FPGA-BASED DIGITAL CONTROLLER FOR DC-DC CONVERTER

DIYYA HIDAYAH BT ABD. RAHMAN

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering UniversitiTun Hussein Onn Malaysia

JUNE 2014

ACKNOWLEDGEMENT

Praises to Allah S.W.Tfor the strength and blessing throughout the entire research and completion of this project. Peace is upon Prophet Muhammad S.AW, who had given light to mankind.

First of all, I would like to express my thanks to my supervisor, Dr.MohdShamian Bin Zainalforhis guidance and advice throughout the preparation and completion of Master Project II.

To my classmates, Fikri, Kamal, Roslin, Norhafiz, Salehuddin and Fhaizal who always give support and advice to me throughout the time we spend together in order to finish our study. To my colluegues, Habibah, Norhanisa, Nurhafiza, thanks a lot for the endless support throughout completing this thesis.

Special thanks to my teacher, Mr. Shahril for patiently teach me about Verilog and guide me to complete this project.

My deepest appreciation goes tomy lovely parents and family for their blessing and support, to my husband, Shuhaimi bin Sulaiman for his love, encouragement and support and not to forget my daughter Safiyya Dalila for being the source of my inspiration.

ABSTRACT

This thesis presents a FPGA-based digital controller for a DC-DC converter. The converter topologies chosen in this project is Non-Inverting Buck-Boost converter. The main difference from DSP-based solution is that FPGA allows simultaneous execution of all control procedures. The control algorithm has been developed using Verilog language based on the voltage control loop. The FPGA switching controller has been designed as simple as possible while maintaining the accuracy and dynamic response. The DE1 board is used to control the main circuit. Simulations and experimental results show the feasibility of the proposed method, opening interesting possibilities in motion and power electronics converter control.

ABSTRAK

Tesis ini membentangkan pengawal digit berasaskan FPGA untuk penukar DC-DC. Topologi penukar dipilih dalam projek ini ialah bilik menyongsang Buck-Boost penukar. Perbezaan utama dari penyelesaian berasaskan DSP ialah FPGA membolehkan pelaksanaan serentak semua prosedur kawalan. Algoritma kawalan telah dibangunkan dengan menggunakan bahasa Verilog berdasarkan gelung kawalan voltan. FPGA beralih pengawal telah direka semudah mungkin sambil mengekalkan ketepatan dan tindak balas dinamik. Papan DE1 digunakan bagi mengawal litar ini. Simulasi dan keputusan eksperimen menunjukkan kemungkinan kaedah yang dicadangkan, membuka kemungkinan yang menarik dalam gerakan dan elektronik kuasa kawalan penukar.

CONTENTS

TITLE	i
STUDENT'S DECLARATION	ii
ACKNOWLEDGMENT	iii
ABSTRACT	iv
ABSTRAK	V
CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS AND ABBREVIATIONS	xi
LIST OF APPENDICES	xii

1.1	Introduction	1
1.2	Objective of the Project	2
1.3	Problem Statement	2
1.4	Scope of Project	3
1.5	Thesis Outline	3

CHAPTER 2 LITERATURE REVIEW

2.1	Literature Review		
2.2	List of Paper Review		
2.3	2.3 Buck-Boost Converter Topologies		
	2.3.1 The inverting topology	12	
	2.3.2 A buckconverter followed by a		
	boost converter	13	

CHAPTER 3 METHODOLOGY

3.1	Introduction		
3.2	Development of FPGA-based controller		
	algorithm	16	
3.3	Switching configuration	18	
3.4	Control system implementation onFPGA	24	
	3.4.1 Analog-digital conversion	24	
	3.4.2 PWM generator component	26	
3.5	Hardware construction of Non-Inverting		
	Buck-Boost Converter	28	
	3.5.1 Controller Coding	28	
3.6	Hardware construction of Non-Inverting		
	Buck-Boost Converter	30	

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	35
4.2	Simulation result for Buck-Boost Converter	35
4.3	Comparation between calculation results	
	and simulation results	47
4.4	Result of Verilog code for switching controller	48
	4.4.1 Hardware looping result	49

CHAPTER 5 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORKS

5.1	Conclusions	50
5.2	Recommendation for Future Works	51

REFERENCES	52
APPENDIX	55

LIST OF TABLES

3.1	The converter switching configuration	19
3.2	Parameters of generic PWM	27
4.1	Overall simulation results	46
4.2	THD Summaries for All Input Range	47
4.3	Comparison between calculation and simulation	48

