
TITLE

COMPARATIVE STUDY ON CORRECTNESS AND TIME TAKEN OF TEST

CASE GENERATION USING EFG AND BXT TECHNIQUES FOR GUI

APPLICATION

MOSTAFA NSER BRKA

A dissertation submitted in partial

fulfillment of the requirements for the award of the

Degree of Master of Computer Science (Software Engineering)

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

SEPTEMBER 2015

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iii

Specially dedicated to…ON

This project is dedicated to my parents who have supported me all the way since the

beginning of my studies and who have been a great source of motivation and

 inspiration. I also dedicate this work and give special thanks to my closest friends

May God bless us always.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iv

ACKNOWLEDGEMENT

First and foremost I thank God for the strength and courage that had made this

humble effort a preality.

I would like to express my deepest gratitude to my dissertation

projectsupervisor, Dr. Noraini Bt. Ibrahim for her invaluable advices and

guidancethroughout this project. Her profound knowledge, ideas and support

keeps onmotivating me to give my all for this project.

I wish to thank all my friends, staffs and those who directly or indirectly

guiding and helping me in this project. The knowledge and support that they shared

with me will always be remembered.

Lastly, and most importantly I wish to dedicate my appreciation to my

beloved father, mother , brothers and my fiancee for always being there for me all

these years. I thank them for their unconditional love, encouragement and support of

Universiti Tun Hussein Onn Malaysia (UTHM) is also gratefully acknowledged.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

v

ABSTRACT

The previous decade witnessed the increased popularity and rapid development of

graphical user interface (GUI). GUI is a type of computer– human interface

thatallows users to communicate with their computers. This interface has

significantly contributed to the popularity of recently developed software

applications. Given the importance of working under an error-free GUI, the

correctness of such GUI must be tested at all times. GUI testing involves checking

the screens for controls, such as menus, buttons, icons and all types of bars, including

tool bars, menu bars, dialog boxes and software windows. Event Flow Graph

(EFG) and Behavior ExplorerTesting (BXT) are two of the techniques used to

generate test cases on GUIcomponents. The correctness and time required for

these two techniques to generate GUI test cases are compared in this project by using

the techniques in Paint and Present applications. EFG and BXT obtained correctness

rates of 9.61% and 36.81% respectively for the paint application and 5.18% and

39.33% respectively for the Present application. Therefore, BXT exhibits more

correctness than EFG. In term of elapsed time, EFG and BXT spent 0.16 millisecond

(ms) and 0.18 ms in the paint application respectively and 0.14 millisecond (ms) and

0.17 millisecond (ms) in the Present application respectively. Therefore, EFG is

slightly faster than BXT in generating test cases. Overall, BXT is better than EFG in

generating GUI test cases.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vi

ABSTRAK

Dekad yang lepas menyaksikan peningkatan dalam populariti dan pembangunan

yang pesat untuk antara muka pengguna grafik (GUI). GUI adalah antara muka

manusia komputer yang membolehkan pengguna berkomunikasi dengan komputer

mereka. Antara muka ini mempunyai sumbangan besar kepada populariti aplikasi

perisian yang dibangunkan. Memandangkan pentingnya GUI bebas dari kesalahan,

maka ketepatan kes GUI perlu sentiasa diuji. Pengujian GUI melibatkan pemeriksaan

skrin untuk kawalan seperti menu, butang, ikon dan semua jenis bar, termasuk bar

alat, bar menu, kotak dialog dan tetingkap perisian. Event Flow Graph (EFG) dan

Behavior Explorer Testing (BXT) adalah antara teknik yang digunakan untuk

menjana kes-kes ujian untuk komponen GUI. Dalam projek ini, ketepatan dan masa

yang diperlukan untuk kedua-dua teknik menjana kes-kes ujian untuk komponen

GUI dibandingkan dengan menggunakan dua kajian kes iaitu aplikasi mewarna dan

aplikasi persembahan. Dari segi ketepatan, EFG dan BXT menunjukkan kadar

ketepatan 9.61% dan 36.81% masing-masing untuk aplikasi mewarna. Sebaliknya,

EFG dan BXT masing-masing menunjukkan kadar ketepatan 5.18% dan 39.33%

dalam aplikasi persembahan. Oleh itu, teknik BXT menghasilkan kes ujian yang

lebih tepat berbanding EFG. Dari segi masa, EFG dan BXT menggunakan 0.16 dan

0.18 millisaat untuk aplikasi mewarna dan 0.14 dan 0.17 millisaat untuk aplikasi

persembahan. Oleh itu, EFG adalah sedikit lebih cepat daripada BXT dalam menjana

kes-kes ujian. Namun begitu, secara keseluruhan, teknik BXT lebih baik daripada

teknik EFG dalam menjana kes-kes ujian.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

