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ABSTRACT 

 

 

 

This study presents the outcomes of the performance evaluation simulation residual 

voltage output resulting from lightning arrestors IEEE Recommended model. This 

simulation uses software Alternative Transient Program - Electromagnetic transients 

Programmed (ATP-EMTP). This software is very appropriate in examining the 

behavior of the system, especially a high voltage system lines. As a result of the 

comparison can be made in the system of 132kV transmission line between systems 

that are not supplied with lightning arrestors, system supplied with lightning arrestors 

with conventional styles and systems supplied with lightning arrestors IEEE 

Recommended model. The results of the simulation study comparisons can be made 

by taking into account the peak voltage at sub transient conditions. This situation can 

determine the 132kV transmission line system can protect the equipment properly. 

Selection lightning 10kA with the 8μs fast front surge and trailing the current time is 

20μs is appropriate in the circumstances lightning eruption in Malaysia. In this 

research, 132kV transmission line parameter tower need to be enclosed by the actual 

value of the output to the accurate or almost accurate in determining the ability of a 

lightning arrester in the system. 
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ABSTRAK 

 

 

 

Kajian ini membentangkan hasil simulasi penilaian prestasi lebihan voltan yang 

terhasil daripada keluaran penangkap kilat model IEEE Recommended. Simulasi ini 

menggunakan perisian Alternative Transient Program - Electromagnetic Transients 

Programme (ATP-EMTP). Perisian ini amatlah bersesuaian dalam menguji kelakuan 

sistem litar terutamanya sistem talian voltan tinggi.  Hasilnya perbandingan boleh 

dibuat dalam sistem talian penghantaran 132kV diantara sistem yang tidak 

dibekalkan dengan penangkap kilat, sistem yang dibekalkan dengan penangkap kilat 

jenis konvesional dan sistem yang dibekalkan dengan penangkap kilat model IEEE 

Recommended. Hasil kajian simulasi dapat dibuat perbandingan dengan 

mengambilkira voltan puncak pada keadaan sub transient. Keadaan ini boleh 

menentukan sistem talian penghantaran 132kV dapat melindungi peralatannya 

dengan baik. Pemilihan letusan kilat10kA dengan nilai fast front surge sebanyak 8μs 

dan nilai masa arus mengekor adalah 20μs adalah bersesuaian dengan keadaan 

letusan kilat di Malaysia. Dalam kajian ini juga, parameter pencawang talian 

penghantaran 132kV perlu di masukan dengan nilai sebenar bagi menghasilkan 

keluaran yang tepat atau hampir tepat dalam menentukan kebolehupayaan sesebuah 

penangkap kilat dalam sistem ini. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Research Background 

 

In the development of technology nowadays, all the system has been simplified for 

the convenience and comfort of humans and most of the systems in which there is 

renewed with electrical and electronic systems in it. The uses of electrical and 

electronic systems are widely used, and the technology has been improved. Both 

electrical and electronic system used has its own protection system to protect the 

components in this system. Production of electrical or electronic systems requires a 

power supply to run this system. Power supplied through the transmission line grid 

system supplied either single phase or three phases. 

Power supply through transmission line also requires protection to prevent 

damage to the lines, equipment or harm to consumers. Accordingly, there are various 

devices that regulate and protect the transmission line, equipment or a user in the 

system, one of the devices is a transmission line lightning surge arrestors. 

 

1.1.1 Surge Arrester in Transmission Line 

 

Power system consistency demands continue to rise in priority and because of this 

purpose electrical service providers are pursuing earnings to provide this desired 

improvement. An effective method of reducing lightning related outages on 

transmission lines is by the strategic application of surge arresters. Since the early 

1990’s cost effective and lightweight arresters have been available for installation on 

transmission lines. Surge arresters can also be an effective means for transmission 
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line cost control as when they are used in switching surge control, voltage uprating 

projects and compact line construction. Surge arrester is a device used in power 

system above 1000V to protect other apparatus, lines and users from lightning and 

switching surge.  

There are two rudimentary reasons to install transmission line surge arresters 

on a system. The most common purpose is to reduce or eliminate lightning induced 

outages due to flashover of insulators. Surge arresters avoid lightning flashovers by 

maintaining the voltage across insulators on a transmission line below the insulation 

withstand capability [1]. 

