.23 Euclidean distance calculation 26

2.24 Comparison between A* and Dijkstra’s algorithm 27

3.1 The Steps Involved in the project work 33

3.2 The flow chart of Dijkstra’s algorithm 34

3.3 The flow chart of A* algorithm 36

4.1 Pseudo-code of the dijkstra’s algorithm for the shortest path problem 39

4.2 Segmentation source code for Dijkstra’s algorithm 40

4.3 Interface of Dijkstra’s algorithm 41

4.4 Pseudo-code of the A* algorithm for the shortest path problem 42

4.5 Segmentation source code for A* algorithm 43

4.6 Interface of A* algorithm 44

5.1 Case1 of Comparison between A*algorithm and Dijkstra’s algorithm 6

5.2 Case2 of Comparison between A*algorithm and Dijkstra’s algorithm 47

5.3 Case3 of Comparison between A*algorithm and Dijkstra’s algorithm 48

5.4 Case4 of Comparison between A*algorithm and Dijkstra’s algorithm 49

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Path finding is defined as the process of moving an object from its earlier position to

the final position. Different application areas used Path Finding Algorithms (PFA).

These include Games and Virtual Tours, Driverless Vehicles, Robot Motion and

Navigation.

Path finding is usually described as a process of finding a path between two

points in a certain environment. In most cases the objective is to find the shortest path

possible, which would be optimal i.e., the shortest, cheapest or simplest. Several

criteria such as, path which imitates path chosen by a person, path which requires the

lowest amount of fuel, or from two points A and B through point C is often found

relevant in many path finding tasks.

Finding the shortest path is the most difficult issue in many fields, starting with

navigational systems, artificial intelligence and ending with computer simulations.

Although these fields have their own specific algorithms, there are many general

purpose path finding algorithms that are applied successfully. However, it remains

unclear what benefits certain algorithm have in comparison with others.

Shortest path algorithms are currently used widely. They are the basis of some

problems such as network flow problems, tree problems and other related problems.

They decide the minimum cost of travel of the problems production cycle, the shortest

path in an electric circuit or the most reliable way.

The internet is a vast field where the shortest path algorithm is usually applied.

The Internet problems comprise data package transmissions with minimal time or

using the most reliable path.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

This research attempts to make an implementation of a shortest path algorithm

by using A* algorithm and compare it with Dijkstra's algorithm on different criteria,

including search time and the distance were implemented to analyze their efficiency

in an environment based on 2 dimensional matrix.

A* algorithm is an algorithm that is widely used in path finding and graph

traversal. The process of plotting a resourcefully traversal path between points is called

nodes. A* traverses the chart and follows the lowermost known path, keeping a sorted

priority queue of alternate path sections along the system. If at any position, a segment

of the path being traversed has a higher cost as compared to another encountered path

segment, it leaves the higher-cost path segment and traverse low cost path segment

instead this procedure continues until the goal is reached.

The search space can be reduced by the use of an efficient heuristic function.

Without heuristic or when the heuristic function equals to zero, A* becomes Dijkstra‟s

path finding algorithm. In addition, if it is extremely high, A* turns into BFS.

Therefore, the heuristic function plays a vital role in controlling the behavior of A*. If

the heuristic function gives a very little value, then A* will become slow to find the

shortest path. If heuristic evaluation is very high value, then A* will become very fast.

It shows that the tradeoff between speed and accuracy of the algorithm is dependent

on heuristics. Therefore, a heuristic should be chosen very cautiously, keeping in mind

this tradeoff. A heuristic that is specific to the problem should be used in

algorithms.The time complication of A* depends on the heuristic.

Considering the worst case scenario, the number of nodes expanded is

exponential in the length of the solution, but it is polynomial when the questspace is a

tree, there is a single goal state and the empirical function h.

Dijkstra's algorithm is also known as the single-source shortest path problem.

It computes the length of the shortest path from the source to each of the vertices on

the plot. The single basis shortest path problem can be defined as: Let G= {V, E} be a

focused weighted graph with V having the set of vertices. The exceptional vertex s in

V, with s as the source and let for each edge e in E. Edge Cost(e),is the length of edge

e. All the weights in the plotought benon-negative. Before going in depth about

Dijkstra’s procedure talk in detail about directing-weighted graph. Directed graph can

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

3

be defined as an ordered pair G: = (V, E) where V is a set, having elements called

vertices or nodes and E is a set of ordered pairs of vertices, called directed edges, arcs,

or arrows. Directed graphs are also known as a digraph.