vii

CONTENTS

 TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 LIST OF TABLES xi

 LIST OF FIGURES xiv

 LIST OF SYMBOLS AND ABBREVIATIONS xvii

 LIST OF APPENDICES xviii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 3

1.3 Project Objectives 4

1.4 Scope of Project 4

1.5 Thesis Outline 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Graphical User Interface 5

2.3 Software Testing 6

2.4 GUI Testing 7

2.5 Performance Parameters for Testing 7

2.5.1 Complexity 8

2.5.2 Correctness 9

2.5.3 Magnitude of Relative Error (MRE) for Parameters 10

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

2.6 Test Case Definition 11

2.6.1 Test Case Generation 11

2.6.2 Test Case Generation and Execution 11

2.7 Automated GUI Testing 12

2.7.1 Automated GUI Testing Technique 13

2.7.2 Challenges in Test Automation 14

2.8 Model-Based Testing (MBT) 14

2.8.1 Even Flow Graph (EFG) 14

2.9 Dynamic Event Extraction Technique 17

2.9.1 Behavior Explorer Technique (BXT) 17

2.10 GUI Tester Tool 18

2.11 Eclipse Framework 19

2.12 Cobertura Tool 19

2.13 Related work 20

2.14 Chapter Summary 21

CHAPTER 3 METHODOLOGY 22

3.1 Introduction 22

3.2 Research Methodology 22

3.3 Step 1: Application of the EFG and BXT techniques 23

3.3.1 Step 1-1: Application of the EFG technique 24

3.3.2 Step 1-2: Application of the BXT technique 30

3.4 Step 2: Determination of the complexity of the test case 32

3.5 Step 3: Analyses and comparison of the correctness of

the results and the time taken 33

3.5.1 Analyses and comparison of the correctness of results 33

3.5.2 Analyses and comparison of the times taken to calculate

the results 33

3.6 Case Studies 34

3.6.1 Case study 1: Paint applications 35

3.6.2 Case study 2: Present application 35

3.7 Results Analysis 35

3.8 Chapter Summary 35

CHAPTER 4 IMPLEMENTATION 36

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ix

4.1 Introduction 36

4.2 Pre-work before applying the techniques 36

4.2.1 First case study (Paint application) 37

4.2.2 Second case study (Present application) 38

4.2.3 Generate Test Cases For EFG and BXT Technique in

Case Studies 39

4.3 Implementation of the EFG and BXT techniques in case

study 1 39

4.3.1 Implementation of the EFG technique in case study 1 39

4.3.2 Implementation the BXT technique in case study 1 47

4.4 Implementation EFG and BXT techniques in case study 2 50

4.4.1 Implementation EFG technique in case study 2 50

4.4.2 Implementation BXT technique in case study 2 59

4.5 Step 2: Calculate complexity and time taken using EFG

and BXT technique in case studies 62

4.5.1 Step 2.1: Calculate the complexity and time taken using

EFG technique in case study 1 62

4.5.2 Step 2.2: Calaculate complexity and time taken using

BXT technique in case study 1 64

4.5.3 Step 2.3: Calaculate complexty and time taken using

EFG technique in case study 2 67

4.5.4 Step 2.4: Calaculate complexty and time taken using

BXT technique in case study 2 69

4.6 Summary 71

CHAPTER 5 RESULTS AND ANALYSIS 72

5.1 Introduction 72

5.2 Magnitude of relative error (MRE) 72

5.3 Analysis of the result in two case studies 72

5.3.1 Analysis of the results in Paint application 73

5.3.2 Discussion the results to Case study 1 78

5.3.3 Analysis of the Results in Present application 79

5.3.4 Discuss the results to case study 2 84

5.4 Summary 85

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

x

CHAPTER 6 CONCLUSION 86

6.1 Introduction 86

6.2 Objectives Achievement 86

6.3 Conclusion 87

6.4 Future Work 87

6.5 Summary 88

REFERENCES 89

APPENDIX 94

VITA

.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xi

LIST OF TABLES

3.1 Description of terms in algorithm for event flow graph 26

3.2 Description of terms in algorithm for the execute test cases

generation

27

3.3 Description of terms in algorithm for testing case execution 29

3.4 Description of terms used in algorithm for BXT 32

3.5 Example date for Complexity and Time Taken 34

4.1 Experimental results for File Menu using EFG technique in Paint

application

62

4.2 Experimental results for Edit Menu using EFG technique in Paint

application

63

4.3 Experimental results for View Menu using EFG technique in

Paint application

63

4.4 Experimental result for Image Menu using EFG technique in

Paint application

63

4.5 Experimental results for Filter Menu using EFG technique in

Paint application

64