The second and less common purpose of this type of surge arrester is to 

eliminate insulator flashover due to switching surges. In both cases, the objective is 

to reduce or eliminate flashover of system insulators. In both cases, a study of the 

system is generally carried out to determine the finest location for the arresters to 

fulfil the desired results. 

For switching surge control, the arresters need only be located where the 

switching surges reach amplitude that exceeds the insulator string switching surge 

withstands levels. This could be just a few locations along the entire transmission 

line. For lightning surge control, the zone of protection is seldom more than one span 

from the arrester therefore arresters need to be located at nearly every tower and 

sometimes on each phase. 

Implementation of this research includes the simulation of the characteristics 

of the transmission line system. Simulation is rendered using Alternative Transient 

Program (ATP), where all activities can be viewed and analysed. In this paper ATP-

EMTP (Electromagnetic Transients Programme) used to create a model of the power 

system and to simulate lightning strike at the grounding wire on the overhead line 

and its impact on underground cables and surge arresters [2]. This design focuses on 

IEEE recommended model of reference for many other models. In this simulation, 

transient characteristics can be identified and measured in determining the rate of 

discharge currents on earth through lightning arrestors that have been modelled.  

In this work, a simulation of the dynamic behaviour of metal oxide surge 

arrester models (MOSA’S) associated with fast impulse tests will be done. The 

modelling results compared with the data reported on the manufacturer’s catalogue 

were given to demonstrate the MOSA’S models accuracy.  
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Data on characteristics of metal-oxide surge arresters indicates that these 

devices have dynamic characteristics that are significant for overvoltage coordination 

studies involving fast front surges and for their location [3].   

 

 

1.2 Problem Statements 

 

Based on existing models and previous studies, the writing will focus on a 

comparison of data between the modelling used. Only a few studies have been made 

detailing a model as a general study gives a clear picture about the behaviour of the 

model. In a comparative study, the data retrieved and compares the percentage error 

occurred. This analysis depends on the materials used, location data retrieved, 

installation factors and other needs in making a comparison between models. 

However the data is valid and correct for each model and can be used. It depends on 

the electricity transmission industry players in determining the type of model to be 

used. Each model has its strengths and advantages, so in this study the selection 

model used in the IEEE recommended to analyse, review, define the parameters in 

turn produce the features of this model. 

The author will review the effectiveness of IEEE recommended model in the 

medium transmission line suitable on diverse parameters. Results of this analysis will 

provide guidance in general usage models of IEEE recommended to industry players, 

particularly the installation of medium transmission lines. 

It is very difficult to develop a real lightning bolt on the transmission lines in 

the data collection process. This situation also affects the risk to the author by the 

lack of equipment and limited time, and then the best option is to use simulation to 

determine the superlative parameters to produce the desired output. The software 

suitable for the study were using Alternative Transient Program - Electromagnetic 

Transient Program (ATP-EMTP) in determining the production of timely and 

accurate data, this software will examine the advantages and disadvantages as well as 

the behaviours of this model on the medium transmission lines.  
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1.3 Research Objectives 

 

 The purpose of the research is to accomplish objectives as follow; 

1. To simulate the transmission line using Alternative Transient Program - 

Electromagnetic Transient Program (ATP-EMTP). 

2. To design IEEE surge arrestor model in ATP-EMTP. 

3. To analysis and compare the simulation output surge arrestor model. 

 

 

1.4 Research Scopes 

 

 As the research’s boundaries, the author has set several limitations describes 

as follow; 

 

1. Design the IEEE surge arrester model and simulate in 132kV transmission 

line tower model. 

2. Analysed the surge arrester parameters at 10kA (8/20μs) lightning strike. 

3. Analysed the lightning resistance only. 

 

 

1.5 Organisation of Proper Report 

 

Chapter 1, summarizes the project background and elaborates on the project by 

touching the surge arrester in transmission line. In this chapter also describes the 

problem statement, objectives and scope of the project. The dissertation is introduced 

in this chapter. 

Chapter 2 reviews literatures, including description of system transmission 

lines, transmission line fault, Metal Oxide Surge Arrester (MOSA), Modelling Surge 

Arrester and lastly explanation detail in the headlines IEEE Recommended Model of 

Surge Arrester. 

