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ABSTRACT 

 

 

 

Impinging jets are a best method of achieving particularly high heat transfer over a 

surface circular cylinder, flat plate and concave surface are subjects of interest in 

many research studies over the past decades. In terms of cooling surfaces in many 

engineering applications had been devised to enhance the heat transfer from the jet 

impingement to the target surface.  

In this work, a study was conducted to investigate numerically related to the 

jet impingement on a circular cylinder. The objective of this study is to analyze the 

form and nature of the distribution of heat transfer on the surface of a circular 

cylinder are bombarded with water and "nanofluid" as a fluid jet. Increase the       

heat transfer rate by using three types of "nanofluids"namely,(water+Al2O3),         

(water+ CuO) and (water + SiO2) as a fluid jet impingement also studied..  

Effects of different Reynolds numbers (Red) in based nozzle different the 

ranges of (10000-30000) the performance of jet impingement heat transfer using a 

water jet impingement will be compared with that using "nanofluids" as the working 

fluid. Simulations are carried out in the form of dimensional (3-D) and in a "steady 

state" by using ANSYS 14.0 software that has been commercialized in the market. 

The results obtained from numerical simulations of jet impingement cooling 

the cylinders on the heated cylindrical tube will be presented. Heated surface of the 

cylinder tube will be maintained in a state of "Konstant heatflux". Geometric 

parameters such as the non-dimensional distance between the tip "nozzle" and the 

surface of the cylinder tube (h / d) was investigated in the amount of 4.8 and 

12.Variasi Nusselt numbers (Nud) along the circumferential and axial directions 

obtained from this study will be reported along with numerical the flow 

characteristics of jet impingement. It has been observed mainly in the areas of impact 

that Nud increased when h/d decreases. (Nud)  increased by 21% when the distance  

ratio h/d = 4 compared with the distance ratio h/d = 12. 
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 In the present work, the nanofluid of (SiO2 + water) gave the best heat 

transfer performance compared to other nanofluids and pure water. For the case of 

(SiO2 + water),Red = 30,000, Nusselt number is 5% higher than the case of      

(Al2O3 + water). As well as same condition when use type (water + CuO), also 

Nusselt number decreasing in percent 8.3 % compared with type (water + AL2O3) 

and 13.3% compared with type (water + SiO2). When using water Nusselt number 

decreased  in percent 19% compared with the nanofluid type (water + SiO2), means 

the heat transfer rate is better when using nanofluid instead of water. 
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ABSTRAK 

 

 

 

Sejak beberapa dekad yang lalu, jet hentaman menggunakan cecair keatas permukaan 

berbentuk silinder, permukaan rata dan permukaan lengkung menjadi tumpuan yang 

menarik banyak kajian penyelidikan. Dari segi penyejukan permukaan dalam 

aplikasi kejuruteraan, banyak kajian telah dilakukan untuk meningkatkan kadar 

pemindahan haba dari hentaman jet ke permukaan sasaran. 

Dalam penyelidikan ini, kajian telah dijalankan secara berangka untuk 

mengkaji berkaitan dengan jet hentaman keatas silinder bulat. Objektif kajian ini 

ialah mengkaji bentuk dan sifat taburan pemindahan haba diatas permukaan silinder 

bulat yang dihentam dengan menggunakan 𝐻2 𝑜 dan “nanofluid” sebagai bendalir jet. 

Peningkatan kadar pemindahan haba dengan menggunakan tiga jenis “nanofluids” 

iaitu, (𝐻2 𝑜 + SiO2), (Air + CuO) dan (𝐻2 𝑜 + AL2O3) sebagai bendalir jet hentaman 

juga dikaji. 

Kesan dari nombor Reynolds (Red) yang berbeza (dalam julat 10000-30000) 

terhadap prestasi pemindahan haba bagi jet hentaman yang menggunakan air akan 

dibandingkan dengan jet hentaman yang menggunakan “nanofluids” sebagai bendalir 

kerja. Simulasi yang dijalankan adalah dalam bentuk e dimensi (3-D) dan dalam 

keadaan “steady state” dengan  menggunakan perisian ANSYS 14.0 yang telah 

dikomersilkan didalam pasaran. 

Keputusan yang diperolehi daripada simulasi secara berangka terhadap 

penyejukan jet hentaman berbentuk silinder keatas tiub berbentuk silinder yang 

dipanaskan akan dibentangkan. Permukaan tiub silinder yang dipanaskan akan 

dikekalkan dalam keadaan “Konstant heatflux”. Parameter geometri seperti jarak 

tanpa dimensi diantara hujung “nozzle” dan permukaan silinder tiub (h/d) telah dikaji 

dalam julah 4,8 dan 12.Variasi nombor Nusselt (Nud) di sepanjang arah lilitan dan 

paksi yang diperolehi dari kajian berangka akan dilaporkan beserta dengan ciri-ciri 

aliran jet hentaman. Ia telah diperhatikan terutamanya didalam kawasan hentaman 

bahawa Nud meningkat apabila h/d berkurangan. Nud meningkat sebanyak 21% 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



viii 
 

apabila h/d=12 berkurang kepada h/d=4.kesan h/d terhadap Nud hanya dapat dilihat 

dalam kawasan hentaman sahaja. 