LIST OF FIGURES

2.1	Non-Inverting Buck-Boost Topology	12
3.1	Project Flowchart	15
3.2	FPGA implementation process	16
3.3	Simulation of Buck-Boost DC-DC Converter	17
3.4	Block diagram of the whole system.	17
3.5	An Ideal Buck-Boost Converter	18
3.6	The series of Non-Inverting Buck-Boost converter	19
3.7	Closed switch analysis	21
3.8	Open switch analysis	21
3.9	Voltage control loop	23
3.10	Simple ADC	25
3.11	Waveform of a Pulse In-Phase with the PWM Period	26
3.12	Declaration of the Verilog	28
3.13	Code for PWM Generating	29
3.14	Coding for Counter	29
3.15	The Coding for Selection of Output	30
3.16	Altera DE1 board	31
3.17	Constructing of Non-Inverting Buck-Boost Converter	32
3.18	Hardware testing for the Buck-Boost Converter	33
4.1	The whole circuit of the Non-Inverting Buck-Boost Converter	36
4.2	Simulation Circuit for 1volt Input	36
4.3	Simulation Result for 1volt Input with THD	37
4.4	Simulation Circuit for 2volt Input	37
4.5	Simulation Result for 2volt Input with THD	37

4.7Simulation Result for 3volt Input with THD384.8Simulation Circuit for 4volt Input with THD394.9Simulation Result for 4volt Input with THD394.10Simulation Circuit for 5volt Input404.11Simulation Result for 5volt Input with THD404.12Simulation Circuit for 6volt Input with THD414.13Simulation Result for 6volt Input with THD414.14Simulation Circuit for 7volt Input with THD424.15Simulation Circuit for 7volt Input with THD424.16Simulation Result for 8volt Input with THD434.17Simulation Result for 9volt Input with THD434.18Simulation Circuit for 9volt Input with THD444.19Simulation Circuit for 9volt Input with THD454.20Simulation Circuit for 10volt Input with THD454.21Simulation Circuit for 10volt Input with THD454.22Simulation Circuit for 10volt Input with THD454.23Simulation Circuit for 10volt Input with THD454.24Simulation Circuit for 10volt Input with THD454.25Simulation Of Verilog code49	4.6	Simulation Circuit for 3volt Input	38
4.8Simulation Circuit for 4volt Input394.9Simulation Result for 4volt Input with THD394.10Simulation Circuit for 5volt Input404.11Simulation Result for 5volt Input with THD404.12Simulation Circuit for 6volt Input with THD414.13Simulation Result for 7volt Input with THD414.14Simulation Circuit for 7volt Input with THD424.15Simulation Circuit for 7volt Input with THD424.16Simulation Circuit for 8volt Input with THD434.17Simulation Result for 9volt Input with THD434.18Simulation Circuit for 9volt Input with THD444.19Simulation Circuit for 10volt Input with THD454.21Simulation Result for 10volt Input with THD454.22Simulation Of Verilog code49	4.7	Simulation Result for 3volt Input with THD	38
4.9Simulation Result for 4volt Input with THD394.10Simulation Circuit for 5volt Input404.11Simulation Result for 5volt Input with THD404.12Simulation Circuit for 6volt Input414.13Simulation Result for 6volt Input with THD414.14Simulation Circuit for 7volt Input with THD424.15Simulation Circuit for 7volt Input with THD424.16Simulation Circuit for 8volt Input with THD434.17Simulation Result for 9volt Input with THD434.18Simulation Circuit for 9volt Input444.19Simulation Circuit for 10volt Input with THD454.21Simulation Result for 10volt Input with THD454.22Simulation Of Verilog code49	4.8	Simulation Circuit for 4volt Input	39
4.10Simulation Circuit for 5volt Input404.11Simulation Result for 5volt Input with THD404.12Simulation Circuit for 6volt Input414.13Simulation Result for 6volt Input with THD414.14Simulation Circuit for 7volt Input with THD424.15Simulation Result for 7volt Input with THD424.16Simulation Circuit for 8volt Input434.17Simulation Result for 8volt Input with THD434.18Simulation Circuit for 9volt Input with THD444.20Simulation Result for 9volt Input with THD454.21Simulation Circuit for 10volt Input with THD454.22Simulation Result for 10volt Input with THD454.23Simulation Circuit for 10volt Input with THD454.24Simulation Result for 10volt Input with THD454.25Simulation Result for 10volt Input with THD454.20Simulation Result for 10volt Input with THD454.21Simulation Result for 10volt Input with THD454.22Simulation of Verilog code49	4.9	Simulation Result for 4volt Input with THD	39
4.11Simulation Result for 5volt Input with THD404.12Simulation Circuit for 6volt Input414.13Simulation Result for 6volt Input with THD414.14Simulation Circuit for 7volt Input424.15Simulation Result for 7volt Input with THD424.16Simulation Circuit for 8volt Input434.17Simulation Result for 9volt Input with THD434.18Simulation Circuit for 9volt Input with THD444.19Simulation Result for 9volt Input with THD444.20Simulation Result for 10volt Input with THD454.21Simulation Result for 10volt Input with THD454.22Simulation of Verilog code49	4.10	Simulation Circuit for 5volt Input	40