Chapter 3 describes the methodology of the dissertation. ATP-EMTP 

software is introduced and described. Modelling of transmission line and tower, 

cross-arms, insulator strings and tower surge impedance are explained briefly in this 
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chapter and also Methodology flow chart is presented in this chapter as well. Gantt 

chart is shown for the actual progress of the state. 

Chapter 4 elaborates on results and analysis in ATP-EMTP simulation of 

modeling guidelines for 132kV overhead transmission-line. Modelling of lightning 

source and AC voltage source are explained briefly in this chapter. It also describes 

the findings made in the simulation results and analysis process for each of the 

resulting data. Presents the results of simulations together with necessary analysis 

explanations. 

Finally, Chapter 5 discusses the conclusions of the dissertation, and 

recommends possible future research. 
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CHAPTER 2 

 

SURGE ARRESTER FOR LIGTHNING PROCTECTION A REVIEW 

2.1 Transmission Line System 

 

The transmission line has to be represented by means of several multi-phase un-

transposed distributed parameter line spans on both sides of impact point. The 

representation can be obtained by using either a frequency-dependent, or a constant 

parameter, model [24]. ATP-EMTP offers a few models that have been used for 

transmission-line system: 

a) Bergeron: constant-parameter K.C. Lee or Clark models 

b) PI: nominal PI-equivalent (short lines) 

c) J. Marti: Frequency-dependent model with constant transformation matrix 

d) Noda: frequency-dependent model 

e) Semlyen: frequency-dependent simple fitted model. 

 

Model commonly used in transmission lines are model Bergeron, PI model, 

and model J. Marti. In Malaysia, Bergeron model widely used in transmission lines. 

Phase wire connected to the grounding wire transmission line towers. 

The Bergeron model basically is based on distributed LC-parameter travelling 

wave line model with lumped resistance. This time-domain Bergeron model is 

commonly used in power system transient fault analyses. It represents in distributed 

method, the L and the C elements of a PI section. It also is estimated equivalent by 

means of an infinite number of PI Sections, except that the resistance is lumped (1/2 

in the middle of the line, 1/4 at each end) [25]. 
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The Bergeron Model has a lossless distributed parameters’ line as described 

by the following two values: 

Surge Impedance,  𝑍𝑐 =  √
𝐿

𝐶
      (1) 

Phase Velocity, 𝑣 =  
1

√𝐿𝐶
      (2) 

 

Similar to PI Sections Model, Bergeron Model accurately represents only 

fundamental frequency (50Hz) therefore the surge impedance is constant. It also 

represents impedances at other frequencies, for as long as losses do not change [25]. 

Figure 2.1 shows an actual model of a Bergeron tower for 132kV transmission line in 

Malaysia, courtesy of TNB. 

 

Figure 2.1: Bergeron Model [25] 
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2.2 Transmission Line Fault  

 

Transmission line is a vital part in power system. Faults in transmission line causes 

instability and damage to equipment. Therefore, it is necessary to protect the electric 

power system from faults. For efficient protection, fault should be detected quickly 

for immediate isolation of faulty line from the system. Subsequently fault 

classification and its location must be performed for restoration and speed recovery 

of the system [19].  

 Many faults on transmission line circuits are weather related such as icing, 

wind, and lightning. The fault rate during severe storms increases dramatically. 

Much of the physical and electrical stresses from these events are well beyond the 

design capability of distribution circuits. Overhead circuits are designed to NESC 

(IEEE C2-1997) mechanical standards and clearances, which prescribe the 

performance of the line itself to the normal severe weather that the poles and wires 

and other structures must withstand. Most storm failures are from external causes, 

usually wind blowing tree limbs or whole trees into wires. These cause faults and can 

bring down whole structures [20]. 

 Lightning causes many faults on distribution circuits. While most are 

temporary and do not do any damage, 5 to 10% of lightning faults permanently 

damage equipment such as transformers, arresters, cables, insulators. Distribution 

circuits do not have any direct protection against lightning-caused faults since 

distribution insulation cannot withstand lightning voltages. If lightning hits a line, it 

causes a fault nearly 100% of the time. Since most lightning-caused faults do not do 

any permanent damage, reclosing is used to minimize the impact on customers. After 

the circuit flashes over (and there’s a fault), a re-closer or reclosing circuit breaker 

will open and, after a short delay, reclose the circuit. It is important to properly 

protect equipment from lightning. Transformers and cables are almost always 

protected with surge arresters. This prevents most permanent faults caused by 

lightning [20]. 