Dalam kajian ini,”nanofluid”  yang terdiri dari campuran air dan silika oksida 

(𝐻2 𝑜 + si02) memberikan presti pemindahan haba yang terbaik berbanding dengan 

(𝐻2 𝑜) tulen dan “nanofluid” yang lain. Bagi kes “ nanofluids” (𝐻2 𝑜 + SiO2) dengan 

Red=30000, jika dibandingkan dengan “nanofluids” (𝐻2 𝑜 +AL2O3), nilai nombor 

Nusselt (Nud) adalah 5% lebih tinggi. “Nanofluids” (𝐻2 𝑜 +CuO) pula menunjukan 

nombor Nusselt yang lebih rendah berbanding dengan “nanofluids” (𝐻2 𝑜 +AL2O3) 

Sebanyak 8.3% dan 13.3% lebih rendah berbanding “nanofluids”(air +sio2. Jika 

dibandingkan dengan air tulen, “nanofluid” (𝐻2 𝑜 +SiO2) menunjukkan  peningkatan  

sebanyak 19%. Ini bermakna pemindahan haba akan menjadi lebih baik dengan 

menggunakan “nanofluid” berbanding air tulen terutamanya (𝐻2 𝑜 + SiO2). 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1   Introduction 

 

 

Jet impingement of fluid over a cylinder, flat plate and concave surface are subjects 

of interest in many research studies over the past decades. In terms of cooling 

surfaces in many engineering applications had been devised to enhance the heat 

transfer from the jet impingement to the target surface [1]. One of the most studied 

cooling techniques, both experimentally and numerically (for example [2], [3], [4]) 

in recent years. Among these studies, researchers have documented the roles of 

different parameters such as design, configuration, flow confinement, and turbulence 

on the heat transfer and fluid dynamic characteristics of jet impingement as shown 

figure 1.1[5]. 

 

 
Fig1.1:Flow regions of a jet impinging on a circular cylinder [5].  
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This method includes the using of jet impingement with nanofluids  in order to 

increase the heat transfer coefficient from the flow of fluid to the surface through an 

increase in turbulent motion. Over the past few years heat transfer enhancement by 

using nanofluids has gained significant attention by researchers and scientists. 

Preparation of nanofluids is an important step in the use of nanoparticles to improve 

the thermal conductivity of conventional heat transfer fluids. Researchers have 

experimented with different types of nanoparticles such as metallic particles (Cu, Al, 

Fe, Au, and Ag). Past studies showed that nanofluids exhibit enhanced thermal 

properties such as shown figure 1.2 and figure 1.3, higher thermal conductivity and 

convective heat transfer coefficients compared to the base fluid [6],[7]. With easy 

implementation enhanced heat transfer rates are obtained when a jet flow is directed 

from a nozzle of a given configuration to a target surface. Since relatively high local 

heat transfer coefficients are obtainable compared to no impinging flows, the use of 

the jet impingement technique provides the designer with a means for more effective 

control over the temperature of the surface under consideration. 

 

 

 

 

 

Fig1. 2: SEM photograph of       particales [8] 
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Fig1. 3: SEM photograph of       particales [8]. 

 

 The applications of jets impinging in various industrial processes involving high 

heat transfer rates use impinging jets. The jet impingements of water are used in 

many engineering applications such as, cooling tower, cooling, electrical devices,  

textiles, films and papers, processing of some metals and glass, cooling of electronic 

equipment. The limitation of thermo physical properties and poor thermal 

conductivity of conventional fluids (pure water, ethylene-glycols and engine oil). 

The use of solid particles as an additive suspended in the base fluid is a technique for 

the heat transfer enhancement. Several researchers have concluded that the use of 

nanofluid effectively improved the fluid thermal conductivity which consequently 

enhanced the heat transfer performance [9], [10]. Nanofluids showed a promising 

future as heat transfer fluids due its better stability and anomalous increase in thermal 

conductivity even for a small volume fraction of suspended nanoparticles .While 

thermal conductivity is directly related to heat transfer capabilities of fluids, viscosity 

governs the ease of flow, pressure drop and consequent pumping power involved 

during the transport. The advantages of utilizing the nanofluids include (i) higher 

thermal conductivities than that predicted by currently available macroscopic models 

(ii) excellent stability and (iii) negligible penalty in pumping power due to pressure 

drop and pipe wall abrasion, non-metallic particles (Al2O3, CuO, Fe3O4, TiO2, and 

SiC) and carbon nanotubes. The thermal conductivity of nanofluids varies with the 

size, shape, and material of nanoparticles dispersed in the base fluids. 
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1.2   Problem Statement  

 

 

Many equipment or appliances need to have the high heat transfer performance to 

guarantee the quality and also to increase the capability. For example, in 

supercomputers, old cooling systems cannot be used anymore as it does not cool 

sufficiently. This makes it necessary to develop new techniques to meet the demand. 

Researchers are moving toward the technology of jet impingement cooling systems. 

This technique becomes more interesting using multi-jet impingement cooling 

systems. Lots of research has to be done in this field to make sure all capabilities 

required will be achieved.  

There is an application in cement plant, where, there is problem in rotary kilns, 

and this problem is high temperatures in kiln shell, therefore, need to local remedy to 

several areas in rotary kiln and can that using an impinging jet to remedy of high 

temperatures. Is necessary to local remedy to several areas in cement plant and  can 

that using an impinging jet with nanofluid to remedy of high temperatures in power 

plants , there is problem in cooling towersthis problem is high of temperatures in 

condensers. 

 

 

1.3    Project Objectives  

 

 

This study is conducted to investigate numerically the jet impingement of fluids over 

the cylinder. The objectives of the present study are:  

1) To study the distribution  heat transfer on smooth circular cylinder by 

impingement jet cool with using water. 

2)  To use various types of nanofluid such as (water +      ),(water + CuO) and 

(water+     ) for the enhancement of heat transfer. 

3)  To study the effects of different Reynolds numbers (   ) in the ranges of  

(10000-30000) on the thermal field and compare the results with  pure water. 
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1.4      Scope Of The Study 

 

 

The scopes of this project will comprise the boundaries of project study. Many 

characteristics should be bound in order to make this project achieve the objectives. 

This numerical study will carry out using nanofluids as the coolant medium that 

impinge with turbulent flow region from the nozzle to the heat source.  

1)   Reynolds number used at range (10000,15000, 20000, 25000 and 30000). 

2) The distance (h) between the end nozzle to the target a circular cylinder ranges 

of ratio h/d are (4,8 and 12). 

3) Using three types from nanofluid (water +     ),(water + CuO) and            

(water +     ) as fluid coolant. Concentrations nanoparticles  (     ,      and 

CuO) were 4  and the diameter (dp) 30nm. 