1.2 Problem Statement

Path finding generally refers to finding the shortest path between any two locations.

Many existing algorithms are designed precisely to solve the shortest path problem

such as Genetic, Floyd algorithm.

The method proposed in this study is A* algorithm and Dijkstra’s, will

probably find the shortest path solution in a very short amount of time and minimum

distance. A* algorithm, a kind of informed search, is widely used for finding the

shortest path, because the location of starting and ending point is taken into account

beforehand. The A* algorithm is a refinement of the shortest path algorithm that directs

the search towards the desired goal. A* use the heuristic function to speed up the

runtime. The general purpose of heuristic algorithm is to find an optimal solution

where the time or resources are limited. Dijkstra algorithm is simple and excellent

method for path planning. Dijkstra’s algorithm chooses one with the minimum cost

until found the goal, but the search is not over as it calculates all possible paths from

starting node to the goal, then choose the best solution by comparing which way had

the minimum distance. Dijkstra’s algorithm is a special case of A* star algorithm

where heuristic is zero. It remains current because it is realistically fast and relatively

easy to implement.

1.3 Objectives of the Research

For the aim of this research to be achieved, the following objectives should be fulfilled:

(i) To apply A* and Dijkstra 's algorithm to find the shortest path.

(ii) To compare A* and Dijkstra’salgorithm based on distanceand time

consumption for the shortest path.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

1.4 Scope of Research

The research will focus onlytocompare two algorithm A* and Dijkstra’s algorithm

based ontime to search and minimum distance on the shortest path in four casesto see

how the both of algorithm work in small and big size of search: 8*8 ,22*22, 33*33,

10*10 in two dimensional grid and implement the algorithms inVisual C++2008.

1.5 Motivation

Dijkstra’s Algorithm is efficient in finding the shortest possible path despite having a

disadvantage of time wasting in exploring directions that are not promising. Greedy

Best First Search explores in promising ways, but not necessarily find the shortest

possible path efficiencies. The A* algorithm uses the actual distance from the start as

well as the estimated distance to the goal. The algorithm is successful because it

gathers some information used by Dijkstra’s algorithm (supporting vertices that are

near to the starting point) and information that Best- First-Search uses (favoring

vertices that are close to the goal). It is similar to Dijkstra’s procedure in that it can be

used to find the shortest path. It is also comparable to Best-First-Search in that it can

use a heuristic to guide itself.

1.6 Research Outline

This thesis consists of five chapters. Chapter 1 is an overview and main objectives of

the project. It consists of the scope of work covered and the objectives of the

project.After this introduction chapter, basic Methods and related work are briefly

explained in chapter 2.Chapter 3 discusses the methodology and tools to obtain the

entire objectives of this project.Chapter 4 explains the implementation and detailed

steps used in this work. Chapter 5 discusses the result and compares it by running time

for each method. Chapter 6 includes the objectives achieved, future work, and

conclusion.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Before designing the application and the system environment, this chapter gives

insight intotechnique used in this project.Furthermore, general uses that are related to

thisproject arespecified at the end of this chapter.

2.2 Applications of Path Finding Algorithms

Path finding algorithms are useful in theareaof robotic manipulation, as it can be used

to control a robot around difficult terrain without the need of human intervention

(Carsten J, 2007). Itwould be profitable if the robot were ona differentplanet like Mars,

in which some topography must be avoided, but due to the extremedistances involve,

guidingit completely through remote control would be difficult (too much delay in the

radio transmission)(Obara T et al., 1994).It could also be useful if the robots are to be

operated underwater, where radio waves could not get to it. It also find applications in

almost any case where a vehicle needs to go somewhere, while avoiding obstacles,

without human intervention.(David M. et al., 2004)other use is in computer games

where something needs to be moved from one place to another avoiding any walls or

other difficulties in the way.