 

2.3  Metal Oxide Surge Arrester (MOSA) 

 

Surge arrester is a protective device that protects the system from any damage 

occurs. Surge arrester is installed on the generation system, transmission line or 
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distribution system. Structural materials with sensitive molecular therein are intended 

to divert the high voltage to ground. Most of the materials used to build the structure 

of the Metal Oxide Surge Arrester (MOSA).  

 Line surge arresters are installed in parallel connection with the insulator 

clusters of transmission lines. When the transmission lines are strikes by lightning 

strike, the lightning current distribution will change, one part of which flows into 

neighbour towers and the other into the ground through towers. The surge arrestors 

will work when the lightning current is beyond a certain value. Most of the current is 

transmitted to conductors of nearby towers through the surge arrestors. While the 

lightning current is passed, it will produce coupling current in conductors because of 

electromagnetic interaction between conductors. As the lightning current distributed 

by the surge arrestors is far beyond the current in conductors and the electromagnetic 

interaction will raise the potential of the conductors, the voltage between conductors 

and top of towers is less than the flashover voltage of insulator clusters, which will 

avoid flashover in insulator clusters [9]. 

Figure 2.2 shows the resulting voltage in high voltage electrical system where 

the peak voltage between phases to earth continuously shown in per unit (pu), 

depending on the length of time it is produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Magnitude Of Voltages And Over Voltages In A High Electrical Power 

System Versus Duration Of Their Appearance [26] 
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Time axis is divided into four regions, namely the 'Lightning Overvoltage' in 

microseconds, Switching Overvoltage in milliseconds, Temporary Overvoltage in 

seconds and Highest Continuously be reflected in the system voltages. If seen in 

figure 2.2, lightning and switching are at risk of damage and accidents than others 

even if the timing is very small in the absence of the surge arrester. Damage will 

occur due to resistance is low voltage equipment against overvoltage. However, the 

presence of surge arrester provides protection to equipment if lightning and 

switching occurs.  

MOSA are widely used as protective devices against switching and lightning 

overvoltage in power electrical systems. Phase to ground surge arresters are 

commonly installed at power transformer terminals and some protection effect for 

near connected equipment in a substation is supposed. The installation of other 

additional surge arresters in a substation may be required to effectively protect all 

connected equipment, when a fast overvoltage enters a substation from a line [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: A ZnO 20kV Surge Arrester [28] 

 

Constructively, MOSA have a simple structure, comprising one or more 

columns of cylindrical blocks varistors. A ZnO 20kV surge arrester is shown in 

figure 2.3.  

Installation of the transmission line surge arrester is installed in parallel with 

the protected equipment. This is due to the current flow and voltage flash and not 
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directly on the equipment but it will be routed to the surge arrester through online 

and is aimed at protecting insulator string to dramatically improved the lightning 

withstand level, reduce lightning trip-out rate and reach the purpose of lightning 

protection.  

When the tower was struck by lightning, a part of lightning current flow 

through overhead ground wire to the adjacent tower, and other part of lightning 

current flow through the tower to the ground. The grounding resistance of tower has 

transient resistance feature, so impulse grounding resistance is always used to 

manifest it [6]. 

When lightning current surpass a certain level, the operation of arrester also 

can shunt the current. Most of the lightning current flows through arrester to lead and 

then transmits to adjacent tower. As the electromagnetic induction effect between the 

leads, when lightning current flow through lightning shield line and leads, coupling 

components occurs in leads and lightning shield line respectively. As the shunt 

current of arrester is far more than the lightning current shunt from lightning shield 

line. The effect of shunt leads to the improvement of lightning potential, which let 

the potential difference between lead and tower top less than the flashover voltage of 

insulator string. Flashover may not occur in insulator. Thus, line arrester has good 

holding potential effect. That’s the prominent characteristics of line arrester. It can be 

prove that the protection range of arrester is just the tower installed arrester and its 

own line insulator string, whether it is lightning counterattack or lightning shielding 

failure [7]. 