4) Using one  type of nozzle was a circular nozzle with diameter (d) 6mm, 

length(L) was 50mm and diameter (D) of a circular cylinder was 50mm show in 

figure 1.4.  

 

 

 

   Figure1.4 Jet impingement on a circular cylinder. 
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1.5      Research Significance  

 

 
 

This cooling method (nanofluids) has been used in a wide range of industrial 

applications such as annealing of metals, cooling tower of power plants, cooling in 

grinding processes, and cooling of electrical devices.Jet impingement has also 

become a viable candidate for high-powered electronic and photovoltaic thermal 

management solutions and numerous jet impingement studies have been aimed 

directly at electronics cooling. Jet impingement with nanofluid is an attractive 

cooling mechanism due to the capability of achieving high heat transfer rates. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1     Introduction  

 

 

Jet impingement on different surfaces had been a subject of interest for scientists and 

researchers in the past decades. Impinging Jets had attracted much research from the 

viewpoint of the fluid flow characteristics and their influence on heat transfer. 

Numerical and experimental studies had been reported in order to increase the 

amount of heat transferred by different techniques of jet fluids. Literature reviews on 

Jet impingement on circular cylinder and jet impingement by using nanofluids on 

different surfaces. The overall objective of the current research is to conduct a 

fundamental investigation of the heat transfer mechanisms for an impinging 

nanofluids jet. This chapter has been divided into three actions. The first section 

details the research concerned with the jet on circular cylinder. The second section 

presented the research conducted into heat transfer to an impinging jet by using 

nanofluids. The variation of the heat transfer with various test parameters is 

discussed and related to what is known of the fluid flow. A third section summarises 

some of the novel techniques that have been employed to enhance the heat transfer to 

an impinging nanofluids jet. 
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2.2     Heat Transfer Characteristic Of Jet Impingement 

 

 

A jet is a rapid flow of fluid forced out of the small opening. The submerged jet is 

called as when it came out in the same fluid jet. The flow field of jet impingement 

can be divided three characteristic regions such as the free jet region, the 

impingement region and the wall jet region by [11] . Figure 2.1 shows a typical 

surface impingement caused by jet [12]. The region of free jet is not affected by the 

impinging on the target surface. The impingement region is characterized by an 

increase the  stagnation pressure (static) as a result of the sharp decline in the mean 

axial velocity. After deflecting the impingement flow and began to speed up along 

the impingement surface. The wall jet region is characterized by higher velocity 

surrounding by the lower velocity at both sides, one due to the presence on the wall 

and another one due to the stagnant fluid. Along the impingement surface also grow 

up by boundary layer. 

Three characteristic regions shown by the free jet region, namely the potential 

core region, developing flow region and developed flow region depending on the 

distance nozzle exit to target plate. The potential core region has the axial velocity of 

the flow is very similar to jet entrance. The end of the potential core is determined by 

the growth rate of two mixing layers originating at the edges of the nozzle. In the 

developing flow region, the axial velocity begins to decay and the jet spreading to the 

surrounding areas. Finally the axial velocity profile approaching the bell shape. The 

axial profiles exist from the nozzle at different jet lengths is similar in the developed 

flow region. Dependent distance from the nozzle to impinging target plate, the free 

jet region can display one or more of the above regions surface. Mostly laminar jets 

can turn turbulent due to mixed at the outer of jets boundary. Exactly how fast an 

initially transform of a laminar jet into a turbulent can depend on many factors such 

as confinement, the velocity profile at the nozzle exit, the jet inlet Reynolds number 

etc. 
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Figure 2.1: Comparison of flow regions in an impingement jet with flow regions of  

free jet [12]. 

  

 

2.3  Jet Impinging On A Concave Surface 

 

 

Observed that for a concave surface impingement, in general the flow structure is 

more unsteady than that found in jet impingement on flat and convex surfaces. The 

reason for this is the centrifugal forces generated by the interaction between the flow 

and the concave surface act to destabilize the flow, promoting unsteadiness [13]. 

Figure 2.2 shows flow structures for an impinging jet with h/d = 4, 3, 2 and 1 for jet 

diameter d = 72.6 mm and a low Reynolds number,    = 6,000. In general, similar 

observations were found in those of the flat plate impingement, such as the absence 

of large vortex structures in the primary jet due to lack of distance for vortex 

development for h/d = 2 and h/d = 1 (Figure 2.4 (c) and (d), respectively). However, 

for the concave surface, there is also an absence of large vortex structures along the 

primary jet at h/d = 4 and h/d = 3 (Figure 2.4 (a) and (b), respectively) due to the jet 

exhaust entraining into the primary jet which disrupts the formation of these large 

vortices. With regards to vortices on the wall, only small vortices are seen for h/d = 2 

and h/d = 1 (Figure 2.4 (c) and (d), respectively), although they maintain their 
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identity a lot longer than those on the flat plate, helped by the recirculation of the 

exhaust flow. 

 

 

 

Figure 2.4: Flow structures of a jet impinging on a concave surface for (a)  h/d= 4  

(b) h/d = 3 (c) h/d = 2 (d) h/d = 1. jet diameter, d = 72.6 mm at    = 6,000 [13]. 

 

 

2.4     Jet Impinging On Flat Plate 

 

 

Study effects of inclination of an impinging two dimensional slot jet on the heat 

transfer from a flat plate. Their results showed that the location of the maximum heat 

transfer was mainly due to the angle of inclination. In the case of α=0°, there is 

normal jet impingement on the plate and the heat transfer, distribution is symmetrical 

around the central point of the test plate [14]. As the plate angle increases, the 

maximum heat transfer point shifts towards the uphill side of the plate from the 

geometrical impingement point. At the maximum inclination angle of 45°, the heat 

transfer on the downhill side of the plate is higher than that on the uphill side. The 

value of the maximum Nusselt number(   ) gradually increases at lower jet-to-plate 

spacing, as the inclination angle increases. With the larger spacing of 6, the amount 
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of increase in the maximum heat transfer point decays gradually. As the jet-to-plate 

distance is further increased to h/d=10, the distributions of the Nusselt number(   ) 

are almost the same level at all angles of incidence but there is a small displacement 

of maximum heat transfer point. As the Reynolds number increases, the local Nusselt 

number(   ) also increases. The increment in the Nusselt number(   ) increases 

with increasing the Reynolds number, especially outside of the maximum heat 

transfer region [14]. 