4.12Simulation Circuit for 6volt Input414.13Simulation Result for 6volt Input with THD414.14Simulation Circuit for 7volt Input424.15Simulation Result for 7volt Input with THD424.16Simulation Circuit for 8volt Input434.17Simulation Result for 9volt Input with THD434.18Simulation Circuit for 9volt Input with THD444.19Simulation Result for 9volt Input with THD444.20Simulation Circuit for 10volt Input with THD454.21Simulation Circuit for 10volt Input with THD454.22Simulation Of Verilog code49	4.11	Simulation Result for 5volt Input with THD	40
4.13Simulation Result for 6volt Input with THD414.14Simulation Circuit for 7volt Input424.15Simulation Result for 7volt Input with THD424.16Simulation Circuit for 8volt Input434.17Simulation Result for 9volt Input with THD434.18Simulation Circuit for 9volt Input444.19Simulation Result for 9volt Input with THD444.20Simulation Circuit for 10volt Input454.21Simulation Result for 10volt Input with THD454.22Simulation of Verilog code49	4.12	Simulation Circuit for 6volt Input	41
4.14Simulation Circuit for 7volt Input424.15Simulation Result for 7volt Input with THD424.16Simulation Circuit for 8volt Input434.17Simulation Result for 8volt Input with THD434.18Simulation Circuit for 9volt Input with THD444.19Simulation Result for 9volt Input with THD444.20Simulation Circuit for 10volt Input454.21Simulation Result for 10volt Input with THD454.22Simulation of Verilog code49	4.13	Simulation Result for 6volt Input with THD	41
 4.15 Simulation Result for 7volt Input with THD 42 4.16 Simulation Circuit for 8volt Input 43 4.17 Simulation Result for 8volt Input with THD 43 4.18 Simulation Circuit for 9volt Input 44 4.19 Simulation Result for 9volt Input with THD 44 4.20 Simulation Circuit for 10volt Input with THD 45 4.21 Simulation Result for 10volt Input with THD 45 4.22 Simulation of Verilog code 49 	4.14	Simulation Circuit for 7volt Input	42
 4.16 Simulation Circuit for 8volt Input 4.17 Simulation Result for 8volt Input with THD 4.18 Simulation Circuit for 9volt Input 44 4.19 Simulation Result for 9volt Input with THD 44 4.20 Simulation Circuit for 10volt Input 45 4.21 Simulation Result for 10volt Input with THD 45 4.22 Simulation of Verilog code 	4.15	Simulation Result for 7volt Input with THD	42
 4.17 Simulation Result for 8volt Input with THD 43 4.18 Simulation Circuit for 9volt Input 44 4.19 Simulation Result for 9volt Input with THD 44 4.20 Simulation Circuit for 10volt Input 45 4.21 Simulation Result for 10volt Input with THD 45 4.22 Simulation of Verilog code 	4.16	Simulation Circuit for 8volt Input	43
 4.18 Simulation Circuit for 9volt Input with THD 44 4.19 Simulation Result for 10volt Input 45 4.21 Simulation Result for 10volt Input with THD 45 4.22 Simulation of Verilog code 	4.17	Simulation Result for 8volt Input with THD	43
 4.19 Simulation Result for 9volt Input with THD 44 4.20 Simulation Circuit for 10volt Input 45 4.21 Simulation Result for 10volt Input with THD 45 4.22 Simulation of Verilog code 	4.18	Simulation Circuit for 9volt Input	44
 4.20 Simulation Circuit for 10volt Input with THD 45 4.21 Simulation of Verilog code 49 	4.19	Simulation Result for 9volt Input with THD	44
 4.21 Simulation Result for 10volt Input with THD 45 4.22 Simulation of Verilog code 49 	4.20	Simulation Circuit for 10volt Input	45 A
4.22 Simulation of Verilog code 49	4.21	Simulation Result for 10volt Input with THD	45
	4.22	Simulation of Verilog code	49

LIST OF SYMBOLS AND ABBREVIATIONS

FPGA	-	Field-programmable gate array		
VHDL -		Very High Speed Integrated Circuit Hardware Description		
		Language		
PWM	-	Pulse Width Modulation		
ADC	-	Analog-to-Digital Converter		
SoPCs	-	System or Proxy Cache Server		
PSIM	-	Physical Security Information Management		
PLD	-	Programmable Logic Device		
DSP	1	Digital Signal Processor		
I/O PORTS	-	Input-Output ports		
EMI	-	Electromagnetic Interference		
ASIC	_	Application-specific Integrated Circuit		
SiC	011	Silicon Carbide		
PIPER	<u>-</u>	Proportional-Integral		
PFC	-	Power Factor Correction		
ESR	-	Equivalent Series Resistance		
NIBB	-	Non-Inverting Buck-Boost		

LIST OF APPENDICES

CHAPTER 1

INTRODUCTION

This chapter presents the introduction of the thesis including with a short overview of Non-Inverting Buck-Boost DC-DC converter and also introduction to FPGA. Furthermore, it details the purpose of the project, continuing with the objectives as well as the scope of the project and finishing with the outline of the thesis.