The distinctive feature of an MO resistor is its extremely nonlinear voltage-

current or U-I characteristic, rendering unnecessary the disconnection of the resistors 

from the line through serial spark-gaps, as is found in the arresters with SiC resistors. 

Silicon Carbine (SiC), which is found in the surge arrester where the model is rarely 

applied. Within it has the structure of a gap between arrester semiconductors. For the 

MO surge arrester it was built without a gap arrester structure. 

Bayadi et al (2003) validate the appropriate modelling of MOSA’s dynamic 

characteristics is very important for arrester location and insulation coordination 

studies. For switching surge studies, metal oxide arrester can be represented simply 

with their nonlinear U-1 characteristics. However, such a practice will not be 

appropriate for lightning surge studies because the MOSA exhibits dynamic 

characteristics such that the voltage across the arrester increases as the time to crest 
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of the arrester current decreases and the arrester voltage reaches a peak before the 

arrester current peaks.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: U-I Characteristic of typical MO surge arrester in a solidly earthed 

neutral 420kV system [26] 

 

Further clarification of features MO Surge Arrester can be detailed, example 

data above is taken to indicate that the typical value can be determined by the Metal 

Oxide Surge Arrester (MOSA) are connected between phase to earth in 420kV 

system neutral solid. The readings at nominal discharge current is 10kA will be 

pointed at 823kV residual voltages where the value is being diverted to the surge 

arrester when lightning is generated in proportion. Us means the system voltage of 

420kV, there is another term that is commonly used is Vs (voltage input). On the 

characteristic shown is evidenced by a calculation value √2.Vs / √3 = 343kV [27]. 

At Uc value or may be referred to as Vc is the continuous operation at the 

surge arrester. This value is the operation without resistance through the lightning 

arrester. In the graph on the Vc taken from measurements set by the selected type of 

268kV surge arrester (datasheet) which is almost 11% higher than the operating 

voltage of the continuous phase to earth [27]. 

Competencies surge arrester features overvoltage while managing surplus in 

the short period of 10 seconds and some manufacturers allow up to 100 seconds 

which also produces the leakage current value (found in the resistance component) 

and the current gives rise to a temperature of surge arrester. In Figure 2.4, the 

 

PTT
A

PER
PU
STA
KA
AN
 TU
NK
U T
UN
 AM
INA
H



13 

 

resistive component of the leakage current on the current 100μs where the cause is 

0.75mA. The actual cause of the temporary time limit is the sudden great increase is 

in the temperature and the frequent rise in leakage current surge arrester which will 

shift the current impulse at ground. The addition of a continuous process also 

resulted in the inability of the surge arrester to return to cool and produce thermally 

unstable, if it continues to happen then it will reach the level of self-destruction or 

thermal runaway. 

Rated voltage, Vr and continuous operating voltage, Vc has a distinctive 

relationship, where the ratio was close to 1.25 with few exceptions, so the voltage 

rating of Vr = 1.25.Vc = 336kV
2
 [27]. 

The U-I characteristic also determine the relationship between the power 

frequency voltage. Minimal voltage increase will lead to an increase of current. It is 

reserved for transient events within a time range of milli and microseconds, in other 

words, for switching and lightning overvoltages. The use of power frequency voltage 

in this area will cause damage to the surge arrester in a moment. 

U-I characteristic in the region reflect current larger 100A surge arrester 

protection features and it is a parameter for the lightning impulse protective level. 

This shows the voltage drop through the surge arrester terminals when nominal 

discharge current flows through it. According to the IEC 60099-4 standard , lightning 

impulse current amplitude is assigned to several classes, from 1.5kA to 20kA . For 

high-voltage surge arrester only class and 20 kA and 10kA usual taken. The nominal 

discharge current reflects some characteristics of the surge arrester . Two 10kA surge 

arrester can be described by different characteristics of each. For example in Figure 

2.4, 10kA choose where the statement " Lightning impulse protective level is 823kV 

'means the maximum voltage drop at the terminal 823kV, when impressing a 

lightning impulse current of 8 μs of the virtual front time, 20 μs of virtual time to half 