Study the heat transfer, distribution for an impinging laminar flame jet to a flat plate. 

Their results clearly show that the heat flux is constant for large flame tip-toe plate 

distances and increases rapidly for shorter distances, which is in agreement with the 

analytical heat–flux relations. Moreover, the temperature measurements show good 

agreement with the heat–flux relations applicable a tradial distances away from the 

hot spot [15]. 

 

 

2.5     Jet Impingement On Circular Cylinder  

 

 

Study experimentally the cooling of a cylinder with a rectangular jet of the same 

width were the choice of the jet height and the distance between the jet exit and the 

cylinder. The experimental measurements of the heat transfer on a cylinder, with 

diameter D = 10 mm, cooled by rectangular jets with low turbulence, the same width 

of the cylinder, but different height, H, 2.5 and 5 mm, respectively, in order to study 

their influence on the local and the mean cooling rates [16]. The cylinder to be 

cooled is heated by electric current and is set on the symmetrical plane of symmetry, 

i.e. the geometry is two-dimensional, at several distances from the jet exit, x, in order 

to find the position which realizes the maximum heat transfer. The experimental 

measurements of the local heat transfer were performed along the circumference of 

the cylinder at several angles from the impingement for Reynolds number, defined 

by the cylinder diameter, D, and the average velocity, in the range                          

    = 5000–22,000. The comparison between the two slots was performed at the 

same Reynolds number, ReD, which means that the smaller slot had a slightly greater 

maximum velocity. The experiments showed that at the impinging point the local 

Nusselt number was greater for the slot with H = 2.5 mm, while at greater angles 
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from the impingement, i.e. 45°, 90°, 135° and 180°, the local Nusselt numbers had 

different behaviors. The mean Nusselt numbers were similar for the two slots, at the 

same Reynolds number,    . Local and mean Nusselt numbers, obtained with the 

two jets, are in qualitative agreement if they compare with the dimensions distance, 

x/H, which can be interpreted as the ratio of the Reynolds numbers, independent of 

the mass flow rate or per unit of mass flow rate. The maximum of the local Nusselt 

number of the impinging point is obtained at greater distances for smaller Reynolds 

numbers, e.g. in the range from x/H = 15 at     = 5000 to x/H = 9 at     = 22,000, 

while the distance is shorter along the cylinder at greater angles from the 

impingement. The maximum of the mean Nusselt number is similar to that on the 

impingement for the two jets. The experimental heat transfer is also examined from 

the point of view of the slot efficiency, i.e. taking into account the mechanical power 

necessary to move the fluid in the slot jet. The conclusion is that the smaller slot, H = 

2.5 mm or D/H = 4, has a greater efficiency as cooling system because it removes 

more heat at the same mechanical power. 

 Study experimentally the turbulent air jet impinging on a square cylinder 

mounted on a flat plate. Turbulence statistics and flow’s topology were investigated. 

When the surface was heated through uniform heat flux, the local heat transfer 

coefficient was measured [17]. The jet from a long round pipe, 75mm pipe diameters 

(D) in length, at Reynolds number of 23,000, impinged vertically on the square 

cylinder (3D , 3D , 43D). Measurements were performed using particle image 

velocimetry, flow visualization using fluorescent dye and infrared thermography. 

The flow’s topology demonstrated a three-dimensional recirculation after separating 

from the square cylinder and a presence of foci between the bottom corner and the 

recirculation detachment line. The distribution of heat transfer coefficient was 

explained by the influence of these flow’s structures and the advection of kinetic 

energy. On the impingement wall of the square cylinder, a secondary peak in heat 

transfer coefficient was observed. Its origin can be attributed to very pronounced 

shear production coupled with the external turbulence coming from the free jet. 

Investigated numerical the flow and heat transfer predictions of multiple slot 

air jets impinging on circular cylinders using CFD (computational fluid dynamics). 

The distribution of Nusselt numbers around the cylinders of different Reynolds 

numbers (23,000– 100,000), distances between the jets, and the openings between 

them was determined for two and three jets and compared to simulations of a single 
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jet. The flow characteristics and the heat transfer, distribution around the cylinders 

were found to be dependent on the distance and the opening between the jets [18]. 

The interaction between two jets was found to be most advantageous. The heat 

transfer increased for higher Reynolds number in general; for two jets the heat 

transfer in the stagnation point is: 

 

     =0.20*Re*0.68                                                                                   (2.1) 

 

 For three jets, the heat transfer, distribution is different on the outer 

cylinders, as compared to the cylinder in the center. Tested experimentally and 

numerically the turbulent circular air jet impingement cooling of a circular heated 

cylinder. At the surface of the heated cylinder, a constant heat flux condition was 

maintained. The Reynolds number, Red, defined based on the nozzle diameter, was 

varied from 10,000 to 25,000. The geometric parameters such as the non-

dimensional distance between the nozzle exit and the circular cylinder, h/d, and the 

ratio of nozzle diameter to the diameter of the heated target cylinder, d/D, were 

investigated in the range of 4–16 and 0.11–0.25, respectively [19]. The local Nusselt 

number variants along the circumferential and axial directions obtained from the 

experimental studies were reported. To understand the flow features and to obtain the 

temperature and local Nusselt number distributions over the surface of the heated 

cylinder, a numerical study was also performed. It was observed that the stagnation 

Nusselt number increases monotonically as the h/d decreases and the effects of h/d 

and d/D are significant only in the jet impinging region. Based on the experimental 

results, a correlation of the stagnation Nusselt number has also been developed. 