4.6 Experimental results for layer Menu using EFG technique in

Paint application

64

4.7 Experimental results for File Menu using BXT technique in

Paint application

65

4.8 Experimental results for Edit Menu using BXT technique in

Paint application

65

4.9 Experimental results for View Menu using BXT technique in

Paint application

65

4.10 Experimental results for Image Menu using BXT technique in

Paint application

66

4.11 Experimental results for Filter Menu using BXT technique in 66

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xii

Paint application

4.12 Experimental results for layer Menu using BXT technique in

Paint application

66

4.13 Experimental results for File Menu using EFG technique in

Present application

67

4.14 Experimental results for Edit Menu using EFG technique in

Present application

67

4.15 Experimental result for View Menu using EFG technique in

Present application

68

4.16 Experimental results for Image Menu using EFG technique in

Present application

68

4.17 Experimental results for Filter Menu using EFG technique in

Present application

68

4.18

Experimental results for layer Menu using EFG technique in

Present application

69

4.19 Experimental results for File Menu using BXT technique in

Present application

69

4.20 Experimental results for Edit Menu using BXT technique in

Present application

70

4.21 Experimental results for View Menu using BXT technique in

Present application

70

4.22

Experimental results for Image Menu using BXT technique in

Present application

70

4.23 Experimental results for Filter Menu using BXT technique in

Present application

71

4.24 Experimental results for Layer Menu using BXT technique in

Present application

71

5.1 Experimental results in term of Correctness using EFG technique

in Paint application

73

5.2 Experimental results in terms of Correctness using BXT

technique Paint application

74

5.3 Experimental results in terms of Time Taken using EFG

techniques in Paint application

75

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiii

5.4 Experimental results in terms of Time Taken using BXT

techniques Paint application

77

5.5 Criteria in Paint application for Correctness 78

5.6 MRE Criteria in Paint application 78

5.7 Experimental results in terms of Correctness using EFG

technique in Present application

80

5.8 Experimental results in terms of Correctness using BXT

technique in Present application

81

5.9 Experimental results in terms of Time Taken using EFG

technique in Paint application

82

5.10 Experimental results in terms of Time Taken using BXT

technique in Paint application

83

5.11 Criteria in Present application for Correctness 84

5.12 MRE Criteria in Present application 85

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiv

LIST OF FIGURES

2.1 GUI is the front-end to the underlying code 6

2.2 Simple GUI in EFG 15

2.3 Event sequence in GUI 16

2.4 Algorithm1: EFG 16

2.5 Algorithm 2 shows the pseudo-code for BXT 18

3.1 Schematic diagram of the research methodology 23

3.2 Details of applying EFG technique (Step 1-1) 24

3.3 Model of generating EFG 25

3.4 Algorithm 2: Execute Test Cases Generation 27

3.5 Algorithm 3: Execution Test Case Generation 28

3.6 Step 1-2 Application of the BXT technique 30

3.7 BXT Algorithm 31

4.1 Case studies in the application under test (AUT) folder 36

4.2 Main interface for Paint application 37

4.3 Main interface for Present application 38

4.4 Import Paint application and GUI Tester tool to Eclipse 39

4.5 Code for creating the graph module in EFG technique 40

4.6 Code to save the graph module 40

4.7 Code for export graph to the graph module 41

4.8 Graph model for components in the Paint application 41

4.9 Code segment for the load graph module 42

4.10 GUI Tester tool creating and saving test case 42

4.11 Generating and saving test case in Paint application 43

4.12 GUI Tester tool save the test cases in result folder 43

4.13 Selection of the test case index 43

4.14 Selection and execution of some of the test cases 44

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xv

4.15 XML report is saved by the GUI tester Tool upon execution 44

4.16 Information In XML after the source code is executed 45

4.17 Determination of the location of test cases in the Paint application 45

4.18 Information in the XML file after execution 46

4.19 Result from an XML Report 46