- value on the tail and a peak value of 10 kA . This can be seen in figure 2.4 above. 
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Figure 2.5: Residual Voltage of the Sample Arrester (Vr =336kV) at nominal 

discharge current (In = 10kA) [27] 

 

A lightning impulse protective level of 823 kV terminal means the peak surge 

arrester current neutralize the normal operation voltage phase to earth, it depends on 

the factor of 2.4 (divided by ; 823kV/343kV) in the current amplitude increased up to 

magnitude 8 times (from 100μA to 10kA). In Figure 2.5, the voltage will be revealed 

at a safe pace through the surge arrester on where in the past 10kA current rating 

[27]. 

Generally the U-I characteristic can be explained in detail the characteristics 

of the surge arrester and it becomes a reference for each used. 

 

 

2.4 Modelling Surge Arrester 

 

There are various models in developing surge arrester, most of the models are named 

with the name of the creator of the model. Most of these models are used for 

comparison in determining the characteristics of the model. Among the greatest often 

used model is the Conventional or Non-Linear Resistors, Tominaga model, Kim 1 

model, Schmidt model, Mardira and Saha model, Haddad model, Pincetti model, 

Fernandez model and IEEE recommended model. Each model has its own system 

that gives each model a different justification. 
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Figure 2.6: Conventional or Non-Linear Resistor Model [3] 

 

In the ATP Program, despite the existence of many types of surge arrester 

models, the exponential non-linear resistive (in figure 2.6) device is the most widely 

used. The voltage-current characteristic is represented by several exponential 

segments, each one defined by equation. (3).  

    i = 𝑝(
𝑣

𝑉𝑟𝑒𝑓
)𝑞

      (3) 

 

In this equation q is the exponent, p is a multiplier, and Vref is an arbitrary reference 

voltage that normalizes the equation and prevents numerical overflow during 

exponentiation. The first segment of the device is linear which speeds up the 

simulation. The second segment is defined by parameters p, q and a minimum 

voltage level. When the voltage across the surge arrester reaches a predefined 

minimum level, the algorithm tries to find a solution to the equation. The more 

exponential the model, the more precise are the results. The simulation of this model 

shows that for fast front surges, the peak voltage and current occur at the same time. 

Therefore it is not suitable to represent phenomena which are frequency dependent 

[10]. 

 Tominaga et al., (1979) describe that the aim of having a frequency 

dependent model, based on the preferred performance between voltage and current, 

led to a model with a varistor in series with an inductance (Figure 2.7). Although the 

voltage across the device increases with a higher current level, this model is a good 

approximation to definite situations. For example, a selected inductance for the 

model could produce accurate results for an 8µs surge front. But for a 2µs surge 

front, the results would not be satisfactory. 
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Figure 2.7: The Tominaga et al model [11] 

 

Kim,I et al., (1996) explain it consists of a non-linear inductance in series 

with a nonlinear resistance. As stated by the authors this model provides a good 

response characteristic to steep front wave impulse calculation. This model need a 

computer program to evaluate the nonlinear inductance characteristic and it needs a 

relatively big number of voltage-current points which are not frequently found in the 

manufacturer’s datasheets. 

 

  

 

 

 

 

 

 

 

Figure 2.8: The Kim I et al model [8] 

 

W. Schmidt et al., (1989) define the based on their experimental results, the 

author have established a model for an arrester block shown in figure 2.9. As 

mentioned by the author, this circuit is able to designate the observed phenomena. 

The turn-on element A in the equivalent circuit is evaluated from the results of the 
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measurements obtained with the RLC circuit. The other parameters were evaluated 

from independent measurements or from results described in the literature. The 

elements R and L are attributed to the ZnO grain, whereas the other elements are 

related to the grain boundaries. The non-linear resistance consists of the non-linear 

effect at the grain boundary and the linear resistance of the ZnO grain. The turn-on 

element A which will account for the dynamic charge distribution at the grain 

boundary.  This  function of voltage, rate of rise of voltage and the time constant T 

for reaching the equilibrium of electrons and holes at the grain boundary. An 

inductance of 1µH/m was assumed. The simulation of the equivalent circuit resulted 

in an excellent fit to experiment despite the use of data of other investigators to 

determine the components of the model. In order to achieve an accurate simulation, it 

must be done very carefully in the course of other work. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: The Schmidt et al model [12] 

 

Mardira and Saha, (2011) explicate that the IEEE model was simplified, the 

resistive devices were eliminated, and another way to describe the parameters was 

selected (Figure 2.10). The authors state that the model yields good results for a 

current discharge with an 8x20µs waveform, and does not oblige an iterative process. 

