BOTTLENECK ADJACENT MATCHING HEURISTICS FOR SCHEDULING A RE-ENTRANT FLOW SHOP WITH DOMINANT MACHINE PROBLEM

SH SALLEH BIN SH AHMAD

UNIVERSITI TUN HUSSEIN ONN MALAYSIA
UNIVERSITI TUN HUSSEIN ONN MALAYSIA

STATUS CONFIRMATION FOR DOCTORAL THESIS

BOTTLENECK ADJACENT MATCHING HEURISTICS FOR SCHEDULING A RE-ENTRANT FLOW SHOP WITH DOMINANT MACHINE PROBLEM

ACADEMIC SESSION : 2009/2010

1. SH SALLEH BIN SH AHMAD, agree to allow this Doctoral Thesis to be kept at the Library under the following terms:

1. This Doctoral Thesis is the property of the Tun Hussein Onn University Malaysia.
2. The library has the right to make copies for educational purposes only.
3. The library is allowed to make copies of this report for educational exchange between higher educational institutions.
4. ** Please Mark (√) Confidentiality Declaration
 - [] CONFIDENTIAL (Contains information of high security or of great importance to Malaysia as STIPULATED under the OFFICIAL SECRET ACT 1972)
 - [] RESTRICTED (Contains restricted information as determined by the organization/institution where research was conducted)
 - [√] FREE ACCESS

Approved by,

(WRITER'S SIGNATURE) (SUPERVISOR'S SIGNATURE)

Permanent address:

NO 4, JALAN MANIS 4,
TAMAN MANIS, 86400 PARIT RAJA
BATUS PAHAT, JOHOR

Date: 31 July 2009 Date: 31 July 2009

NOTE: ** If this Doctoral Thesis is classified as CONFIDENTIAL or RESTRICTED, please attach the letter from the relevant authority/organization stating reasons and duration for such classifications.
This thesis has been examined on date 23rd July 2009
and is sufficient in fulfilling the scope and quality for the purpose of awarding the
Degree of Doctor of Philosophy.

Chairperson:

PROF. IR. DR. SAPARUDIN BIN ARJFIN
Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia

Examiners:

PROF. DR. MOHD RAZALI BIN MUHAMAD
Faculty of Manufacturing Engineering
Universiti Teknikal Malaysia, Melaka

ASSOCIATE PROF. DR. KHALID BIN HASNAN
Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia

DR. YUSRJ BIN YUSOF
Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia
BOTTLENECK ADJACENT MATCHING HEURISTICS FOR SCHEDULING A RE-ENTRANT FLOW SHOP WITH DOMINANT MACHINE PROBLEM

SH SALLEH BIN SH AHMAD

A thesis submitted in
fulfilment of the requirement for the award of
Doctor of Philosophy

Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia

JULY, 2009
I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged.

Student : ____________________________
 SH SALLAH BIN SH AHMAD

Date : 31 July 2009

Supervisor : ____________________________
 PROF. DR. SULAIMAN BIN HJ HASAN
In the name of

ALLAH,

Most Gracious,
Most Merciful.

To my beloved parents Sh Ahmad bin Omar Bareduan and Maznah binti Ali Al-Qasam.

Also my loving wife Sharifah Hamidah binti Syed Hassan Al-Jahsyi.

And cheering children Nazhif, Haniff, Nadhirah, Muhammad and Ibrahim.
ACKNOWLEDGEMENT

"Alhamdulillah", all praise to ALLAH, the most gracious and the most merciful, for all the strength and will provided to the author in completing the research. Without “the mercy”, the author is just an ordinary person who may not even understand what the research topic is all about.

The author would like to express utmost appreciation and gratitude to the research supervisor, Prof. Dr. Sulaiman bin Hj Hasan for his guidance, persistent encouragement and associated aid throughout the research period. His understanding and patience during the tough period are forever appreciated.

Heartiest thanks are due to the senior technician at the Cyber Manufacturing Centre, UTHM for his full cooperation for the research. Appreciation is also dedicated to those who contributed directly or indirectly towards the success of this thesis.