Usually, power electronics circuits and systems have been controlled in industry using linear controllers combined with non-linear procedures such as pulse width modulation (PWM). [1].

The FPGA's are a reconfigurable digital logic devices which contain a variety of programmable logic blocks called Logic Elements (LEs) which can be configured using a Hardware Description Language (HDL). The main advantages of FPGA are wide parellism, deep pipelining, and flexible memory architecture. FPGAs show great potential for real-time hardware emulation, control applications, power electronics applications such as motor control, active power filters, predictive control algorithms, DC-DC power converters, or multilevel inverters. [1]

Non-inverting buck boost converters are capable of achieving a positive output voltage that is higher or lower than its input voltage. As battery powered devices are becoming more and more popular, this topology is becoming more attractive as it can make the use of the discharge cycles of a battery. When a battery input voltage is higher than its output voltage, a buck boost converter works in the buck mode of operation. In the buck mode operation, the converter decreases the input voltage to the necessary level for use at its output. When the battery input voltage is lower than the output voltage, the buck boost converter works in the boost mode of operation wherein the input voltage is increased to a level needed at output. It is relatively easy to implement the control in either pure buck mode of operation or a pure boost mode by leaving some power switches turned on or off.[2].

1.2 Objective of the Project

- a) to write a Verilog language to control the performance of the converter.
- b) to construct and design a Buck-Boost converter with updated topology.
- c) to demonstrate stability of output voltage using DE board as a controller.

1.3 Problem statement

It is well know that the digital control offers advantages over analog control. They own lower power consumption and enhanced reliability due to the lower number of components involved in the design. However, the digital control have specific constraints such as some design parameters such as algorithm delay will occur if high switching frequency are required.

Power electronics and drive usage are nowadays very sophisticated as this digital technology is of big interest since it allows implementing quite easily complex control strategies. Analog controllers despite their drawbacks such as parameter drifting or lake of integration, still remain the reference in terms of rapidity and bandwidth. That is the reason why digital controller execution times must be reduced while keeping the inherent flexibility of the chosen digital solution. This can only be achieved with the help of efficient digital platforms. Today, such digital platforms exist, some of them also integrate analog functions like Analog-to-Digital Converter (ADC) and they can be developed by the use of high performance design tools such as Field Programmable Gate Arrays (FPGAs). These components take benefits of a high integration rate. Furthermore, the recent FPGAs can be considered as real SoPCs since they can integrate high-performance processor cores and also, in some cases, ADCs. Thus, by using an FPGA-based controller, the designer is able to build a fully dedicated digital system that is perfectly adapted to the algorithm to implement.

1.4 Scope of project

The scope of this project is to design and implement FPGA-based controller for a DC-DC converter. In this case, the Buck-Boost converter were chosen.

1.5 Thesis Outline

This report is arranged and distributed into five chapters. Chapter 1 has presented a brief introduction of the project mainly about FPGA and the topologies of the converter, the problem statements, the objectives of the project and its scope, and the limitations identified using the proposed approach.

Chapter 2 of the dissertation includes a literature survey related to this project as per referred to previous studies and results obtained by past researchers. It also contains some important findings from past, researchers such as a review of existing database search algorithms presentations. Their respective advantages and disadvantages, with specific references.

Together with the literature review carried out in Chapter 2, has helped with the search for systolic array architecture that could potentially improve performance and cost. Chapter 3 provides a methodology in how this project is conducted in sequence.

Chapter 4 contains the results and findings of the project. A simulation is run on PSIM software and hardware performance are compared with the simulation results. Simulation result is analysed and studied.

Lastly is chapter 5 where this chapter concludes the dissertation. It presents a summary of research achievements together with a discussion of their significance. Some recommended future work also presented in this chapter.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

FPGA is a short for *Field-Programmable Gate Array*, a type of logic chip that can be programmed. An FPGA is similar to a PLD, but whereas PLDs are generally limited to hundreds of gates, FPGAs support thousands of gates. They are especially popular for prototypingintegrated circuit designs. Once the design is set, hardwired chips are produced for faster performance.