However, it does not work properly for a wide variety of waveforms. 
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Figure 2.10: The Mardira and Saha Model [13] 

 

The proposed equivalent circuit Haddad model is shown in figure 10. It 

comprises two series sections which are one to represent the resistance of zinc oxide 

grains (Rgrain) and the self-inductance (Lbody) due to the physical size of the arrester 

body and a parallel network to represent the properties of the inter granular layers. 

One branch of the network carries the high amplitude discharge current, so that the 

ranch has a highly non-linear resistance Rlg and a low value inductance Lc1. The 

second branch has a linear resistance Rc and a higher value inductance Lc2 to account 

for the delay in low-current fronts and the multiple–current path concept. A 

capacitive element Clg to represent the arrester shunt capacitance was also included 

in the equivalent network. The simulation of the model resulted in an excellent fit to 

experiment conducted in the laboratory despite that the model parameters are 

determined experimentally which is sometimes difficult to achieve [14].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: The Haddad et al Model [14] 

 

 

PTT
A

PER
PU
STA
KA
AN
 TU
NK
U T
UN
 AM
INA
H



19 

 

 

Pincetti et al, (1999) substantiate that in this model, also derived from the 

IEEE Model, all necessary data are easily collected in datasheets, there is no need for 

an iterative correction of the parameters, and the model’s performance is accurate 

(Figure 2.12). Besides, the capacitance is eliminated, and only electrical parameters 

are used. The two parallel resistances are substituted for only one, in order to avoid 

numerical overflow. 

 

 

 

 

 

 

 

 

Figure 2.12: The Pincetti et al Model [15] 

 

The proposed model is shown in figure 2.13 and derives from that in IEEE 

Model. It is intended for the simulation of the dynamic characteristics for discharge 

currents with front times starting from 8µs. Among the non-linear resistances A0 and 

A1 only the inductance L1 is taken into account. R0 and L0 are neglected. C0 

represents the terminal-to-terminal capacitance of the arrester. The resistance R in 

parallel to A0 is intended to avoid numerical oscillations. The model in figure 2.13 

works essentially in the same way as that proposed in IEEE Model [16]. 

 

 

 

 

 

 

 

 

 

Figure 2.13: The Fernandez et al Model [16] 
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A model IEEE Working Group, (1992) which can represent the effects 

mentioned previously over this range of times to crest is shown in Figure 2.14. In this 

model the non-linear V-I characteristic is represented with two sections of non-linear 

resistances designated A0 and A1. The two sections are separated by an R-L filter. 

We have two situations:  

a. For slow-front surges, the impedance of the R-L filter is extremely low 

leading to consider that the two nonlinear resistors of the model are 

practically connected in parallel. 

b. For fast-front surges, the impedance of the R-L filter becomes more 

important. By this fact the high frequency currents are forced by the RL 

filter to flow more in the non-linear section designated A0 than in the 

section designated A1. Since characteristic A0 has a higher voltage for a 

given current than A1, the result is that the arrester model generates a 

higher voltage. The inductance L0 represents the inductance associated 

with the magnetic fields in the immediate vicinity of the arrester. The 

resistor R0 is used to avoid numerical instability when running the model 

with a digital program. The capacitance C0 represents the external 

capacitance associated to the height of the arrester. 

 

 

 

 

 

 

 

 

 

Figure 2.14: The IEEE Model [17] 
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2.5  IEEE Recommended Model 

 

Research aiming to create a mathematical model of metal oxide surge arresters 

(MOSA), which enables modelling of current voltage relations in any work 

conditions, have been carried out for many years. Numerous models are the result of 

research carried out hitherto. They are presented, among others, in shown in “2.4 

Modelling Surge Arrester”. Calculations was used on this model of which parameters 

can be calculated using the experimental values of residual voltages presented in 

manufacture catalogues and basic dimensions of surge arresters.  

