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ABSTRACT 

The previous decade witnessed the increased popularity and rapid development of 

graphical user interface (GUI). GUI is a type of  computer– human interface 

thatallows users to communicate with their computers. This interface has 

significantly contributed to the popularity of recently developed software 

applications. Given the importance of working under an error-free GUI, the 

correctness of such GUI must be tested at all times. GUI testing involves checking 

the screens for controls, such as menus, buttons, icons and all types of bars, including 

tool bars, menu bars, dialog boxes  and  software  windows. Event Flow Graph 

(EFG) and Behavior  ExplorerTesting (BXT)  are  two of the  techniques used  to  

generate  test  cases  on  GUIcomponents. The correctness and time required for 

these two techniques to generate GUI test cases are compared in this project by using 

the techniques in Paint and Present  applications. EFG and BXT obtained correctness 

rates of 9.61% and 36.81% respectively  for the paint application and 5.18% and 

39.33% respectively for the Present  application. Therefore, BXT exhibits more 

correctness than EFG. In term of elapsed time, EFG and BXT spent 0.16 millisecond 

(ms) and 0.18 ms in the paint application respectively and 0.14 millisecond (ms) and 

0.17 millisecond (ms) in the Present  application  respectively. Therefore, EFG is 

slightly faster than BXT in generating test cases. Overall, BXT is better than EFG in 

generating GUI test cases. 

 

 

 

 

 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 

 

ABSTRAK 

Dekad yang lepas menyaksikan peningkatan dalam populariti dan pembangunan 

yang pesat untuk antara muka pengguna grafik (GUI). GUI adalah antara muka 

manusia komputer yang membolehkan pengguna berkomunikasi dengan komputer 

mereka. Antara muka ini mempunyai sumbangan besar kepada populariti aplikasi 

perisian yang dibangunkan. Memandangkan pentingnya GUI bebas dari kesalahan, 

maka ketepatan kes GUI perlu sentiasa diuji. Pengujian GUI melibatkan pemeriksaan 

skrin untuk kawalan seperti menu, butang, ikon dan semua jenis bar, termasuk bar 

alat, bar menu, kotak dialog dan tetingkap perisian. Event Flow Graph (EFG) dan 

Behavior Explorer Testing  (BXT) adalah  antara  teknik  yang  digunakan  untuk 

menjana kes-kes ujian untuk komponen GUI. Dalam projek ini, ketepatan dan masa 

yang diperlukan untuk kedua-dua teknik menjana kes-kes ujian untuk komponen 

GUI dibandingkan dengan menggunakan dua kajian kes iaitu aplikasi mewarna dan 

aplikasi persembahan. Dari segi ketepatan, EFG dan BXT menunjukkan kadar 

ketepatan 9.61% dan 36.81% masing-masing untuk aplikasi mewarna. Sebaliknya, 

EFG dan BXT masing-masing menunjukkan kadar ketepatan 5.18% dan 39.33% 

dalam aplikasi persembahan. Oleh itu, teknik BXT menghasilkan kes ujian yang 

lebih tepat berbanding  EFG. Dari segi masa, EFG dan BXT menggunakan 0.16 dan 

0.18 millisaat untuk aplikasi mewarna dan 0.14 dan 0.17 millisaat untuk aplikasi 

persembahan. Oleh itu, EFG adalah sedikit lebih cepat daripada BXT dalam menjana 

kes-kes ujian. Namun begitu, secara keseluruhan, teknik BXT lebih baik daripada 

teknik EFG dalam menjana kes-kes ujian. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

The Palo Alto Research Center of the Xerox Corporation designed the first graphical 

user interface (GUI) in the 1970s. However, this GUI was not as popular as the GUIs 

launched by Apple Macintosh in the 1980s. The substantial power consumption of 

the central processing unit, high-quality graphicsand high cost of GUI slowed down 

its growth. Since 1997, Xerox Star (Aris, 2007) has developed and expanded the use 

of GUIs. 

A GUI is sometimes referred to as “gee-you-eye” or “gooey” in computing. It 

facilitates user  interaction  with  electronic devices  by using graphical icons and 

visual indicators,  such as  secondary notation or visual  cues, as opposed to text 

based interfaces, keywords, text linksand text navigation designs (Martinez, 2011). 

GUIs sharply reduce the use of command  line interfaces (CLIs)that use the keyboard 

to type commands (Melchior et al., 2009).   The disk operating system (DOS) is an 

example of the a typical user–computer interface that used a keyboard’s typed 

commands before GUIs were designed (Nadira & Sani, 2009). The intermediate step 

in user interfaces between GUI and CLIs was the non-graphical, menu-based 

interface, where a user interacts with a device using a mouse instead of typing 

keyboard commands. GUIs are among the crucial parts of a software (Xie et al., 

2006).  