4.20 Importing the Paint application, a GUI Testr tool and BXT 47

4.21 Debugging the GUI Tester tool and running the BXT technique 48

4.22 Information in XML before the source code is executed 48

4.23 Information in XML after the source code is executed 49

4.24 Code to show the result of XML report after execution 49

4.25 Result from an XML report after execution 50

4.26 Importing Present application and GUI Tester tool to Eclipse 51

4.27 Code for creating the graph module in EFG technique 51

4.28 Code for saving the graph module 52

4.29 Code to export graph to graph module 52

4.30 Graph model for the components of the Present application 53

4.31 Code segment to load graph module 54

4.32 GUI Tester tool creating and saving test cases 54

4.33 Generating and saving the test case 55

4.34 GUI tester tool saves the test cases in the result folder 55

4.35 Selection of the test case index 56

4.36 Selection and execution of some of the test cases 56

4.37 GUI Tester tool saves the XML report after execution 57

4.38 Information in the XML after executing the source code 57

4.39 Determination of the location of test cases 58

4.40 Code for showing the result of the XML report before execution 58

4.41 Result from an XML report from the Present application 58

4.42 Importing the Present application, GUI Tester tool and BXT

technique

59

4.43 Debugging the GUI Tester tool and running the BXT technique 60

4.44 Result after the BXT technique is executed in the GUI Tester

tool

60

4.45 Information in XML after execution in the source code 61

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvi

4.46 Code for executing and viewing the result from the XML report 61

4.47 Result from an XML report after execution 62

5.1 Average correctness in Paint application 78

5.2 Average time taken in Paint application 79

5.3 Average correctness in Present application 84

5.4 Average time taken in Present application 85

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

AUT – Application Under Testing

BXT – Behavior Explore Testing

CPU – Center Processor Unit

CLIs – Command-Line Interfaces

DOS – Disk Operating System

DOM – Document Object Model

ESIG – Event Semantic Interaction Graphs

EFG – Event Flow Graphs

EIG – Event Interaction Graphs

GUI – Graphical User Interface

IDE – Integrated Development Environment

JDT – Java Development Tools

MRE – Magnitude of Relative Error

Ms – Millisecond

SDLC – Software Development Lifecycle

STL – Software Testing Lifecycle

SFG – State Flow Graph

STS – Seed Test Suite

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Source code for case studies 93

B Test case description for both case studies 136

C Import case studies to Eclipse framework 139

D Source code for first algorithm EFG ripper strategy 141

E Source code for second algorithm EFG test cases generation 151

F GUI tester properties 155

G Source code for EFG based test case execution strategy 156

H

I

Code use to for show the results after execute test cases

Source code for BXT based test cases generation

169

174

xviii

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The Palo Alto Research Center of the Xerox Corporation designed the first graphical

user interface (GUI) in the 1970s. However, this GUI was not as popular as the GUIs

launched by Apple Macintosh in the 1980s. The substantial power consumption of

the central processing unit, high-quality graphicsand high cost of GUI slowed down

its growth. Since 1997, Xerox Star (Aris, 2007) has developed and expanded the use

of GUIs.

A GUI is sometimes referred to as “gee-you-eye” or “gooey” in computing. It

facilitates user interaction with electronic devices by using graphical icons and

visual indicators, such as secondary notation or visual cues, as opposed to text

based interfaces, keywords, text linksand text navigation designs (Martinez, 2011).

GUIs sharply reduce the use of command line interfaces (CLIs)that use the keyboard

to type commands (Melchior et al., 2009). The disk operating system (DOS) is an

example of the a typical user–computer interface that used a keyboard’s typed

commands before GUIs were designed (Nadira & Sani, 2009). The intermediate step

in user interfaces between GUI and CLIs was the non-graphical, menu-based

interface, where a user interacts with a device using a mouse instead of typing

keyboard commands. GUIs are among the crucial parts of a software (Xie et al.,

2006).