The algorithms might also be used in determiningthe shortest path to drive

betweentwopointson a map. Which is the best way to route an e-mail through computer

network or shortest path to run telephone wires through existing circuits.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

2.2.1 PFAs in Games and Virtual Tours

Path finding is an important part of game programming. Game typesmove according

to the path they (or computer) calculate. There are some algorithms used in the

gamechanging with the complexity and purpose of the path calculation.

Themostalgorithm found currently in games todayare the A* Algorithm.

“What makes the A* algorithm so appealing is that it is guaranteed to find the

best path between any initial point and any ending point, assuming that a path exists.”

(David M. et al., 2004).

Users directed in a virtual building or virtual duplicateof a real building, for

example a museum, can see the artworks without having to go to a physical place. This

is moralfor eluding traveling long distances and attaining more people to show the

works. Users can arrange their visit path and algorithm calculates the route thenthe

virtual tour begins.Shafie& Hassan (2004) work on this scenario and developed an

application capable of doing path planning process..They used an A* algorithm to find

the path. The final path can be seen in a 3D environment (Figure 2.1).

Figure 2.1: 3D Model of Latiff and Hassan 2004

(M. Shafie, & R. Hassan, 2004)

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

7

Autonomous triangulation of virtual characters, is also an important task to work

on.It is required to prevent obstacles and proceed to their paths without any

impairment.In a virtual environmentnot like the robotic navigation, there is no data

coming from sensors, there exist the site database only. (Fr ِ hlich & Kullmann,

2002)haveusedA* algorithm studies, on the environmental modeling of the area and

resolved that the uniform-sized grid cell methodology is a better choice, alsostatedthat

A* algorithm works well in the environments where the world isflat,whichsuits our

environment well.

2.2.2 Robot Motion and Navigation

Mobile robots moving in an outdoor or indoor environment must have their course

scheduling and navigational schemes in order to be able to find their direction.

Commonly, the navigation and pathfinding units are placed on the robots so that can

move by themselves. It is imperative to have this property, if the usage of these robots

is considered. In the military, detection of hazardous or explosive materials and

discovery and investigation of unknown areas are very suitable for this type of robots.

Razavian and Sun (2005) proposed a new algorithm called Cognitive Based Adaptive

Path Planning Algorithm (CBAPPA) comparing it with A* Algorithm and Focused

D* Algorithm (D*, aDynamic A* algorithm which is resulting from the A* Algorithm

and has some improved added capabilities used for autonomous units),used it to

observe the behaviour of biological units and paid attention to the behaviour of

ignoring the irrelevant information from the surroundings, trying toreachthetarget

speedily. This method may not use optimum paths, but the results were efficient. This

algorithm is also prepared for self-processing units, which can be a good example for

our future works.

Koenig and Likhachev (2002) announces another new algorithm called “D*

Lite” which is a variant of D* Algorithm for improved fast planning in unknown

terrain. D* algorithm does better than A* in unknown areas when used in self-directed

robots. D* Lite is more effective than D* because it is simpler, shorter and easier to

understand. D* and D* Lite algorithms appraise their knowledge about the terrain

when they move into it and continuously perform planning of the track. This method

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

8

is quite different from our environment, but can be very useful when it is implemented

system in various (may be unknown) conditions.

It is stated in Artificial Intelligence (AI) for the Game Developers book(David

M. et al., 2004) that: “Pathfinding problem is thought as solved, future works are for

making the algorithm fast and more efficient.” Studies give more effective and faster

algorithms to use and implement in different areas.

2.2.3 Driverless Vehicles

Another area of applicationof the path finding algorithms is the programmed vehicles

that will be able to discover its way without making contact with the impediments.In

addition, its primary usage is in the military, but it can be implemented in diverse areas

of the natural life.

In the future, can hunt for the lost outdoor adventurers, hikers or can be very

beneficial in case of natural disasters, which the sensors have.

(Yahja et al.,2000) introduced the D* algorithm which stands for Dynamic A* which

they used framed-quadtrees (Figure 2.2) in constructing their environment and data

structures, and verified their algorithm in as elf-directed vehicle (Figure 2.3). Their

algorithm continuously transforms itself when it gets fresh information about the

terrain.