Finally, sincere thanks are dedicated to the author’s parents and family for their consistent prays, patience and never-ending support. May ALLAH bless all of us.
ABSTRACT

The re-entrant flow shop environment has become prominent in the manufacturing industries and has recently attracted researchers attention. Typical examples of re-entrant flow shops are the printed circuit board manufacturing and furniture painting processes where components or processed parts enter some specific machines more than once. Similar with other manufacturing environment, identifying appropriate scheduling methodologies to ensure high output rate is very much desirable. The problem explored and investigated in this research is a special type of scheduling problem found in a re-entrant flow shop where two of its processes have high tendency of exhibiting bottleneck characteristics. The scheduling problem resembles a four machine permutation re-entrant flow shop with the routing of M1,M2,M3,M4,M3,M4 where M1 and M4 have high tendency of being the dominant machines. The main objective of this research is to take advantage of the bottleneck characteristics at the re-entrant flow shop and use it to develop heuristics that can be used to solve its scheduling problems. There are four major concentrations in this research. First, basic mathematical properties or conditions that explain the behaviour of the bottleneck processes were developed to give an insight and clearer understanding of the re-entrant flow shop with dominant machines. Second, four new and effective scheduling procedures which were called BAM1 (Bottleneck Adjacent Matching 1), BAM2, BAM3 and BAM4 heuristics were developed. Third, bottleneck approach was utilised in the study and the analysis using Visual Basic macro programming indicated that this method produced good results. Fourth, the Bottleneck Scheduling Performance (BSP) indexes introduced in the BAM heuristics procedure could be used to ascertain that some specific generated job arrangements are the optimum schedule. As a general conclusion, this research has achieved the objectives to develop bottleneck-based makespan algorithms and heuristics applicable for re-entrant flow shop environment. The experimental results demonstrated that the BAM heuristics generated good performances within specific P1 (first process) bottleneck dominance level and when the number of jobs increases. Within the medium to large-sized problems, BAM2 is the best at weak P1 dominance level whereas BAM4 is the best at strong P1 dominance level.
ABSTRAK

CONTENTS

RESEARCH TITLE i
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xviii
LIST OF ABBREVIATIONS xx
LIST OF APPENDIXES xxiii

CHAPTER 1 INTRODUCTION 1

1.1 Sequencing and Scheduling 1
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Cyber Manufacturing System</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Re-entrant Flow Shop</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Problem Description</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Research Objectives</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Scope Of The Study</td>
<td>9</td>
</tr>
<tr>
<td>1.7 Significance Of Research</td>
<td>9</td>
</tr>
<tr>
<td>1.8 Structure Of Thesis</td>
<td>10</td>
</tr>
</tbody>
</table>

CHAPTER 2 LITERATURE REVIEW 12

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Permutation Flow Shops With Makespan Objective</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Re-entrant Permutation Flow Shop</td>
<td>31</td>
</tr>
<tr>
<td>2.3 Flow Shops With Bottleneck or Dominant Machine</td>
<td>37</td>
</tr>
<tr>
<td>2.4 Petri Net And Collaborative Process Modelling</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>53</td>
</tr>
</tbody>
</table>

CHAPTER 3 METHODOLOGY 54

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 CMC Activities Modelling</td>
<td>56</td>
</tr>
<tr>
<td>3.2 CMC Schedule Modelling</td>
<td>57</td>
</tr>
</tbody>
</table>
3.3 CMC Makespan Algorithm 57