The model has been worked out by the IEEE Working Group 3.4.11 (The 

Institute of Electrical and Electronic Engineering) to calculate voltage-current 

dependencies in case of impulse currents flow with times of accretion of wave front 

from 0.5μs to 45μs (Figure 2.15). It contains two non-linear resistors A0 and A1 with 

various voltage-current characteristics, separated by a L1-R1 filter. 

 

 

 

 

 

 

 

 

Figure 2.15: Model of surge arresters worked out by IEEE [18] 

 

A capacitor C represents capacitance of the arrester. Towards improve stability of 

calculations, a resistor R0 is connected parallel to the inductance L0. Parameters of 

linear elements and characteristics of non-linear resistors of the schema can be 

determinate from results of investigations of arrestor, published in catalogues, as well 

as from elementary dimensions of the column of varistors. Characteristics of 

varistors A0 and Al of surge arresters with rated discharge current Ir is represented by 

formulas: 

 

                                       𝐴0 =  𝐴𝑤0
 
𝑈8 20: 𝐼𝑟⁄

1.6
                               (4)    
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                                              𝐴1 =  𝐴𝑤1
 
𝑈8 20: 𝐼𝑟⁄

1.6
       (5) 

 

Where U8/20:Ir  residual voltage with rated current impulse Ir of times 8/20 μs. 

Aw0, Aw1 dependencies approximated by use of formulas 

 

𝐴𝑤0 =  𝑐0  𝑖𝐴0

0,051
      (6) 

 

𝐴𝑤1 =  𝑐0  𝑖𝐴1

0,0507
       (7)

  

iA0, iA1 densities of currents in varistors A0 and A1 c0 , c1 are constants (c0 = 1.378, 

c1 = 1.083)  

 

Parameters of linear elements L0, R0, L1, R1 and C are expressed by dependencies 

 

                                   𝐿0 = 0.2 
𝑑

𝑛
 [𝜇𝐻]             (8)

     

𝑅0 = 100 
𝑑

𝑛
 [Ω]             (9)

  

𝐿1 = 15 
𝑑

𝑛
 [𝜇𝐻]                   (10)

  

𝑅1 = 65 
𝑑

𝑛
 [Ω]                           (11)

  

𝐶 = 100 
𝑛

𝑑
 [𝑝𝐹]                  (12)

  

where d is height of the column of varistors, m and n are number of parallel varistor 

columns [17]. 
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As it appears from dependencies (2-10) the basis to calculating the 

parameters of elements of the model are results of studies of decreased voltage, 

presented in firm catalogues as well as main dimensions of the column of varistors. 

Correcting values of constants c0, c1 and inductance Ll can augment accuracy of 

calculations in Figure 2.16 [18]. 

 

 

Figure 2.16: The Block Scheme of the Correcting Process of the Model  

Parameters [18]  
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As an example, the determination of the metal- oxide model parameters for a 

one column arrester with an overall length of 1.45 meters. The discharge voltage or 

residual voltage for this arrester is 248kV and the switching-surge discharge voltage, 

Vss is 225kV for a 3kA, 300 x l000μs current wave shape [17].   

Arrester Information Required  

1. d - length of arrester column in meters (use overall dimensions from 

catalogue data)  

2. n - number of parallel columns of metal-oxide disks 

3. V10 - discharge voltage or residual voltage for a l0kA, 8 x 20us current, 

in kV. 

4. Vss - switching-surge discharge voltage for an associated switching-

surge current, in kV 

 

Using the equations presented previously in this report, the initial values for L0, R0, 

L1, R1 and C are determined as follows: 

𝐿0 = 0.2 
𝑑

𝑛
 [𝜇𝐻]            (8) 

 

    𝐿0 = 0.2 
1.45

1
 [𝜇𝐻]    

=  0.29μH 

 

𝑅0 = 100 
𝑑

𝑛
 [Ω]              (9) 

 𝑅0 = 100 
1.45

1
 [Ω] 

= 145 Ω 

  

𝐿1 = 15 
𝑑

𝑛
 [𝜇𝐻]                       (10) 

𝐿1 = 15 
1.45

1
 [𝜇𝐻]  

= 21.75 μH  
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