Figure 2.2: (a) Grid (b) Framed-Quadtree approach in D* Algorithm

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

9

According to (Yahjaet al.,2000), if accurate and complete maps were

obtainable, it would be appropriate to use a normal search method such as A*.

Figure 2.3: Autonomous vehicle used in the D* algorithm trial

In the United States, there was a race ordered by The Defense Advanced

ResearchProjects Agency (DARPA), that contestants were the autonomous ground

vehicles from around the globe. The race was held twice until 2007; one in 2004 where

none of the participants were capable to complete the course and the second one was

in 2005. In 2005, 4 vehicles completed the 132-mile desert track, and the winner is a

VWTouareg (Figure 2.4) which was developed by Stanford Racing

Team(http://www.stanfordracing.org). This car has a processing system t`o calculate

its route while on the road. Onboard, computers control the vehicle from start to finish,

and there was not any intervention from the race team. It constantly modifies the path

according to the information it gets from its sensors while it moves on the route.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

10

Figure 2.4: Champion DARPA Challenge race 2005

2.2.4 Transportation Networks

In road networks, it is getting more important to find a path to the final end point. If a

person is new to a location, sample time can be was ted in locating the end point.

There exist some products established to overcome this difficulty, providing a

map of the region. After entering the starting and the final destination, it is likely to

acquire the shortest possible track.

Experimental studies were performed to select the best algorithm for using in

the path finding process. For instance study by Jacob et al (1999) from Los Alamos

National Laboratory who compared the shortest path algorithms by doing some

experimental analysis on big database (Figure 2.5), as sessed the Dijkstra, A* and

modified A* algorithms with respect to the calculation time on the real network

solution quality, affluence of execution and the extensibility of the algorithm,Found

out that A* algorithm has a better time efficiency.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

11

Figure 2.5: (a) Dijkstra’s Search (b) A* search on road network of Dallas Ft-Worth

urban area

Figures 2.5 showed that A* Search is also much more effectivewith respect to

the number of nodes visited. Therefore, Dijkstra's Algorithm searches much more

nodes than A* does.

2.2.5 Human Navigation

There are also some studies to help human navigation, especially for visually impaired

and deaf-visually impaired people. For example a study by Kulyukin et al (2004) used

RFID technology and the modified potential field’s algorithm for human map reading.

They used a robotic director, moving at moderate speeds, thereby detecting the free

spaces about itself with sensor and laser range finders (Figure 2.6). Additionally, they

sited RFID tags to the objects in the surroundings. The guide senses these tags and

discovers its way between the objects. This approach is good for navigating in an

unidentified area like anestate and identifying the path without any need for a map

database of that area. It also gives the administrator to change the place of the objects

without changing any scene database.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

12

Figure 2.6: Kulyukin's Robotic Aid(Kulyuki et al., 2004)

Amemiya, Yamashita, Hirota and Hirose (2004)used RFID technology,

motionsensor together witha wearable computer and a wearable boundaryfor Finger-

Braille (Figure 2.7) in order to interact with deaf-visually diminished people. Test area

was covered ove 1300 RFID tags. When the user moves, the system does the

calculations and gives directions to the user by the vibration alerts on fingers.

Figure 2.7: Wearable interface for Finger-Braille(Amemiya et al.,2004)

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

13

Beside RFID technology, Global Positioning System (GPS) and ultrasound

technology were also used in some studies. Study conducted by Ran et al

(2004)proposed a dissimilar system that can be used both outdoor and indoor. The

system works with Differential Global Positioning System (DGPS) at outdoor, and

with ultrasound positioning system indoors (Figure 2.8). User can shift between these

two systems with a simple voice command. The system switches to the ultrasound

positioning system indoor, and uses simple geometry calculations to find the location.

Figure 2.8: Drishti's navigation system(Ran et al., 2004)

Mostly, all of these systems are established on outdoor navigation which

intended to aid the visually impaired people. These systems bring some benefits to

users,which make their life easier.However, in order to make shopping available to

these people this is need to implement some of that technology in one indoor system.

In all of these systems users have to carry or read some tools which have big capacities.

This brings an additionalweight to the operator. These schemes should be improved in

order for the integration of the visually impaired people inthe real life.