The design of human–computer interaction, which is the application of 

programming in software technology, depends on the visual arrangement and 

temporal behavior of a GUI. The GUI enhances the efficiency and ease of the 
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underlying logical design of a stored program, a design discipline known as usability. 

In a user-centered design system, the usage of visual language ensures the efficiency 

and usability of tasks. Thus, a good user interface depends on the design instead of 

the system architecture (Shneiderman & Ben, 2003). 

   In software engineering, testing all the components of GUIs is vital to ensure 

that the GUI meets written specifications. Using a variety of test cases ensures that 

the GUI design specifications are fulfilled. Nowadays, software testing is an 

important stage in software projects (Nah et al., 2001). It is one of the most 

expensive and time-consuming phases and usually stops after available resources are 

used or even in the middle of the development process because of the duration of this 

phase. However, manual testing allows a programmer to pledge each test, interrelate 

with the test, as well as interpret, investigate and report the collected results. 

Software testing is automated with a tester-free mechanism. GUI is used to 

design various software applications because it interacts directly with users. Thus, 

the accuracy of the applications can easily meet the quality specification set by users. 

Other tools, such as capture replay, can be laborious and error-prone in designing 

software applications. However, GUI is particularly automated for easy management. 

Hence, substantial research focused on different methodologies to test GUIs, 

particularly the techniques for automated GUI test case generation (Padmawar & 

Sarwate, 2014). 

Event flow graphs (EFGs) and behavior explorer technique (BXT) are two of 

the most employed techniques to generate test cases for GUI. All possible event 

flows within a particular system are provided by EFGs. These graphs are structural in 

nature, which is a limitation of the subpaths within an event that can increase 

exponentially. This step is theoretically feasible but is limited to practical 

applications. The second method called BXT determines the effect of the first event 

on the subsequent event and is useful in selecting two-way interaction. Hence, this 

research applies these techniques to test GUIs in the two case studies. 
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1.2 Problem Statement 

GUI is designed to improve the interaction between a user and an electronic system. 

It involves the use of a mouse to select menu options; decisions are made by clicking 

screen buttons and programs are launched by clicking icons on screen. GUI must 

always be error-free and normal users must not experience any difficulty when using 

this interface. Numerous software applications depend on GUIs to coordinate the 

interactions of users with their systems. However, testing the correctness of a GUI is 

difficult because of the numerous possible interactions in the interface, such as the 

command button, text box, combo box and radio button. The sequence of GUI events 

can also lead to different states, increase the cost and length of software development 

and consume more time (Giuseppe & Di, 2012). A test case includes the input and 

expected output, pass/fail criteria and environment where the test will be conducted. 

Input refers to the data required to generate a test case. Software products can be 

tested in two ways. First, tests are performed on each function of a product to 

determine whether a software is fully operational. Second, the internal mechanisms 

of a product are tested to determine whether these functions actually occur. Many 

techniques have been used to generate test cases for GUI applications, including 

Event Interaction Graph (EIG) (Memon et al., 2005), Event Semantic Interaction 

Graph (ESIG) (Yuan & Memon 2010), EFG (Memon et al., 2012) and BXT 

(Bertolini et al., 2009). These techniques improve, the correctness and consumed 

time of test cases. Based on the software engineering perspective, the correctness 

refers to the adherence of a GUI to specifications that determine how users can 

interact with software and how the software must behave when used correctly. If the 

software behaves incorrectly, then users may spend a considerable amount of time to 

complete their tasks or may even fail to complete such tasks. Thus, the current 

research will compare the correctness and time taken of the two techniques, namely, 

EFG and BXT, in generating test cases. 
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1.3 Project Objectives 

The objectives of this research are as follows: 

1. To define steps for generating test cases by using Event Flow Graphs (EFG) and 

Behavior Explore Testing (BXT) techniques. 

2. To apply techniques in (1) to the paint application and Present  application. 

3. To compare the correctness and time taken of test case generated between both 

techniques in (1) for the case studies in (2) . 

1.4 Scope of Project                      

This research uses two case studies and two techniques to investigate the problem of 

correctness and time taken in GUI applications. The study compares the result of the 

two techniques for the two case studies to determine the better technique between the 

two chosen techniques. The two techniques are EFG and BXT. The case studies of 

the current research are the paint and Present  applications. 