3.4 Alternative Makespan Algorithms Using Bottleneck Approach 58

3.5 Bottleneck-based Heuristics for the CMC 60

3.6 Simulation Experimental Design 61

3.7 Summary 65

CHAPTER 4 CMC MAKESPAN COMPUTATIONS USING BOTTLENECK APPROACH 66

4.1 Modelling The CMC With Petri Net 66

4.2 CMC Makespan Algorithm 1 71

4.3 Makespan Algorithm Using CNC Machine As Bottleneck 78

4.4 Makespan Algorithm Using CAD As Bottleneck 97

4.5 Summary 116

CHAPTER 5 BOTTLENECK ADJACENT MATCHING (BAM) HEURISTICS WITH CNC MACHINE AS THE DOMINANT MACHINE 118

5.1 Bottleneck Dominance Level Measurement 118
5.2 Bottleneck Adjacent Matching 1 (BAM1) Heuristic 122

5.3 BAM1 Heuristic Performance Evaluation 135

5.4 Bottleneck Adjacent Matching 2 (BAM2) Heuristic 143

5.5 BAM2 Heuristic Performance Evaluation 154

5.6 Summary 159

CHAPTER 6 BOTTLENECK ADJACENT MATCHING (BAM) HEURISTICS WITH CAD AS THE DOMINANT MACHINE 161

6.1 Bottleneck Adjacent Matching 3 (BAM3) Heuristic 161

6.2 BAM3 Heuristic Performance Evaluation 173

6.3 Bottleneck Adjacent Matching 4 (BAM4) Heuristic 178

6.4 BAM4 Heuristic Performance Evaluation 189

6.5 Summary 194

CHAPTER 7 DATA ANALYSIS AND FINDINGS 195

7.1 Introduction 195

7.2 Results of Experiment and Discussions 197
7.2.1 Results of Experiment and Discussions at Weak P_1 Dominance Level 198