The design of human–computer interaction, which is the application of

programming in software technology, depends on the visual arrangement and

temporal behavior of a GUI. The GUI enhances the efficiency and ease of the

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

underlying logical design of a stored program, a design discipline known as usability.

In a user-centered design system, the usage of visual language ensures the efficiency

and usability of tasks. Thus, a good user interface depends on the design instead of

the system architecture (Shneiderman & Ben, 2003).

 In software engineering, testing all the components of GUIs is vital to ensure

that the GUI meets written specifications. Using a variety of test cases ensures that

the GUI design specifications are fulfilled. Nowadays, software testing is an

important stage in software projects (Nah et al., 2001). It is one of the most

expensive and time-consuming phases and usually stops after available resources are

used or even in the middle of the development process because of the duration of this

phase. However, manual testing allows a programmer to pledge each test, interrelate

with the test, as well as interpret, investigate and report the collected results.

Software testing is automated with a tester-free mechanism. GUI is used to

design various software applications because it interacts directly with users. Thus,

the accuracy of the applications can easily meet the quality specification set by users.

Other tools, such as capture replay, can be laborious and error-prone in designing

software applications. However, GUI is particularly automated for easy management.

Hence, substantial research focused on different methodologies to test GUIs,

particularly the techniques for automated GUI test case generation (Padmawar &

Sarwate, 2014).

Event flow graphs (EFGs) and behavior explorer technique (BXT) are two of

the most employed techniques to generate test cases for GUI. All possible event

flows within a particular system are provided by EFGs. These graphs are structural in

nature, which is a limitation of the subpaths within an event that can increase

exponentially. This step is theoretically feasible but is limited to practical

applications. The second method called BXT determines the effect of the first event

on the subsequent event and is useful in selecting two-way interaction. Hence, this

research applies these techniques to test GUIs in the two case studies.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/User-centered_design
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Test_case

3

1.2 Problem Statement

GUI is designed to improve the interaction between a user and an electronic system.

It involves the use of a mouse to select menu options; decisions are made by clicking

screen buttons and programs are launched by clicking icons on screen. GUI must

always be error-free and normal users must not experience any difficulty when using

this interface. Numerous software applications depend on GUIs to coordinate the

interactions of users with their systems. However, testing the correctness of a GUI is

difficult because of the numerous possible interactions in the interface, such as the

command button, text box, combo box and radio button. The sequence of GUI events

can also lead to different states, increase the cost and length of software development

and consume more time (Giuseppe & Di, 2012). A test case includes the input and

expected output, pass/fail criteria and environment where the test will be conducted.

Input refers to the data required to generate a test case. Software products can be

tested in two ways. First, tests are performed on each function of a product to

determine whether a software is fully operational. Second, the internal mechanisms

of a product are tested to determine whether these functions actually occur. Many

techniques have been used to generate test cases for GUI applications, including

Event Interaction Graph (EIG) (Memon et al., 2005), Event Semantic Interaction

Graph (ESIG) (Yuan & Memon 2010), EFG (Memon et al., 2012) and BXT

(Bertolini et al., 2009). These techniques improve, the correctness and consumed

time of test cases. Based on the software engineering perspective, the correctness

refers to the adherence of a GUI to specifications that determine how users can

interact with software and how the software must behave when used correctly. If the

software behaves incorrectly, then users may spend a considerable amount of time to

complete their tasks or may even fail to complete such tasks. Thus, the current

research will compare the correctness and time taken of the two techniques, namely,

EFG and BXT, in generating test cases.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

1.3 Project Objectives

The objectives of this research are as follows:

1. To define steps for generating test cases by using Event Flow Graphs (EFG) and

Behavior Explore Testing (BXT) techniques.

2. To apply techniques in (1) to the paint application and Present application.

3. To compare the correctness and time taken of test case generated between both

techniques in (1) for the case studies in (2) .

1.4 Scope of Project

This research uses two case studies and two techniques to investigate the problem of

correctness and time taken in GUI applications. The study compares the result of the

two techniques for the two case studies to determine the better technique between the

two chosen techniques. The two techniques are EFG and BXT. The case studies of

the current research are the paint and Present applications.