Feasible systems should comprise of small devices capable of doing all of the

requested processes. They should be carried along without any problem.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

14

2.3 Shortest Path Analysis

A shortest path difficulty is to find a route with the least travel cost from one or more

roots to one or more destinations through a network (Panahi & Delavar, 2008).

Shortest path analysis is important because of its wide range of applications in

transportation (Lim & Kim, 2005). (Naqiet al.,2010)stated that the shortest path helps

calculate the most optimal route, and optimal routing is the process of defining the best

route to get from one location to another. The best route could be shorter or faster

depending on how it is defined.

The shortest path can be computed either for a given start time or to find the start

time and the path that leads to less travel time journeys.

2.4 Shortest Path Algorithm

Due to the nature of routing applications, there is the need forsupple and effective

shortest path techniques, both from a processing time point of view and also in terms

of the memory requirements. Unfortunately, prior research does not offer a

perfectcourse for picking an algorithm when one faces the difficulty of computing

shortest paths on real road networks.However, like most popular papers on Shortest

Path algorithms, have concentrated their focus on algorithms that guarantee optimality

and have worked on tuning data structures used in implementing these algorithms.

(Faramroze Engineer, 2001.).

In road networks, it is more imperative to discover the way to the final

destination. When an individualis new to a place, much time may be wasted inlocating

the endpoint. There exist some products established to overcome this difficulty,

providing a map of the region. After entering the starting point and the final location,

it is possible to get the shortest path.

There are many algorithms that are normally used, ranging from Simplex to

complex, in order to be able to solve theshortest path problem(Mustafa,2007).The

modest approach is to walk openlyheaded for the goal until met with any kind of

obstruction. When come across with any object, direction will be changed and it can

be passed by tracing around the obstacle.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

15

Additionally, there is also another algorithm which plans the whole path before

moving anywhere. Best-first algorithm expands the nodes based on a heuristic

approximation of the cost to the objective. Nodes, which are projected to give the best

cost, are expanded first. The most commonly used algorithm is A* algorithm, which

is a combination of theDijkstra’s algorithm and the best-first algorithm (Mustafa,

2007).

2.4.1 Dijkstra’s algorithm

Dijkstra’s algorithm is an algorithm named after its developer, E. Dijkstra Oliver j in

1959. Woodman (2007)looks on theuntreatedneighbours of the node closest to the

start, and sets or modernizes their distances (in terms of cost, not number of nodes)

from the initial point.Dijkstra's Algorithm is a chart search algorithm that unravels the

single-source shortest path delinquentfor a plot with non-negative edge path costs,

producing a shortest path tree.

Dijkstra’s algorithm or variations of it are the most commonly used route

finding algorithm for solving the shortest path (Sadeghi-Niaraki et al., 2011).

Dijkstra's algorithm is sometimes called the single-source shortest path because it

solves the single-source shortest-path difficulty on a subjective, directed graph (G =

V, E) where

V is a set whose elements is called vertices (nodes, junctions, or intersections)

and E is a set of ordered pairs of vertices entitled directed edges (arcs or road

segments). To find a shortest path from a source s vertex or location to a destination

location d, Dijkstra's algorithm maintains a set S of vertices whose final shortest-path

weights from the sources that already been determined. Knowing that w is the edge

weight, the edge is an ordered pair (u, v) and assuming w (u, v) ≥ 0 for each edge (u,

v) ϵ E, the algorithm recurrently chooses the vertex u ϵ V – S with the least shortest-

path approximation, adds u to S, and relaxes all edges leaving u (Puthuparampil, 2007).

 The Dijkstraalgorithm enlarges the node that is at the extremefrom the initial

node, so it finishesup “stumbling" into the goal node. Just like the breadth-first search,

it is certain tofind the shortest path (Figure 2. 9) (Cormen et al.,2001).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

16

Figure 2.9: Dijkstra's Search

From the figure (Figure 2.10) shown the objective is to find the shortest paths

from origin to all other nodes. Dijkstra’s will assign zero to initial node and node A

while assigning infinity to all other nodes that are not visited. It will then assign a value

gradually to get smallest value up to the destination, which is node E.

Figure2.10: First step of Dijkstra’s Algorithm

Step 1: Node A is set to become current node. Zero is assigned to node A and

infinity to all other nodes.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

17

Figure2.11: Second step of Dijkstra’s Algorithm

Step 2: Consider all unvisited neighbors and tentative distance will be

calculated. Previously recorded value will be replaced since new value less than

infinity.