Solved an inverse algorithm based on the conjugate gradient method and the 

discrepancy principle is applied to estimate the unknown space-and time-dependent 

heat flux at the surface of an initially hot cylinder cooled by a laminar confined slot 

impinging jet from the knowledge of temperature measurements taken on the 

cylinder’s surface [20]. It was assumed that no prior information is available in the 

functional form of the unknown heat flux; hence the procedure is classified as the 

function estimation in inverse calculation. The temperature data obtained from the 

direct problem were used to simulate the temperature measurements, and the effect 

of the errors in these measurements upon the precision of the estimated results is also 

considered. The results showed that an excellent estimation on the space-and time-
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dependent heat flux can be obtained even the distributions of thermal properties 

inside the cylinder is unknown. 

Investigated experimentally the heat transfer characteristics of a rotating 

cylinder under lateral air impinging jet. The height and diameter of the cylinder were 

fixed, and the variable parameters were as follows: (1) the jet Reynolds number 

(   j = 655–60237); (2) the rotational Reynolds number (   = 1975–7899); (3) the 

ratio of the cylinder diameter (D) to the nozzle width (w) (D/w = 2–16); (4) the 

relative jet-impinging distance (L/w = 1–16, L was the shortest nozzle-to-cylinder 

distance). This experiment measured detailed temperature on the heated wall surface 

of the cylinder using an infrared thermo tracer, and observed the smoke flow 

characteristics of the stationary and rotating cylinder under impinging jet flow using 

visualization techniques [21]. The experimental results showed that the rotation 

changed the separation position of impinging jet flow on the cylinder, and allowed 

the surface temperature of the cylinder to tend towards uniformity along the 

circumferential direction of the cylinder. In addition, the heat transfer experiment 

included the pure rotating condition, the pure jet-flow condition and the coexistent 

condition of rotation and jet flow. The results showed that the average Nusselt 

number (   ) increased with the increase of    , and decreased with the increase of 

D/w. The influence of D/w on Nu decreased with the increase of L/w, and Nu first 

increased and then decreased with the increase of L/w. In other words, there is a 

critical L/w value that can produce the highest Nu, and the critical L/w value 

increased with D/w. Finally, this study proposed reasonable and accurate empirical 

correlations of Nu in view of the three test conditions. All the results provided a 

reference for practical design of the cooling system in relevant power machinery. 

Investigated using computational fluid dynamics (CFD) the Heat transfer 

from a slot air jet impinging on a cylinder shaped food product placed on a solid 

surface in a semi-confined area. Simulations of a cylinder in cross flow with the k– , 

k–ω and SST models in CFX 5.5 were compared with measurements in the literature. 

The SST model predicts the heat transfer better than the other models and was 

therefore used in this study [22]. The distribution of the local Nusselt numbers 

around the cylinder for various Reynolds numbers (23,000–100,000), jet-to-cylinder 

distances, H=d (2–8), and cylinder curvature, d=D (0.29–1.14) was determined. The 

results showed that the local Nusselt numbers varies around the surface of the 

cylinder and that the average Nusselt number and the stagnation point Nusselt 
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number increases with increasing Reynolds numbers and surface curvature but has 

little dependency on the jet-to-cylinder distance. The result was 

 

                
 

 
 
      

 
 

 
                                                                           (2.2) 

And 

            
      

 

 
                                                                                 (2.3) 

 

Investigated numerically had been performed two-dimensional slot 

impingement onto two heated cylinders with different diameters turbulent flow 

conditions. Height of slot jet is taken as constant in all cases. The study was 

performed to see the effects of effective parameters on heat and fluid flow as jet 

Reynolds number (11,000≤Re≤20,000), diameter ratio of cylinders (0.5≤D1/D2≤1.5) 

and ratio of distance between cylinders to slot jet high (L/S). Streamlines, isotherms, 

local and mean Nusselt numbers and CFD coefficient were obtained. These results 

were compared with earlier experimental and numerical works and good agreement 

was obtained. It was also found that diameter ratios of cylinders can be a central 

element for heat and fluid flow[23]. 

  Study experimentally the enhancement of heat transfer on a cylinder due to 

the turbulence of the impinging jet. Experiments are carried out to cool a smooth 

cylinder, electrically heated, with a submerged slot jet of air at Reynolds numbers 

equal to     = 4180 and     = 7630. The increase of turbulence is obtained by the 

introduction of a metal grid and by the natural evolution of the jet with the distance 

from the slot exit. Turbulence, velocity and heat transfer measurements were 

presented in order to show the relation with the slot-to-cylinder distance. The metal 

grid is set in two positions: just on the slot exit or at a constant distance in front of 

the cylinder. In the natural evolution of the free jet the turbulence increases with the 

distance because of the interaction with stagnant air, reaches a maximum and then 

decreases [24]. If the grid is on the slot exit the turbulence increases at first, then 

decreases according to the degeneration law, and finally increases again due to the 

interaction with the stagnant air. Turbulence at a distance of 10 times the slot height 

is about the same weather was present or not the grid. Heat transfer measurements 
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were presented as local and mean Nusselt numbers. Without grid local and mean 

Nusselt numbers increase with the distance from the slot exit reaching the maximum 

at a distance of about 8 time the slot height. With the grid on the slot exit the local 

Nusselt number had a maximum immediately after the grid and a minimum at 4e5 

time the slot height. With the grid in front of the cylinder at the distance of the slot 

height the local Nusselt number had the maximum immediately after the grid and 

then is about constant up to 10 times the slot height. The mean Nusselt number with 

the grid in front of the cylinder is greater than without the grid only at the higher 

Reynolds number experimented. 

 

 

2.6   Fundamentals of Nanofluids 

 

 

Conventional heat transfer fluids such as water, oil, and ethylene glycol mixture are 

poor heat transfer fluids, the thermophysical properties of these fluids play important 

role on heat transfer coefficient. In the past years, many different techniques were 

used in order to improve the thermal conductively of these fluids and reach a 

satisfactory level of thermal efficiency. The heat transfer rate can passively be 

enhanced by improving thermophysical properties with adding small solid particles 

in the fluid. Maxwell was the first to show the possibility of increasing thermal 

conductivity of a solid/liquid mixture by more volume fraction of solid particles. He 

used particle of micrometer or millimeter dimensions. Those particles were the cause 

of numerous problems, such as abrasion, clogging, high pressure drop and poor 

suspension stability. Therefore, a new class of fluid for improving thermal 

conductivity and avoiding adverse effects due to the presence of particles is required. 