Compare with DSP, FPGA has flexibilities in defining bit-width and I/O ports. Short bit width saves hardware resource and processing time. Long bit guarantees accuracy. Rich I/O ports mean FPGA-based system can be developed to control power electronics device requires more switching signals since one switching signal is generated by one port. Parallel processing makes FPGA have high efficiency. The design in FPGA is mapped into actual circuit and the processing is clock triggered. Precision will be better [4].

In terms of converter design, some of the research paper has been surveyed to choose the converter desired. V.D. Yurkevich*et al.*, [5] have design a controller for Buck-Boost converter using two controllers: the designed above inner switching controller and an outer continuous controller. The presented method of switching regulator design allows us to obtain the desired transients for buck-boost converter under uncertainty in model description and in the presence of unknown external disturbances.

Soft-switching Buck Boost converter using pulse current regenerative resonant snubber have been proposed by Y. Konishi and Y.F.Huang [8]. This type of Buck Boost converter has high reliability and simplicity of both the power circuit and control compared to the active methods. The passive regeneration snubber has a simple circuit configuration and wide operation region of the soft-switching action.

P. Olranthichachat, A. Saenthon and S. Kaitwanidvilai*et al.*[10], have suggested the Genetic Algorithm based fixed-structure H loop shaping control of a Buck Boost converter. H loop shaping control is an efficient method for designing a robust controller. This approach requires only a desired open loop shape in frequency domain. It was proved that the robust performance of the proposed controller is better than the conventional PI controller. It was valid and flexible as proposed in this paper. A new isolated bidirectional Buck Boost PWM converter as proposed by M. Delshad and H. Farzanehfard *et al.*[11], was using a simple PWM controller and it has minimum active switch in power stages.

Four switch Buck Boost converter was proposed by Marcos Orellana, Stephen Petibon, Bruno Estibals, and Corrine Alonso *et al.*[12], for photovoltaic DC-DC power applications. The switches were commute by two. The four switches (synchronous structure instead of asynchronous), increase the converter efficiency since the commutations are done very quickly compared to natural diode commutations. Nevertheless, the control must be done carefully in order to avoid short-circuits on the inductor and defective functioning. Its characteristics made it suitable for photovoltaic applications.

Ray-Lee Lin and Rui-Che Wang [13] has suggested a Non-Inverting Buck-Boost Power-Factor-Correction Converter with Wide Input-Voltage_range Applications. The Buck-Boost proposed in this research was non-inverting and the applications were wide due to the input-voltage range.

A Novel Method of Implementing Real-Time Buck-Boost Converter with Improved Transient Response for Low Power Applications was suggested by Boopathy, K [14]. It has the capability of skipping over higher loss interface stages such as buck–boost mode in the case of a real time buck–boost converter significantly improves the efficiency from 16% and 19% and ripple content has been reduced from 14 % to 4% of the circuit topology.

A research from Bo-Han Hwang [15], suggested an average-currentcontrolled techniques for a low-voltage Buck Boost converter. It can reduce some power management problems, such as size, cost, design complexity, simple compensation design, and EMI. The maximum efficiency was 72% at switching 1MHz frequency.Chin-Hong Chen [16] also had the same idea on controlling the Buck Boost by using the average-current mode controlled but the research was for the integrated non-inverting Buck Boost converter. It was only suitable for portable electronic applications and it can provide load current up to 300 mA.

There were some research that focused on controlling the converter using FPGA based [1], [2], [4], [5], [6]. Most of the research just focused on one basic topology such as just Buck and also Boost by itself. It has proven that the FPGA based controller have become one of the solution in controlling the converter. In overall, implementing the control algorithm in hardware description language (HDL) allows high flexibility and technology independence. The same controller can be directly synthesized into any other FPGA or even in an ASSIC, or it can also be added to other logic blocks forming a more complex multi-task system in single chip. Solutions based on specific hardware, that allows high concurrency, are suitable to be used in power electronics and motion control applications with nonlinear control approach like switching control in sliding mode does[1].

2.2 List of Paper Review

RESEARCHER		CONTROLLER	RESULT
(S)	TITLE	METHODS	/ADVANTAGES
V. D. Yurkevich	Design Of	Closed-loop system	Can obtain the desired
	Controller For	with an inner	transients for Buck-
	Buck-Boost	switching controller	Boost converter under
	Converter	and outer	uncertainty in model
		continuous	description and in the
		controller.	presence of unknown
			external disturbances