1.5 Dissertation Outline

The dissertation includes six chapters. Chapter 1 is an overview of the research and

provides the main objectives of the project. The chapter also includes the problem

statement and scope of the work covered by this project. Chapter 2 provides the

literature review of EFG and BXT, as well as a brief explanation of the general

information about generating test cases for GUI applications and some definitions

used in this project. Chapter 3 discusses the methodology and tools to achieve all the

objectives of this project. Chapter 4 explains the implementation and detailed steps

employed in this work. Chapter 5 discusses this project. Finally, Chapter 6 explains

the achieved objectives, conclusion of the project and future work.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

5

2 CHAPTER

 LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of previous research on GUI testing. Research on

techniques for generating test cases are also Present ed in this chapter. An

introduction of a framework for tools that employ these techniques and some topics

related to this study are explained to identify the appropriate approach for

investigating the objectives of the project.

2.2 Graphical User Interface

GUIs have three main bases: windows applications, web applications and mobile

applications. At Present , software GUIs are one of the most commonly used

components. A typical GUI provides degrees of freedom and various facilities to an

end-user. A test designer handles particular design challenges, such as enormous

input interaction space of the GUI, deals with development and examines the test

cases (Huang & Lu, 2012).

Currently, almost 70% of software systems are developed using GUIs. GUIs

are primarily used to faciliate an end-user to promote the features of GUIs that

provide ease and natural interaction between a system and its users.

GUI is hierarchical in producing the deterministic graphical output when a

graphical front-end software system accepts an input user-generated and system-

generated sequence of events from a fixed set of events. This interface is composed

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

of graphical objects where every object has a fixed set of properties. In some cases,

GUI properties have separate values that contain a set of constituted GUI states

during execution (Memon, 2007).

GUIs have become nearly omniPresent by interacting with software

systems. Figure 2.1 descibes the front-end underlying code for a GUI, where an

end-user interacts with the software using the GUI.

Figure 2.1: GUI is the front-end to the underlying code (Memon, 2001)

2.3 Software Testing

Software testing is an important activity in software engineering. It can help people

obtain accurate findings for software quality and diagnose errors in software

execution (Ref et al., 2011). Software testing helps achieve the required results by

evaluating an attribute or capability of a program or system (Choudhary & Kumar,

2011).

In software testing, analysis is performed to ensure that the quality of the

tested product or service meets the specific requirement of stakeholders. Software

testing can also provide an objective and independent view of a software to allow a

business to escalate and determine the risks of software implementation. In a testing

technique, a user can execute a program or application to find software bugs, errors,

or other defects but is not limited to these. Software testing can validate and verify a

software program application or product (Karnavel & Santhosh, 2013).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

7

2.4 GUI Testing

GUI is crucial in perfecting a software product. Thus, GUI testing ensures software

reliability. It is usually performed using a test script that interacts with a GUI through

a sequence of actions. Moreover, generating event sequences is always challenging.

Thus, the testing phase is divided into GUI testing, logical testing, unit testing and

integration testing. These various testing approaches provide effectiveness,

efficiency, correctness and accuracy in developing a quality product (Chen et al.,

2008).

Testing a GUI is an important and difficult concern in developing quality

software. In GUI testing, one of the most challenging considerations is the

significantly large or infinite input domain of a non-trivial GUI application. Defining

the region of convergence is necessary to help testers select the test cases from the

input domain of GUI applications (Zhao & Cai, 2010). GUI testing provides

information about the functionality of software for it to meet the design requirements

in the GUI and develop the standard required product before being launched in the

market.

GUI testing helps ensure that the requirements specified for a particular GUI

are met. These specifications contain the navigation path or sequences that will be

performed by a normal user and other sequences that a user can freely obtain through

the GUI. These sequences can generate faults or failures in the software system.

Thus, testing these sequences is crucial (Isabella & Emi, 2012).

2.5 Performance Parameters for Testing

Developers should achieve accuracy, correctness and performance-related issues in

developing a program that can rePresent an algorithm. To obtain appropriate design

specifications of a software system, developers must confirm the desired quality.

This step is achieved using a process called software verification. This process

involves verification activities during specification, design and implementation.

Software testing is another process used to assess the functionality and correctness of

software. The process analyzes the execution of a program (Gregory, 2008(.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

89

REFERENCES

Aris, K. A.(2007). Development of motor control using graphical user interface.