Figure 2.12: Third step of Dijkstra’s Algorithm

Step 3: Since all neighbors of node A havebeen taken into account, it is struck

as visited and will not be tested again.

The next least distance from node A, node D now will be marked as current

node. Itsneighbouring nodes will be updated with the new minimal distance value.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

18

Figure 2.13: Step 4 of Dijkstra’s Algorithm

Step 4: Since all neighbors of node D have been taken into account, it is marked

as visited and will not be checked over.

The next minimal distance from node D, node B will now be marked as current

node. Its neighboring nodes will be updated with the new minimal distance value.

Figure 2.14: Fifth step of Dijkstra’s Algorithm

Step 5: Since all neighbours of node B have been accounted for, it is marked

as visited and will not be testedover.

The next available minimal space from node B, which is node C now will be

taken as present node. Its neighbouring nodes will be updated with afresh minimal

distance value.

 Step 5: Since all neighbours of node B have been accounted for, it is marked

as visited and will not be tested .

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

19

The next available minimal space from node B, which is node C now will be

taken as present node. Its neighbouring nodes will be updated with a fresh minimal

distance value.

Figure2.15: Step 6 of Dijkstra’s Algorithm

Step 6: Meanwhile, all neighbours of node C have been taken into account, it

is marked as visited and will not be checked .

The next shortest distance from node C is node E, which will be chosen as

current node. Since all the nodes have been visited, the shortest route from node A to

node E is found.

Figure2.16: Shortest path by Dijkstra’s Algorithm

The shortest distance from Node A to Node E is:

A D B C E

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

20

2.4.2 The Depth-First Search Algorithm

The depth-first search spreads nodes (it extends a node’s descendants before its

siblings) until it either reaches the goal or a certain cutoff point, it then goes onto

thenextlikelyroute.

The best-first search algorithm is anempirical search algorithm, that cantake

knowledge about the plot into account. It is comparable to Dijkstra’s algorithm, butit

goes to the node nearby to the goal, rather than the node that is extreme from the start.

2.4.3 A* Algorithm

The algorithm was first described in 1968 by Peter Hart, Nils Nilsson, and Bertram

Raphael.It is a universal space-search algorithm that can be used to find the

clarificationsto many problems,with shortest pathasone of such.It has been used in

several real-time strategy games and is perhaps the most popular shortest path

algorithm.

A* is the most popular choice for pathfinding, because it is fairly flexible and

can be used in a wide range of contexts. (R.Anbuselvi &R.S.Bhuvaneswaran, 2009).

A* algorithm uses a starting point and anendpoint point to produce the desired

path, if it exists (Figure 2.17). In figure 2.17, the cell marked with “O” is the

startingpoint/node and the cell marked with “X” is the destination. The white squares

arewalkable nodes and the black ones are walls, shelves or any other obstacles.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

21

A* algorithm starts to perform by looking at the starting node first and

thenexpansion to the surrounding nodes (Figure 2.18).

Figure 2.18: Starting the A* Search Algorithm

This operation will be carried on till the endpoint node is reached. In order to

have an idea of the nodes, which will be used in the search, A* algorithm requests a

way to keep track of the nodes. the nodes to be scrutinized are held in a list, called an

Open List. At the beginning, place the starting node to the Open List and after

inspecting all of its surrounding nodes move it from the Open List and place in another

list named the Closed List (Figure 2.19). Closed List holds the nodes that are visited

and there is no need to re-visit its members. When building the Open List, The

algorithm checks if the node is walk able. If the node is not walkable, it is not added

to the Open List.

Figure 2.17: Starting and Destination Points in A* Search Algorithm

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

22

Figure 2.19:Putting the neighbouring cells to the Open List

This procedure prepared for one cell is the main iteration over one A* loop.

However, need to track some supplementary information. Need to know how the nodes

are linked . Although the Open List maintains a list of adjacent nodes, we need to know

how the adjacent nodes are linked as well. Can do this by tracking the parent node of

each node in the Open List. A node's parent is the single node that the user steps from

in order to get to its current location. On the first iteration over the loop, each node

will point to the starting node as its parent (Figure 2.20).