7

Y. Konishi and	Soft-Switching	Buck-Boost	It has high reliability	
Y.F. Huang	Buck Boost	converter with soft-	and the simplicity of	
	Converter	switching topology	both the power circuit	
	Using Pulse	using a pulse	and control compared	
	Current	current regenerative	to the active methods.	
	Regenerative	snubber circuit.		
	Resonant			
	Snubber.			
Vincete	SiC Dagad	Dualt Deagt	Daaayamy laggag ara	
v meeta	SIC Dased	Buck-Boost	Recovery losses are	
Agarwal and	Buck-Boost	converter using SIC	very low as compared	
Anupam Kumar	Converter	diode CSD10060	to that of the Si diodes	
		and MOSFET	due to the very low or	· AH
		(IRF-9530).	negligible value of the	NAU
			reverse recovery	~
			current flowing through	
		TUNK	the SiC diodes as	
		N	compared to the reverse	
	TAKA		recovery current	
- DPL	511		flowing through the Si	
PEKI			diode.	
Р.	Genetic	Buck-Boost	Controller has good	
Olranthichachat,	Algorithm	converter with	robust performance and	
A. Saenthon and	Based Fixed-	current mode	can be applied for the	
S.	Structure $H\infty$	control requires	buck-boost converter	
Kaitwanidvilai	Loop Shaping	only a desired open	and the proposed	
	Control Of A	loop shape in	controller is better than	
	Buck-Boost	frequency domain.	that of the conventional	
	Converter		PI controller.	

M.Delshad,	A New Isolated	Converter was	Power density of	
H.Farzanehfard	Bidirectional	controlled by PWM	converter is high. Also	
	Buck-Boost	signal and it have	this converter can	
	PWM	minimum active	operate buck-boost in	
	Converter	switch in power	either direction	
		stages.	therefore it can operate	
			under wide range	
			variation of voltage	
			source.	
Maraag	Four Switch	For gwitch Duck	Switchlo for	
Orallana	Puel: Poest	Poi Switch Buck-	suitable Ioi	
StánhanaDatihan	Convertor For	with four switches	applications	
Druno Estibola	DhatavaltaiaDa	with four switches	applications.	
, Bruno Estivais,	De Dewer	The four switches	High performance and	INH.
Comme Alonso	Applications	increase the	the possibility of	Nr.
	Applications	increase the	adaptation to different	
		converter enciency	input and output time-	
		since the	varying voltage values.	
		commutations are		
	CTAKA	done very quickly		
ERPL)) ,	compared to natural		
PER		diode		
		commutations.		
Ray-Lee Lin and	Non-Inverting	Using a PFC	The proposed non-	
Rui-Che Wang	Buck- Boost	controller L6562	inverting buck-boost	
	Power-Factor-	and a high-side gate	based PFC converter	
	Correction	driver IR2117.	has both step-up and	
	Converter With		step-down conversion	
	Wide Input-		functionalities to	
	Voltage-Range		provide positive DC	
	Applications		output-voltage. Very	
			high efficiency (90%).	

Boopathy.KDr.	A Novel	Real Time Buck-	Capability of skipping	
BhoopathyBaga	Method Of	Boost Converter.	over higher loss	
n.K	Implementing	The Novel method	interface stages such as	
	Real-Time Buck	is to add interface	buck-boost mode in the	
	Boost Converter	modes, which are a	case of a real time	
	With Improved	combination of	buck-boost converter	
	Transient	buck and boost	significantly improves	
	Response For	operating	the efficiency from	
	Low Power	topologies.	16% and 19% and	
	Applications		ripple content has been	
			reduced from 14 % to	
			4% of the circuit	
			topology.	
				HAL
Bo-Han Hwang,	A Low-Voltage	It consists of one	Reduce some power	Nr.
Bin-Nan Sheen,	Positive Buck-	LC filter, ramp	management problems,	
Jiann-Jong	Boost Converter	generator circuit,	such as size, cost,	
Chen, Yuh-	Using Average-	average-current-	design complexity,	
Shyan Hwang	Current-	controlled circuit,	simple compensation	
and Cheng-	Controlled	and compensator	design, and EMI. The	
Chieh Yu	Techniques	network, active-	proposed low-voltage	
PER		current-sensing	positive buck-boost	
		circuit, driving	converter using the	
		circuit, non-	active-current-sensing	
		overlapping circuit	circuit and average-	
		and positive buck-	current-controlled	
		boost converter	techniques can work	
		including four	stably when the duty	
		power transistors.	cycle is higher than	
			50% at 1MHz	
			frequency.	