University Malaysia Pahang, Ph.D. Thesis.

Alferez, M., Santos, J., Moreira, A., Garcia, A., Kulesza, U., Araujo, J., & Amaral,

V. (2010). Software Language Engineering. Berlin Heidelberg : Springer.

Boghdady, P. N., Badr, N., Hashem, M., & Tolba, M. F. (2011). Test Case

Generation and Test Data Extraction Techniques. International Journal of

Electrical and Computer Sciences, 11(03), pp. 87-94.

Bunin, G., & Schneider, A. (2009). U.S. Patent No. 7,523,425. Washington, DC:

U.S. Patent and Trademark Office.

Bertolini, C., Peres, G., d'Amorim, M., & Mota, A. (2009). An empirical evaluation

of automated black box testing techniques for crashing guis. InSoftware

Testing Verification and Validation, 2009. ICST'09. International

Conference on IEEE . pp. 21-30.

Bae, G., Rothermel, G., & Bae, D. H. (2012). On the relative strengths of model-

based and dynamic event extraction-based gui testing techniques: An

empirical study. In Software Reliability Engineering (ISSRE), 2012 IEEE

23rd International Symposium on (pp. 181-190). IEEE.

Chen, W. K., Shen, Z. W., & Chang, C. M. (2008). GUI test script organization with

component abstraction. In Second International Conference on Secure

System Integration and Reliability Improvement, 2008, IEEE. pp.128-134.

Choudhary, D., & Kumar, V. Software testing. Journal of Computational Simulation

and Modeling. 2011. 1(1): 01-09.

DesRivieres, J., & Wiegand, J. (2004). Eclipse: A platform for integrating

development tools. IBM Systems Journal, 2004. 43 (2): 371-383.

Dexter, M. (2007). Eclipse And Java For Total Beginners Companion Tutorial

Document. Mark Dexter. Licensed under the Educational Community

License.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

90

Eldh, S. (2011). On Test Design. Doctoral dissertation, Vasteras: Malardalen

University. Ph.D. Thesis.

Gandhi, G. M. D., & Pillai, A. S. (2014). Challenges in GUI Test Automation.

International Journal of Computer Theory and Engineering, 6(2),pp 192.

Gautam and Sharma (2014). An Approach to Generate the Test Cases for GUI

Testing, IJISET - International Journal of Innovative Science, Engineering

and Technology, Vol. 1 Issue 6, August 2014.
Di Lucca, G. A., & Fasolino, A. R. (2006). Testing Web-based applications: The

state of the art and future trends. Information and Software

Technology, 48(12), pp.1172-1186.

Huang, Y., & Lu, L. (2012). Apply ant colony to event-flow model for graphical

user interface test case generation. IET software, 6(1), pp.50-60.

Fernando, S. G. S., & Perera, S. N. (2014). Empirical Analysis of Data Mining

Techniques for Social Network Websites. Compusoft, 3(2), pp.582.

Isabella, A., & Retna, E. (2012). Study Paper on Test Case generation for GUI Based

Testing. arXiv preprint arXiv:1202.4527,3(1).pp 139-147

Kanchan, G., & Sharma, P.M. (2014). An Approach to Generate the Test Cases for

GUI Testing, International Journal of Innovative Science, Engineering

and Technology, 1 (6).

Karnavel, K., & Santhoshkumar, J. (2013). Automated software testing for

application maintenance by using bee colony optimization algorithms

(BCO). In IEEE International Conference on Information Communication

and Embedded Systems (ICICES) 2013,pp.327-330.

Kaur, M., Sharma, N., & Kaur, R. K. (2010). Xml Schema Based Approach for

Testing of Software Components. International Journal of Computer

Applications, 6(11),PP, 7-11.

Latiu, G. I., Cret, O., & Vacariu, L (2013).Graphical user interface testing using

evolutionary algorithms. In IEEE 8th Iberian Conference on Information

Systems and Technologies, 2013.pp.1-6.