1.5 Dissertation Outline 

The dissertation includes six chapters. Chapter 1 is an overview of the research and 

provides the main objectives of the project. The chapter also includes the problem 

statement and scope of the work covered by this project. Chapter 2 provides the 

literature review of EFG and BXT, as well as a brief explanation of the general 

information about generating test cases for GUI applications and some definitions 

used in this project. Chapter 3 discusses the methodology and tools to achieve all the 

objectives of this project. Chapter 4 explains the implementation and detailed steps 

employed in this work. Chapter 5 discusses this project. Finally, Chapter 6 explains 

the achieved objectives, conclusion of the project and future work. 
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2  CHAPTER  

   LITERATURE REVIEW 

2.1 Introduction 

This chapter provides an overview of previous research on GUI testing. Research on 

techniques for generating test cases are also Present ed in this chapter. An 

introduction of a framework for tools that employ these techniques and some topics 

related to this study are explained to identify the appropriate approach for 

investigating the objectives of the project. 

2.2 Graphical User Interface 

GUIs have three main bases: windows applications, web applications and mobile 

applications. At Present , software GUIs are one of the most commonly used 

components. A typical GUI provides degrees of freedom and various facilities to an 

end-user. A test designer handles particular design challenges, such as enormous 

input interaction space of the GUI, deals with development and examines the test 

cases (Huang & Lu, 2012). 

Currently, almost 70% of software systems are developed using GUIs. GUIs 

are primarily used to faciliate an end-user to promote the features of GUIs that 

provide ease and natural interaction between a system and its users. 

GUI is hierarchical in producing the deterministic graphical output when a 

graphical front-end software system accepts an input user-generated and system-

generated sequence of events from a fixed set of events. This interface is composed 
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of graphical objects where every object has a fixed set of properties. In some cases, 

GUI properties have separate values that contain a set of constituted GUI states 

during execution (Memon, 2007). 

GUIs have become nearly omniPresent  by interacting with software 

systems. Figure 2.1 descibes the front-end underlying code for a GUI, where an 

end-user interacts with the software using the GUI. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: GUI is the front-end to the underlying code (Memon, 2001) 

2.3 Software Testing 

Software testing is an important activity in software engineering. It can help people 

obtain accurate findings for software quality and diagnose errors in software 

execution (Ref et al., 2011). Software testing helps achieve the required results by 

evaluating an attribute or capability of a program or system (Choudhary & Kumar, 

2011). 

In software testing, analysis is performed to ensure that the quality of the 

tested product or service meets the specific requirement of stakeholders. Software 

testing can also provide an objective and independent view of a software to allow a 

business to escalate and determine the risks of software implementation. In a testing 

technique, a user can execute a program or application to find software bugs, errors, 

or other defects but is not limited to these. Software testing can validate and verify a 

software program application or product (Karnavel & Santhosh, 2013). 
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2.4 GUI Testing 

GUI is crucial in perfecting a software product. Thus, GUI testing ensures software 

reliability. It is usually performed using a test script that interacts with a GUI through 

a sequence of actions. Moreover, generating event sequences is always challenging. 

Thus, the testing phase is divided into GUI testing, logical testing, unit testing and 

integration testing. These various testing approaches provide effectiveness, 

efficiency, correctness and accuracy in developing a quality product (Chen et al., 

2008). 

Testing a GUI is an important and difficult concern in developing quality 

software. In GUI testing, one of the most challenging considerations is the 

significantly large or infinite input domain of a non-trivial GUI application. Defining 

the region of convergence is necessary to help testers select the test cases from the 

input domain of GUI applications (Zhao & Cai, 2010). GUI testing provides 

information about the functionality of software for it to meet the design requirements 

in the GUI and develop the standard required product before being launched in the 

market.  

GUI testing helps ensure that the requirements specified for a particular GUI 

are met. These specifications contain the navigation path or sequences that will be 

performed by a normal user and other sequences that a user can freely obtain through 

the GUI. These sequences can generate faults or failures in the software system. 

Thus, testing these sequences is crucial (Isabella & Emi, 2012). 

2.5 Performance Parameters for Testing 

Developers should achieve accuracy, correctness and performance-related issues in 

developing a program that can rePresent  an algorithm. To obtain appropriate design 

specifications of a software system, developers must confirm the desired quality. 

This step is achieved using a process called software verification. This process 

involves verification activities during specification, design and implementation. 

Software testing is another process used to assess the functionality and correctness of 

software. The process analyzes the execution of a program (Gregory, 2008(. 
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