Figure 2.20: Parent relation of Starting Node

Willuse the parent links to trace a path back to the starting node when reach

the destination. At this point the process was recommenced. Now have to choose a

new node to check from the Open List.At the first iteration there is only a single node

in the Open List. Now have eight nodes in the Open List, and the node which will first

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

23

be inspected is determined by assigning a score to each node. This score, f(n), is the

combination of two scores:

f(n) = g(n) + h(n)

Where g(n) is the cost of the path from the starting node to any node n, h(n) is

the heuristic estimated cost from any node n to the goal.

Selectthe node with the lowest score. Use a Priority Queue to build the

OpenList, and the nodes that will be added to Open List is sorted by this score. So

whenpop an element from this Queue, Always get the node with the lowest score.There

are some well-known heuristics used in scoring.

Calculate each node's score by adding the cost of getting there from the starting

location to the heuristic value, which is an estimate of the cost of getting from the

given node to the final destination. Use this score when determining which tile to check

next from the Open List. Check the tiles with the lowest cost. In this case, a lower cost

will equate to a shorter path.

The g(n) value shown in each open node is the cost of getting there from the

starting node. In this case, each value is 1 because each node is just one step from the

starting node. The h(n) value is the heuristic. The heuristic is an estimate of the number

ofsteps from the given node to the destination node. Do not take obstacles

intoconsideration when determining the heuristic. Do not examined the nodes between

the current node and the destination node, so do not really know yet if they contain

any obstacles. At this point simply want to determine the cost, assuming that there are

no obstacles. The final value isf(n), which is the sum of g(n) and h(n). This is the cost

of the node. It represents the known cost of getting there from the starting point and

an estimate of the remaining cost to get to the destination.

Heuristics used in A* algorithm have some variations, but for grid based maps

there are three heuristic functions that work well.

2.4.3.1 Manhattan Distance

The standard heuristic for a square grid is the Manhattan distance. Look at cost

function and find the minimum cost D for moving from one space to an adjacent

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

http://en.wikipedia.org/wiki/Taxicab_geometry

24

space. In the simple case, set D to be 1. The heuristic on a square grid where can move

in 4 directions should be D times the Manhattan distance:

function heuristic(node) =

 dx = abs(node.x - goal.x)

 dy = abs(node.y - goal.y)

 return D * (dx + dy)

Where D represents the cost of moving one node to one of its neighbours.

Manhattan Distance (Figure 2.21) allows to move in four directions (North,

South, East and West).

Figure 2.21: Manhattan distance calculation

The Manhattan heuristic is computed by adding the differences in the x and y

components together. The advantage of using this heuristic is that, it is computationally

inexpensive, and it can run faster than the others. The major disadvantage of the

Manhattan heuristic is that it tends to overestimate the actual minimum cost to the goal

(unless 4-adjacency is used) which means that the road being found may not be an

optimal solution. If are not interested in an optimal solution, but just a good one, then

using an overestimating heuristic can speed up theroad finding.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

53

REFERENCES

Adam A. Razavian, Sun J. (2005). Cognitive Based Adaptive Path Planning

Algorithmfor Autonomous Robotic Vehicles, Southeast Con 2005

Proceedings, 8-10.

Amemiya T., Yamashita J., Hirota K. and Hirose M. (2004). Virtual leading blocks for

thedeaf-visually impaired: a real-time way-finder by verbal-nonverbal

hybridinterface and high-density RFID tag space.

Benaicha Ramzi, Taibi Mahmoud. (2013).Dijkstra Algorithm Implementation On

Fpga Card For Telecom Calculations.

Benjamin Chong Min Fui.(2012). A Comparative Study Of Maze Solving Algorithm

For An Autonomous Mobile Robot.

Busra Ozdenizci, Kerem , Vedat Coskun, Mehmet N. Aydin. (2011). “Development

of an Indoor Navigation System Using NFC Technology ”.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Single-source shortest

Paths :Introduction to algorithms. 2nd ed. Cambridge, MA: MIT Press,581-

635.

Carsten J. (2007).Global Path Planning on board the Mars Exploration Rovers. IEEE

Aerospace Conference.