Liu, S. (2001). Generating test cases from software documentation; McMaster

University. Ph.D. Thesis

Martinez, W. L. (2011). Graphical user interfaces. WIREs Comp Stat, 3, pp.119–

133.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

91

Melchior, J., Grolaux, D., Vanderdonckt, J., & Van Roy, P. (2009). A toolkit for

peer-to-peer distributed user interfaces: concepts, implementationand

applications. In Proceedings of the 1st ACM SIGCHI symposium on

Engineering interactive computing systems, pp.69-78.

Memon, A. M. . (2001). A comprehensive framework for testing graphical user

interfaces.University of Pittsburgh;. Ph.D. Thesis

Memon, A. M. (2004). Developing testing techniques for event-driven pervasive

computing applications. In Proceedings of The OOPSLA 2004 workshop

on Building Software for Pervasive Computing, (BSPC 2004).pp.1-3.

Memon, A. M. (2007). An event‐flow model of GUI‐based applications for

testing. Software Testing, Verification and Reliability.. 17(3),pp. 137-157.

Memon, A. M., Pollack, M. E., & Soffa, M. L. (2001). Hierarchical GUI test case

generation using automated planning. IEEE Transactions on Software

Engineering.. 27(2),pp. 144-155.

Mesbah, A., Bozdag, E., & Van Deursen, A. (2008). Crawling Ajax by inferring user

interface state changes. In Web Engineering,. ICWE'08. Eighth

International Conference on. IEEE. pp. 122-134.

Nadira, I., & Sani, A. (2009). Voice Recognition Technology To Control

Electronic/Electrical Appliances. UTeM, Melaka,Malaysia. Ph.D. Thesis

Nah, F. H., Lau, J. L. S., & Kuang, J. (2001). Critical factors for successful

implementation of enterprise systems. Business process management

journal,. 7(3): 285-296.

Navarro, P. L. M., Ruiz, D. S., & Pérez, G. M. (2010). A proposal for automatic

testing of GUIs based on annotated use cases. Advances in Software

Engineering.pp 8.

Padmawar, N. V., & Sarwate, D. A. (2014). Impact of Test Automation and Test

Case Design Techniques-Challenges. International Journal of Innovative

Research in Computer Science & Technology.. 2(4): 40-42

Rauf, A., & Alanazi, M. N. (2014). Using artificial intelligence to automatically test

GUI. In IEEE 9th International Conference on Computer Science and

Education.. pp. 3-5.

Singh, S. K. (2011). An event-based framework for object-oriented analysis

computation of metrics and identification of test scenarios. University:

Jaypee Institute of Information Technology.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

92

Silva Simao, A. L., Moura, A. V. & Bonifácio, A. (2008). A generalized model-

based test generation method. In Software Engineering and Formal

Methods, 2008. SEFM'08. Sixth IEEE International Conference on (pp.

139-148). IEEE.

Tai, K. C. (1980). Program testing complexity and test criteria. IEEE Trans. Software

Engineering., 6(6), 531-538

Tron F, Stensrud, E, Barbara K, & Ingunn M (2002). An empirical validation of the

relationship between the magnitude of relative error and project size.

In Software Metrics, 2002. Proceedings. Eighth IEEE Symposium on (pp.

3-12).

Xie., Qing., & Memon A.M. (2006). Model-based testing of community-driven

open- source GUI applications. Software Maintenance, 22nd IEEE

International Conference on IEEE. 2006.pp :145-154

Xie, Q., & Memon, A. M. (2006,). Studying the characteristics of a" Good" GUI test

suite. In Software Reliability Engineering, 2006. ISSRE'06. 17th

International Symposium on (pp. 159-168). IEEE.

Wasif Afzal. (2007). Metrics in Software Test Planning and Test Design Processes.

School of Engineering Blekinge Institute of Technology

Yu, H., Lan, Y., & Ren, H. (2011). The Research about an Automated Software

Testing System RunTool. In IEEE 3rd International Workshop

on Intelligent Systems and Applications, 2011. pp.1-4.

Yuan, X., & Memon, A. M. (2010). Generating event sequence-based test cases

using GUI runtime state feedback. Software Engineering, IEEE

Transactions. 36(1),pp. 81-95.

Zacharias, B. (2012).Test Case Generation and Reusing Test Cases for GUI

Designed with HTML. Journal of Software.7(10): 2269-2277.

Zhao, L., & Cai, K. Y.(2010). Event handler-based coverage for GUI testing. In 10

th IEEE International Conference on Quality Software..pp. 326-331.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