To meet these important requirements, a new class of fluids, called nanofluids has 

been developed [36].  Nanofluids are liquid suspensions of nano-sized particles. 

These particles have attracted significant attention since anomalously large 

enhancements in effective thermal conductivity at low particles concentration were 

reported. 
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2.7     Jet Impingement Of Nanofluid 

 

 

Investigated experimentally and theoretically of spray cooling with a solid jet nozzle 

was performed to assess the associated heat transfer coefficients (HTC) using 

water/alumina nanofluids. Based on a the rmalprobe embedded in a heated testing 

plate, the cooling curves, which represent the transient temperature variations of the 

plate, have been measured at various spraying conditions. An inverse heat transfer 

technique was then applied to convert these measured cooling curves into the HTC. 

The results indicated that, after its first peak, the HTC became very stable with the 

associated standard deviation less than 3% of its mean and the single mean value 

could reliably represent the performance of spraying cooling for all cases considered. 

The results also showed that the HTC increased with the flow rate intensities, 

following a power-law type of correlation [25]. By comparing the nanofluid results 

with that of pure water, it was found that an approximately 45% decrease of HTC of 

spray cooling with the volume fraction of the nanoparticles us pension increasing 

from( 0 to 0.1645). The reduction of HTC caused by the change of the spraying 

impact duration due to the presence of nanoparticles was specifically analyzed and 

an analytical for mulato correlate this effect was developed to further explain the 

combined effects of nano-particles on HTC. 

 Carried out Experimental study on the performance of sub cooled flow 

boiling heat transfer with jet impingement of FC-72 over silicon chips (10 × 10× 0.5) 

mm
3
. Four kinds of micro-pin-fins with dimensions of (30 × 60, 30 ×120, 50×60, 50 

× 120) mm
2
 (thickness t= height h) were fabricated on the chip surfaces by using the 

dry etching technique [26]. The experiments were made at two different liquid sub 

cooling (25 C° and 35 C°), three different cross flow velocities    (0.5, 1, 1.5) m/s 

and three different jet velocities   (0, 1, 2 ) m/s. A smooth surface was also tested for 

comparison. The results show that both the microstructure and impingement give a 

large enhancement on heat transfer. The maximum allowable heat flux increases with 

the velocity and liquid sub cooling. For a fixed   , the enhancement degree increases 

with    especially for   = 0.5 m/s,   = 2 m/s. As    increases, the heat transfer 

enhancement ofjet impingement weakens and the increase rate of CHF (the critical 

heat flux) also decreases. The largest value of quad (the maximum allowable heat 
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flux) can reach 167 W/cm
2
 for chip with the fin dimension of 50mm

2
 _ 120 mm

2
 at 

the condition of    = 1.5 m/s, Vj = 2 m/s and liquid sub cooling of 35 c  . In this 

paper, the jet liquid impingement heat transfer characteristics in the mini-rectangular 

fin heat sink for the central processing unit of a personal computer are 

experimentally investigated. The experiments are tested with three different channel 

width heat sinks under real operating conditions: no load and full load conditions. 

The jet liquid impingement cooling with mini-rectangular fin heat sink system is 

introduced as the active and passive heat transfer enhancement techniques [27].  

Effects of relevant parameters on the central processing unit temperature are 

considered. It is found that the central processing unit temperatures obtained from the 

jet liquid impingement cooling system are lower than those from the conventional 

liquid cooling system; however, the energy consumption also increases. The results 

of this study are of technological importance for the efficient design of cooling 

systems of personal computers or electronic devices to enhance cooling performance. 

Heat transfer enhancement capabilities of coolants with suspended metallic 

nanoparticles inside typical radial flow cooling systems are numerically investigated 

in this paper. The laminar forced convection flow of these nanofluids between two 

coaxial and parallel disks with central axial injection has been considered using 

temperature dependent nano-fluid properties. Results clearly indicate that 

considerable heat transfer benefits are possible with the use of these fluid/solid 

particle mixtures [28].  

For example, (Water/     ) nanofluid with a volume fraction of 

nanoparticles as low as 4% can produce a 25% increase in the average wall heat 

transfer coefficient when compared to the base fluid alone (i.e., water). Furthermore, 

results show that considerable differences are found when using constant property 

nano-fluids(temperature independent) versus nanofluids with temperature dependent 

properties. The use of temperature-dependent properties make for greater heat 

transfer predictions with corresponding decreases in wall shear stresses when 

compared to predictions using constant properties. With an increase in wall heat flux, 

it was found that the average heat transfer coefficient increases whilst the wall shear 

stress decreases for cases using temperature-dependent nanofluid properties. 

 In this study, nanofluids were introduced into jet arrays impingement as the 

working fluid. The heat transfer features of the nanofluids were experimentally 

investigated. Four different Cu-nanoparticle volume fractions ranged from           
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(0.17 Vo 1% to 0.64 Vo l% ) and two dispersant sodium do dactyl benzoic 

sulfate(SDBS) mass concentrations varied from (0.05 wt% to 0.1 wt%) were 

involved. The influences of the nanoparticle volume fraction and the dispersant 

SDBS on the heat transfer of nanofluids were discussed [29].  

The experimental results show that the suspended nanoparticles increase the 

heat transfer performances of the jet arrays impingement cooling system. It had also 

been found that compared with the case of using nanofluids without any addition of 

dispersant, the nanofluid with dispersant led to a great deterioration on impingement 

heat transfer coefficient and even the heat transfer coefficients were smaller than that 

of the base liquid. pray cooling using aqueous titanic nanofluids was studied. The 

temperatures of a testing plate under various spraying conditions were first 

measured; an inverse heat conduction technique was then applied to convert these 

measured temperatures into heat transfer coefficients (HTCs). It was found that the 

HTC increased logarithmically with the volume flux, but was decreased with the 

increase of the nanoparticle fraction [30]. 