Chin-Hong	Integrated Non-	Current-mode	It can provide load
Chen, Chia-Ling	Inverting Buck-	controller.	current up to 300 mA.
Wei, and Kuo-	Boost Dc-Dc		Therefore, it is suitable
Chun Wu	Converter With		for portable electronic
	Average-		applications.
	Current-Mode		
	Control		
Juan Carlos	Modeling And	The presented	An improved output
Ostos	Analysis Of	topology has two	voltage is reached by
Dylan Dah	CCM Non-	identical buck-	using this interleaved
Dylan Dan-	Isolated High	boost converters	buck-boost topology
	Step-Up	connected in a	instead of interleaved
	Interleaved	parallel-input,	boost topology.
	Buck-Boost	series-output	Theoretically is infinity
	Dc/Dc	manner for	but practically looses
	Converters	boosting the output	limit this.
		voltage.	This new topology can
		N	serve as an alternative
	TAKA		to the typically used
- DPL	511		transformer isolated
PEKI			converter topology
<i>p</i>			converter topology.

2.3 Buck-Boost Converter Topologies

The buck–boost converter is a type of DC-to-DC converter that has an output voltage magnitude that is either more than or less than the input voltage magnitude. Two different topologies are called *buck–boost converter*. Both of them can produce a range of output voltages, from an output voltage much larger (in absolute magnitude) than the input voltage, down to almost zero. There are many applications however, such as battery-powered systems, where the input voltage can vary widely, starting at full charge and gradually decreasing as the battery charge is used up. At full charge, where the battery voltage may be higher than actually needed by the circuit being

powered, a buck regulator would be ideal to keep the supply voltage steady. However as the charge diminishes the input voltage falls below the level required by the circuit, and either the battery must be discarded or re-charged; at this point the ideal alternative would be the boost regulator

2.3.1 The inverting topology

The output voltage is of the opposite polarity than the input. This is a switched-mode power supply with a similar circuit topology to theboost converter and the buck converter. The output voltage is adjustable based on the duty cycle of the switching transistor. One possible drawback of this converter is that the switch does not have a terminal at ground; this complicates the driving circuitry. Neither drawback is of any consequence if the power supply is isolated from the load circuit (if, for example, the supply is a battery) because the supply and diode polarity can simply be reversed. The switch can be on either the ground side or the supply side.

Figure 2.1: Non-Inverting Buck-Boost Topology.

During operation as shown in Figure 2.1, when the FET switch on, the voltage across the inductor is V_{in} and the current ramps up at a rate of di/dt= V_{in}/L . While the FET switch is on, the entire load current is supplied by energy stored in the output capacitor. When the FET switch turns off, the inductor conduct in reverses polarity to keep the inductor current continuous. The voltage across the inductor is approximately V_{out} , and the inductor current decreases as a rate of di/dt= $-V_{out}/L$.

During the off time, the inductor supplies current both to the load and to replenish the energy lost by the capacitor during the on time.

2.3.2 A buck (step-down) converter followed by a boost (step-up) converter

The output voltage is of the same polarity of the input, and can be lower or higher than the input. Such a non-inverting buck-boost converter may use a single inductor which is used for both the buck inductor and the boost inductor.

Like the buck and boost converters, the operation of the buck-boost is best understood in terms of the inductor's "reluctance" to allow rapid change in current. From the initial state in which nothing is charged and the switch is open, the current through the inductor is zero. When the switch is first closed, the blocking diode prevents current from flowing into the right hand side of the circuit, so it must all flow through the inductor. However, since the inductor does not like rapid current change, it will initially keep the current low by dropping most of the voltage provided by the source. Over time, the inductor will allow the current to increase slowly by decreasing its voltage drop. Also during this time, the inductor will store energy in the form of a magnetic field.

REFERENCES

- KarelJezernik (2009) "FPGA-based Controllers for Switching Converters", *EUROCON 2009*, pp. 971-976.
- Carrejo, C.E., Vidal-Idiarte, E., Estibals, B., and Alonso, C. (2010), "FPGAbased digital voltage-current controller for a buck converter", 36th Annual Conference on IEEE Industrial Electronics Society, pp. 126-131.
- Thangavelu, A., Varghese, M.V., and Vaidyan, M.V. (2012), "Novel FPGA based Controller Design Platform for DC-DC Buck Converter using HDL Co-Simulator and Xilinx System Generator", *IEEE Symposium on Industrial Electronics and Applications*, pp. 270-274.
- Rosario Mita and Gaetano Palumbo (2005) "VHDL-Based Modeling of a DC-DC Boost Converter", 12th IEEE International Conference on Electronics, Circuits and Systems, pp 1-4.
- Bo Sun, U-Fat Chio, Chi-Seng Lam, Ning-Yi Dai, Man-Chung Wong, Chi-Kong Wong, Sai-Weng Sin, Seng-Pan U and Martins, R.P.(2011), "A FPGA-Based Power Electronics Controller for Hybrid Active Power Filters", *Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics*, pp. 25-28.
- Artigas, J.I., Barragan, L.A., Isidro, U., Navarro, D. and Lucia, O. (2011), " FPGA-Based Digital Control Implementation of a Power Converter for Teaching Purposes", 5th IEEE International Conference on e-Learning Industrial Electronics, pp. 55-60.
- Yurkevich, V.D. (2005), "Design of Controller for Buck-Boost Converter," *The 9th Russian-Korean International Symposium on Science and Technology* ,pp. 741-745.