David M. Bourg, Seeman G.(2004). AI for Game Developers, O'Reilly, Chapter 7.

Edward M. Measure, David Knapp, Terry Jameson, and Andrew Butler. (2009).

Automated Routing of U\nmanned Aircraft Systems (UAS).

Hart P. E., Nilsson N. J., Raphael B. (1968). “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths.

Jacob R., Marathe M. and Nagel K. (1999). A Computational Study of Routing

Algorithms for Realistic Transportation Networks, ACM Journal of

ExperimentaAlgorithms Vol 4 No 6.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

54

Koenig S. and Likhachev M. (2002). Improved Fast Replanning for Robot Navigation

in Unknown Terrain. Proceedings of the 2002 IEEE, International Conference

on Robotics & Automation,Washington DC.

Kulyukin V., Gharpure C., Nicholson J. and Pavithran S. (2004). RFID in Robot-

Assisted Indoor Navigation for the Visually Impaired. Proceedings Of

lEEE/RSJ International Conference on Intelligent Robots and Systems.

Liang Dai. (2005). Fast Shortest Algorithm for Road Network and Implementation.

Leo Willyanto Santoso, Alexander Setiawan, Andre K. Prajogo. (2010).Performance

Analysis of Dijkstra, A* and Ant Algorithm for Finding Optimal Path: Case

Study Surabaya City Map.

M. Shafie Abd. Latiff, and R. Hassan.(2004). An Efficient Virtual Tour- A Merging

of Path Planning and Optimization. Work with Computing Systems

Conference, Kuala Lumpur.

Manh Hung V. Le , Dimitris Saragas , Nathan Webb.(2009). Indoor Navigation

System for Handheld Devices”, 2009.

Mustafa Kilinçarslan. (2007). Implementation Of A Path Finding Algorithm For The

Navigation Of Visually Impaired People.

Neha Choubey and Bhupesh Kr.Gupta. (2013). Optimal route computation for online

public transport enquiry system.

Obara T., Yamamoto K., Ura T., Maeda H., Yamato H. (1994). Development of an

Autonomous Underwater Vehicle R1 with a Closed Cycle Diesel Engine, Proc.

Oliver J. Woodman. (2007). An introduction to inertial navigation.

Puthuparampil, M. (2007). Report Dijkstra's Algorithm [online]. Unpublished

Presentation, Computer Science Department, New York University. Available

from:http://www.cs.nyu.edu/courses/summer07/G22.2340001/Presentations/Put

huparampil.pdf. (October, 2014).

Ran L., Helal S. and Moore S., Drishti. (2004): An Integrated Indoor/Outdoor visually

impaired Navigation System and Service. In Proceedings of the Second IEEE

Annual Conference on Pervasive Computing and Communications

(PerCom.04), pp.23-30.

R.Anbuselvi , R.S.Bhuvaneswaran. (2009). simulation of path finding algorithm a

Bird’s Eye perspective.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

http://www.cs.nyu.edu/courses/summer07/G22.2340001/Presentations/Puthuparampil.pdf.%20%20%20(october
http://www.cs.nyu.edu/courses/summer07/G22.2340001/Presentations/Puthuparampil.pdf.%20%20%20(october

55

Rahul Kala· Anupam Shukla · Ritu Tiwarihave. (2010).Fusion of probabilistic A*

algorithm and fuzzy inference system for robotic path planning.

Sadeghi-Niaraki, A., Varshosaz, M., Kim, K., and Jung, J. (2011). Real world

representation of a road network for route planning in GIS. Expert Systems

with Applications, 38 (10), 11999-12008.

T. Frohlich and D. Kullmann. (2002). Autonomous and Robust Navigation for

SimulatedHumanoid Characters in Virtual Environments. Proceedings of the

First International Symposium on Cyber Worlds (CW'02).

Xiao Cui & Hao Shi.(2011). Direction oriented pathfinding in video games.

Yahja A., Singh S., Stentz A. (2000). An efficient on-line path planner for outdoor

mobile robots, Robotics and Autonomous Systems.

YU Yongling, ZONG Sisheng, SHI Jinfa. (2010). Dynamic Labeling Algorithm

Design forElectronic Map.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