 A correlation analysis was performed to quantify the HTC reduction caused 

by the increase of nanoparticles, and reconfirmed that the major cause for the HTC 

reduction was the difference in the impact (or impingement) behavior between solid 

nanoparticles and fluid droplets. A comparison study of the present findings with the 

previous published results was also performed and indicated that all results compared 

were consistent to each other based on the similar spray cooling conditions with 

different nanofluids or nozzles. The effects by using aquatic titanic nanofluids 

instead of aquatic alumina nanofluids and by using full-cone nozzle instead of solid 

jet nozzle were specifically assessed and the as so ciatedrationales for the differences 

in these effects were given. 

The paper study mathematical modeling is performed to simulate the forced 

convection flow of (     –water) nanofluid in the radial flow cooling system using 

a single-phase approach. Computations are validated with experimental data 

available in the literature. Results show the same trend as revealed in most of the 

published works that the heat transfer coefficient increases with the increase of the 

Reynolds number and the nanoparticle volume fraction, though the increase in 

pressure drop is more significantly associated with the increase of particle 

concentration [31].  
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When taking both the cooling performance and the adverse effect of pressure drop 

into consideration, no better heat transfer enhancement is found with the use of 

nanofluid compared to that of pure water under the laminar, medium-heat flux 

conditions in the radial flow system. Furthermore, the model considering Hamilton–

Crosser formula for effective conductivity along with the equation developed by 

Brinkman for effective viscosity of nanofluid might result in the over prediction of 

the capability of applying nanofluids to remove heat. Table 2.1 as shown below The 

thermo-physical properties of water and different nanoparticles at T=300K. 

 

 

Thermo-physical Properties Water Al2O3 CuO TiO2 SiO2 

Density          998.2 3600 6500 4850 2220 

Dynamic viscosity,          1.00E-03 0 0 0 0 

Thermal 

conductivity,           
0.60192 36 20 7.44 1.4 

Specific heat,            4182 765 535.6 544.2 745 

 

 

this experimental study investigates the critical heat flux (CHF) of high-velocity 

circular jet impingement boiling on the nano-characteristic surface of the stagnation 

zone with different surface wet ability. The wet ability of the copper surface is varied 

to hydrophilic or hydrophobic nano-characteristic surfaces by modifying surface 

topography and chemistry [32].  

The effect of impact velocity, sub cooling and solid–liquid contact angle (CA) on the 

CHF are studied thoroughly. The experimental relation ship between (CA) and CHF 

of the heat transfer surface is summarized by further discussion. The semi-the or 

ethical correlations proposed by the author previously for predicting the CHF of 

saturated and sub cooled circular jet impingement boiling on the stagnation zone are 

improved and expanded to higher impact velocity and wider CA range. The 

comparison results indicate the predicted value of the improved correlation sages 

well with the experimental data[33]. 
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 Effects of outlet port positions on the jet liquid impingement heat transfer 

characteristics in the mini-rectangular fin heat sink are numerically investigated. The 

three-dimensional governing equations for fluid flow and heat transfer characteristics 

are solved using finite volume scheme. The standard k-ε turbulent model is 

employed to solve the model for describing the heat transfer behaviors. The predicted 

results obtained from the model are verified by the measured data. The predicted 

results are in reasonable agreement with the measured data. The outlet port positions 

have a significant effect on the uniformities in velocity and temperature. Based on 

the results from this study, it is expected to lead to guidelines that will allow the 

design of the cooling system to ensure the electronic devices at the safe operating 

temperature. 

 Nanofluids, because of their enhanced heat transfer capability as compared 

to normal water/glycol/oil based fluids, offer the engineer opportunities for 

development in areas where high heat transfer, low temperature tolerance and small 

component size are required. In this present paper, the hydrodynamic and thermal 

fields of (water–     ) nanofluid in a radial laminar flow cooling system are 

considered. Results indicate that considerable heat transfer enhancement is possible, 

even achieving a twofold increase in the case of a 10% nanoparticle volume fraction 

nanofluid. On the other hand, an increase in wall shear stress is also noticed with an 

increase in particle volume concentration [34]. 

In this experimental study, a jet of (     –water) nanofluid at various 

volume fractions (0.02%, 0.05%, 0.1%, and 0.15%) was used to impinge vertically 

on the vertex of a V-shaped plate. The heat transfer coefficient of the nanofluid jet 

was measured and its value was compared with that of water. The tests were 

performed under a laminar flow regime with Reynolds numbers ranging from    

(1732 to 2719). Results show that using (     –water) nanofluid at low volume 

fractions of 0.02% and 0.05% yield enhancements on both local and average heat 

transfer coefficients, and these positive effects increase with increasing Reynolds 

number. For nanofluids containing higher volume fractions of (0.1% and 0.15%), 

there were negative affect son the heat transfer coefficient. At Reynolds numbers 

from (1732 to 2250), the reduction in local and average heat transfer coefficient have 

been further decreased with increasing Reynolds number. However, at Reynolds 

numbers greater than 2250, these adverse effects were decreased and the heat transfer 

coefficient has increased, indicating that the use of nanofluid has resulted in an 
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increase in the heat transfer coefficient. The maximum increase in the local and 

average heat transfer coefficients, as compared with those of water, were obtained in 

the case of nanofluid with the volume fraction of (0.05%, were 21.7% and13. 91%) 

respectively [35]. 

Determined experimentally the thermal conductivity of three nanofluids 

(aluminum oxide       copper oxide CuO and zinc oxide ZnO) and developed a 

new correlations. The nanoparticles dispersed in a base fluid of 60:40 (by mass) 

ethylene glycol and water mixture. Particle volumetric concentration tested was up to 

10% and the temperature range of the experiments was from 298 to 363 K. The 

results showed an increase in the thermal conductivity of nanofluids compared to the 

base fluids with an increasing volumetric concentration of nanoparticles. The thermal 

conductivity also increased substantially with increased in temperature[37]. 