- Konishi, Y., Huang, Y.F. (2007), "Soft-Switching Buck Boost Converter Using Pulse Current Regenerative Resonant Snubber",29th International Telecomunications Energy Conference, pp. 886-890.
- 9. Vineeta Agarwal and Anupam Kumar (2007), "SiC Based Buck-Boost Converter", *International Power Engineering Conference*, pp. 1014-1017.
- Olranthichachat, P., Saenthon, A., and Kaitwanidvilai, S. (2008), "Genetic Algorithm Based Fixed-Structure H Loop Shaping Control of a Buck-Boost Converter", *IEEE International Conference on Robotics and Biomimetics*, pp. 1944-1949.
- Delshad, M., Farzanehfard, H., (2010), "A New Isolated Bidirectional Buck-Boost PWM Converter", 1st Power Electronics & Drive Systems & Technologies Conference, pp. 41-45.
- Orellana, M., Petibon, S., Estibals, B., and Alonso, C. (2010), "Four Switch Buck-Boost Converter for Photovoltaic DC-DC Power Applications", 36th Annual Conference on IEEE Industrial Electronics Society, pp. 469-474.
- Ray-Lee Lin and Rui-Che Wang(2010), "Non-Inverting Buck-Boost Power-Factor-Correction Converter with Wide Input-Voltage_range Applications", 36th Annual Conference on IEEE Industrial Electronics Society, pp. 599-604.
- Boopathy, K. (2011), "A Novel Method of Implementing Real-Time Buck-Boost Converter with Improved Transient Response for Low Power Applications", *IEEE Symposium on Industrial Electronics & Applications*, pp. 150-160.
- 15. Bo-Han Hwang, Bin-Nan Sheen, Jiann-Jong Chen, Yuh-Shyan Hwang and Cheng-Chieh Yu (2012), "A Low-Voltage Positive Buck-Boost Converter using Average-Current-Controlled Techniques", *IEEE International Symposium on Circuits & Systems*, pp. 2255-2258.
- 16. Chin-Hong Chen, Chia-Ling Wei and Kuo-Chun Wu (2012) "Integrated Non-Inverting Buck-Boost DC-DC Converter with Average-Current-Mode Control", *IEEE International Conference on Circuits & Systems*, pp. 6-9.
- Juan Carlos Ostos, Dylan Dah-Chuan Lu (2012) "Modeling and Analysis of CCM Non-Isolated High Step-Up Interleaved Buck-Boost DC-DC Converters", *IEEE International Conference on Power &Energy*, pp 28-31.

- 18. PhanQuocDzung, Le Minh Phuong, Hong Hee Lee, Bui Ngoc Thang and Le DinhKhoa, (2009), "A New FPGA Implementations of Four-Switch Three-Phase Inverter", *International Conference on Power Electronics & Drive Systems*, pp 882-887.
- Monmasson, E., Idkhajine, L., Bahri, I., Naouar, M-W., Charaabi, L., (2010),
 "Design Methodology and FPGA-based Controllers for Power Electronics and Drive Applications", *The 5th IEEE Conference on Industrial Electronics* & *Applications*, pp 2328-2338.
- 20. Takeaki Fujimoto, FumitoshiTabuchi and Tomoki Yokoyama (2010). "A Design of FPGA based Hardware Controller for DC-DC Converter using SDRE Approach", *The 2010 International Power Electronics Conference*, pp 1001-1005.
- Chander, S., Agarwal, P., Gupta, I., (2010), "FPGA-Based PID Controller for DC-DC Converter", *Joint International Conference on Power Electronics*, *Drive & Energy Systems (PEDES) & 2010 Power India*, pp 1-6.
- 22. Vinay, K.C., Shyam, H.N., Rishi, S., and Moorthi, S., (2011), "FPGA-Based Implementation of Variable-Voltage Variable-Frequency Controller for a Three Phase Induction Motor", *International Conference on Process Automation, Control and Computing*, pp. 1-6.
- Pereira, F., Gomes, L., and Redondo, L., (2011) "FPGA Controller for Power Converters with Integrated Oscilloscope and Graphical User Interface" *International Conference on Power Engineering, Energy & Electrical Drives*, pp. 1-6.
- 24. Suzuki, S., Wada, K., and Shimizu, T.(2011)," Design and Implementation of Digital Controller using FPGA for 200-kHz PWM Inverter"*IEEE 9th International Conference on Power Electronics & Drive Systems*, pp. 1031-1036.