7.2.2 Results of Experiment and Discussions at Medium P_1 Dominance Level 200

7.2.3 Results of Experiment and Discussions at Strong P_1 Dominance Level 203

7.2.4 Results of Experiment and Discussions on BSP Index 206

7.3 Summary 209

CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH 211

8.1 Conclusions 211

8.2 Future Research 213

REFERENCES 215

APPENDIX 226
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Permutation flow shops heuristics using index development and $F_2//C_{\text{max}}$ analogy (Framinan et al., 2004)</td>
<td>15</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Heuristic concept used in Phase II: Solution Construction</td>
<td>24</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Heuristics in Phase III: Solution Improvement</td>
<td>30</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Metaheuristics in Phase III: Solution Improvement</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Heuristics and metaheuristics in re-entrant flow shop studies</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Researches on flow shop with bottleneck or dominant machines</td>
<td>45</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Processing time range (hr)</td>
<td>71</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Processing time data (hr)</td>
<td>71</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Start and stop time for each task with DACB job sequence</td>
<td>74</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Makespan from different job sequences using Algorithm 1</td>
<td>76</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Makespan from different job sequences using Petri net</td>
<td>76</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Processing time $(P(i,j))$ (hr)</td>
<td>79</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Condition 4.1, Condition 4.2 and Condition 4.3 observations</td>
<td>84</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Accuracy of Equation 4.1 at various conditions</td>
<td>85</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Makespan of AXXX using Algorithm 1 and Equation 4.1</td>
<td>89</td>
</tr>
<tr>
<td>4.3.5</td>
<td>AXXX job sequences versus Conditions 4.4, 4.5 and 4.6</td>
<td>89</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Processing time data and BCF value</td>
<td>90</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Summary of the developed makespan and completion time equations for CNC machine as bottleneck</td>
<td>96</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Processing time range (hr)</td>
<td>97</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Processing time data (hr)</td>
<td>97</td>
</tr>
</tbody>
</table>
5.2.13 Start and stop time for CEDABF job sequence using Algorithm 1 132
5.2.14 BAM1 list of scheduling sequences 133
5.2.15 Start and stop time for BEDACF job sequence using Algorithm 1 134
5.3.1 P1 dominance level groups 136
5.3.2 Process time data range (hours) 136
5.3.3 BAM1 heuristic performance for 6 job problems 137
5.3.4 NEH heuristic performance for 6 job problems 139
5.3.5 BAM1 vs NEH makespan performance for 6 job problems 140
5.3.6 BAM1 vs NEH makespan performance for 10 job problems 140
5.3.7 BAM1 vs NEH makespan performance for 20 job problems 141
5.3.8 BAM1 vs NEH makespan performance for 20 job problems (test 2) 142
5.3.9 BAM1 vs NEH makespan performance for 20 job problems (test 3) 143
5.4.1 Process time data 147
5.4.2 Data for $P(1,j) + P(2,j) + P(3,j)$ 147
5.4.3 BAM2 index for second job 148
5.4.4 BAM2 index for third job 148
5.4.5 BAM2 index for fourth job 148
5.4.6 BAM2 index for fifth job 149
5.4.7 Process time data 149
5.4.8 BCF value for BEDACF job arrangement 150
5.4.9 BSP2 index computation for BEDACF job arrangement 150
5.4.10 BSP2 index evaluation 151
5.4.11 BAM2 index for second job (first job = Job C) 151
5.4.12 BAM2 index for third job (first job = Job C) 152
5.4.13 BAM2 index for fourth job (first job = Job C) 152
5.4.14 BAM2 index for fifth job (first job = Job C) 152
5.4.15 Process time data 153
5.4.16 BCF value for CEDABF job arrangement 153
5.4.17 BAM2 list of scheduling sequences 154
5.5.1 Process time data range (hours) 155
5.5.2 BAM2 heuristic performance for 6 job problems 155
5.5.3 BAM2 vs NEH makespan performance for 6 job problems 156
5.5.4 BAM2 vs NEH makespan performance for 10 job problems 157
5.5.5 BAM2 vs NEH makespan performance for 20 job problems 158
5.5.6 BAM2 vs NEH makespan performance for 20 job problems (test 2) 158
5.5.7 BAM2 vs NEH makespan performance for 20 job problems (test 3) 159
6.1.1 Process time data 164
6.1.2 Data for \(P(2,j) + P(3,j) + P(4,j) + P(5,j) + P(6,j) \) 165
6.1.3 BAM3 index computation for 5th job 166
6.1.4 BAM3 index computation for 4th job 167
6.1.5 BAM3 index computation for 3rd job 167
6.1.6 BAM3 index computation for 2nd job 168
6.1.7 Process time data 168
6.1.8 Start and stop time for CFDBAE job sequence using Algorithm 1 169
6.1.9 BSP3 index evaluation 170
6.1.10 BAM3 index computation for 5th job (last job = Job A) 170
6.1.11 BAM3 index computation for 4th job (last job = Job A) 171
6.1.12 BAM3 index computation for 3rd job (last job = Job A) 171
6.1.13 BAM3 index computation for 2nd job (last job = Job A) 172
6.1.14 Start and stop time for ECFDBA job sequence using Algorithm 1 172
6.2.1 Process time data range (hours) 173
6.2.2 BAM3 heuristic performance for 6 job problems 173
6.2.3 BAM3 vs NEH makespan performance for 6 job problems 174
6.2.4 BAM3 vs NEH makespan performance for 10 job problems 175
6.2.5 BAM3 vs NEH makespan performance for 20 job problems 176
6.2.6 BAM3 vs NEH makespan performance for 20 job problems (test 2) 177
6.2.7 BAM3 vs NEH makespan performance for 20 job problem (test 3) 177