 Addressed the unique features of nanofluids, such as enhancement of heat 

transfer, improvement in thermal conductivity, increase in surface volume ratio, 

Brownian motion, thermophysical prophesies. They summarized the recent research 

in experimental and theoretical studies on forced and free convective heat transfer in 

nanofluids, their thermo-physical properties and their applications, and identify the 

challenges and opportunities for future research. From the results it was noted that 

the nanofluids had greater potential for heat transfer enhancement and were highly 

suited to application in practical heat transfer processes. The main reason for the heat 

transfer enhancement of nanofluids was that the suspended nanoparticles increase the 

thermal conductivity of the fluids, and the chaotic movement of ultrafine particles 

increases fluctuation and turbulence of the fluids, which accelerates the energy 

exchange process. Convective heat transfer is enhanced by increasing the particle 

concentration and the Reynolds number [38] .  

  Studied the influence of temperature and concentration of nanofluids on 

thermo physical properties, heat transfer and pumping power. The Prandtl number, 

Reynolds number and Nusselt number were functions of thermo-physical properties 

of nanofluids and these numbers strongly influence the convective heat transfer 

coefficient. The thermo physical properties varied with temperature and volumetric 

concentration of nanofluids. Therefore, a comprehensive analysis had been 

performed to evaluate the effects on the performance of nanofluids due to variations 

of density, specific heat, thermal conductivity and viscosity, which were functions of 

nanoparticle volume concentration and temperature [39]. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



23 
 

Studied the application of computational fluid dynamics (CFD) for nanofluids in 

order to evaluate the heat transfer enhancement. This newly introduced category of 

cooling fluids containing ultrafine nanoparticles (1–100 nm) had displayed 

fascinating behavior during experiments including increased thermal conductivity 

and augmented heat transfer coefficient compared to a pure fluid. Most of these 

computational simulations were in acceptable concordance with the results from 

experiments[40]. 

Studied the development of new correlations for convective heat transfer and 

friction factor in turbulent regime for nanofluids. The experiments of nanoparticles 

comprised of aluminum oxide, copper oxide and silicon dioxide dispersed in 60% 

ethylene glycol and 40% water by mass. The rheological and the thermophysical 

properties such as viscosity, density, specific heat and thermal conductivity were 

measured at different temperatures for varying particle volume concentrations. The 

pressure loss was also measured and a new correlation was developed to represent 

the friction factor for nanofluids. The experiments results showed that the heat 

transfer coefficient of nanofluids increased with increased the particle volumetric 

concentration. The increase in the viscosity of the nanofluid with concentration led to 

increase heat transfer and pressure loss [41].  

Studied experimentally the influence of       nanofluid flowing in a 

circular tube on heat transfer. The experiments were conducted using      3-water 

nanofluid (   = 47 nm; volume concentration ϕ up to 0.1%) to evaluate the heat 

transfer coefficient and friction factor in a circular tube with twisted tape inserts in 

the transition flow regime. The experiments results showed that at Reynolds numbers 

of 3000 and 9000, the heat transfer enhancement in circular tube with 0.1% particle 

volume concentration were 13.77% and 23.69% respectively when compared to 

water. Furthermore, for the same particle volume concentration of 0.1%, the heat 

transfer enhancement with twisted tape insert inside a circular tube were 36.96% and 

44.71% at Reynolds numbers of 3000 and 9000 respectively, when compared to flow 

of nanofluid in a plain tube [42].  

The thermal conductivity of nanofluids varies with the size, shape, and 

material of nanoparticles dispersed in the base fluids. For example, nanofluids with 

metallic nanoparticles were found to have a higher thermal conductivity than 

nanofluids with non-metallic (oxide) nanoparticles. The smaller nanoparticle 
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diameter provided the higher thermal conductivities of nanofluids. Nanofluids are 

solid-liquid composite materials consisting of solid nanoparticles with sizes typically 

of 1 to 100 nm suspended in liquid. The nanofluid is not a simple liquid-solid 

mixture; the most important criterion of nanofluid is agglomerate-free stable 

suspension for long durations without causing any chemical changes in the base 

fluid. This can be achieved by minimizing the density between solids and liquids or 

by increasing the viscosity of the liquid; by using nanometer-sized particles and by 

preventing particles from agglomeration, the settling of particles can be avoided. 

Nanofluids have attracted great interest recently because of reports of enhanced 

thermal properties [43]. 

Preparation of nanofluids is an important step in the use of nanoparticles to 

improve the thermal conductivity of conventional heat transfer fluids. Researchers 

have experimented different types of nanoparticles such as metallic particles (Cu, Al, 

Fe, Au, and Ag), non-metallic particles (Al2O3, CuO, Fe3O4, TiO2, and SiO2) [44].  

The heat transfer rate can passively be enhanced by improving 

thermophysical properties with adding small solid particles in the fluid. Maxwell was 

the first to show the possibility of increasing thermal conductivity of a solid/liquid 

mixture by more volume fraction of solid particles. He used particle of micrometer or 

millimeter dimensions. Those particles were the cause of numerous problems, such 

as abrasion, clogging, high pressure drop and poor suspension stability. Therefore, a 

new class of fluid for improving thermal conductivity and avoiding adverse effects 

due to the presence of particles is required. To meet these important requirements, a 

new class of fluids, called nanofluids [45], has been developed. Nanofluids are liquid 

suspensions of nano-sized particles. These particles have attracted significant 

attention since anomalously large enhancements in effective thermal conductivity at 

low particles concentration were reported.  

Addressed the unique features of nanofluids, such as enhancement of heat 

transfer, improvement in thermal conductivity, increase in surface volume ratio, 

Brownian motion, thermophysical prophesies. They summarized the recent research 

in experimental and theoretical studies on forced and free convective heat transfer in 

nanofluids, their thermo-physical properties and their applications, and identify the 

challenges and opportunities for future research. From the results it was noted that 

the nanofluids had greater potential for heat transfer enhancement and were highly 
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