6.3.1 Process time data 181
6.3.2 Data for \(P(2) + P(3) + P(4) + P(5) + P(6) \) 181
6.3.3 BAM4 index for 5th job selection 182
6.3.4 BAM4 index for 4th job selection 182
6.3.5 BAM4 index for 3rd job selection 183
6.3.6 BAM4 index for 2nd job selection 183
6.3.7 Process time data for FEBADC 184
6.3.8 \(VP(2), VP(3), VP(4) \) computations for FEBADC 184
6.3.9 Start and stop time for FEBADC job sequence using Algorithm 1 185
6.3.10 BSP4 index evaluation 186
6.3.11 BAM4 index computation for 5th job (last job = Job A) 187
6.3.12 BAM4 index computation for 4th job (last job = Job A) 187
6.3.13 BAM4 index computation for 3rd job (last job = Job A) 188
6.3.14 BAM4 index computation for 2nd job (last job = Job A) 188
6.3.15 Listed scheduling sequences using BAM4 heuristic 189
6.4.1 Process time data range (hours) 189
6.4.2 BAM4 heuristic performance for 6 job problems 190
6.4.3 BAM4 vs NEH makespan performance for 6 job problems 191
6.4.4 BAM4 vs NEH makespan performance for 10 job problems 191
6.4.5 BAM4 vs NEH makespan performance for 20 job problems 192
6.4.6 BAM4 vs NEH makespan performance for 20 job problems (test 2) 193
6.4.7 BAM4 vs NEH makespan performance for 20 job problems (test 3) 193
7.1.1 Number of simulated cases 196
7.1.2 Criteria for PI dominance level classifications 197
7.2.1 Percentage of accurate makespan results at weak PI dominance level 198
7.2.2 Percentage of accurate makespan ranking at weak PI dominance level 198
7.2.3 Average makespan ratio at weak PI dominance level 198
7.2.4 Average makespan ratio ranking at weak PI dominance level 198
7.2.5 Percentage of accurate makespan results at medium PI dominance level 200
7.2.6 Percentage of accurate makespan ranking at medium PI dominance level 201
7.2.7 Average makespan ratio at medium PI dominance level 201
7.2.8 Average makespan ratio ranking at medium PI dominance level 201
7.2.9 Percentage of accurate makespan results at strong PI dominance level 203
7.2.10 Percentage of accurate makespan ranking at strong PI dominance level 203
7.2.11 Average makespan ratio at strong PI dominance level 203
7.2.12 Average makespan ratio ranking at strong PI dominance level 204
7.2.13 BSP index value that generates optimum makespan 206
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1</td>
<td>CMC process flow</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Classification of scheduling delays</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Example of PN model (Proth and Xie, 1996)</td>
<td>47</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Status of the example PN in Figure 2.4.1 after firing T2</td>
<td>48</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Status of the PN in Figure 2.4.2 after firing T5</td>
<td>49</td>
</tr>
<tr>
<td>2.4.4</td>
<td>An elementary object system for IOWF-net (Ling and Loke, 2002)</td>
<td>50</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Sub-assembly body collaborative design synchronized coloured network (Ding et al., 2005)</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow diagram for research methodology</td>
<td>55</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Cyber manufacturing centre information flow model</td>
<td>67</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Conceptual Petri net modelling for CMC</td>
<td>69</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Modified PN model for scheduling purposes</td>
<td>70</td>
</tr>
<tr>
<td>4.2.1</td>
<td>PN model of first-come-first-served schedule arrangement</td>
<td>72</td>
</tr>
<tr>
<td>4.2.2</td>
<td>PN model for searching the optimum job arrangement</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3</td>
<td>PN model for optimum job arrangement with DACB job sequence</td>
<td>74</td>
</tr>
<tr>
<td>4.2.4</td>
<td>PN model for user selected job sequence</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Scheduling Gantt chart for DACB job sequence (process focused)</td>
<td>80</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Scheduling Gantt chart for DACB job sequence (resource focused)</td>
<td>80</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Example schedule that fulfils Condition 4.1, 4.2 and 4.3</td>
<td>81</td>
</tr>
</tbody>
</table>
4.3.4 Example schedule that fulfils Condition 4.2 and its assumptions
4.3.5 Example schedule that fulfils Condition 4.3 and its assumptions
4.4.1 Gantt chart for ABCD job sequence
4.4.2 Example schedule that fulfils Conditions 4.7, 4.8 and 4.9
4.4.3 Example schedule that violates Condition 4.10
4.4.4 Example schedule that violates Condition 4.11
4.4.5 Example schedule that violates Condition 4.12
5.2.1 Flow diagram for BAM1 heuristic
5.2.2 Gantt chart illustrating the discontinuity period between
 P65 and P46
5.4.1 Flow diagram for BAM2 heuristic
6.1.1 Flow diagram for BAM3 heuristic
6.3.1 Flow diagram for BAM4 heuristic
LIST OF ABREVIATIONS

APA - Average performance advantage
API - Average percentage improvement
BAM - Bottleneck Adjacent Matching
BAM1 - Bottleneck Adjacent Matching 1
BAM2 - Bottleneck Adjacent Matching 2
BAM3 - Bottleneck Adjacent Matching 3
BAM4 - Bottleneck Adjacent Matching 4
BCF - Bottleneck correction factor
BMI - Bottleneck minimal idleness heuristic developed by Kalir and Sarin
BSP1 - Bottleneck scheduling performance 1
BSP2 - Bottleneck scheduling performance 2
BSP3 - Bottleneck scheduling performance 3
BSP4 - Bottleneck scheduling performance 4
CAD - Computer aided design
CDS - Heuristic developed by Campbell, Dudek and Smith
Ci - Completion time for each job
C max - Makespan
CMC - Cyber manufacturing centre
CNC - Computer numerical control
ddm - Decreasing dominating machines
DL - Dominance level
DM - Decomposition method
F_2/C max - 2-machine flow shop, makespan objective