THERMAL AND PHOTOCHEMICAL DEGRADATION OF POLYURETHANES BASED ON RENEWABLE MATERIALS

ANIKA ZAFIAH BINTI MOHD RUS

THE UNIVERSITY OF WARWICK

PhD 2007
THERMAL AND PHOTOCHEMICAL DEGRADATION OF
POLYURETHANES BASED ON RENEWABLE MATERIALS

ANIKA ZAFIAH MOHD RUS

A thesis submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy

The University Of Warwick
Department of Chemistry,
December 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>xvii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xx</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION .. 1

1.1 Polymers based on renewable materials 1

1.1.1 Survey of approaches to renewable polymers 1

1.1.2 Vegetable oils 4

1.1.2.1 Sources and Importance 4

1.1.2.2 Composition and biogenesis of vegetable oils 7

1.1.2.3 Reactions of unsaturated fatty acid chains 10

1.1.3 Polyurethanes 10

1.1.4 Polyurethanes from renewable resources 11

1.2 Modification of polymers using fillers 16

1.2.1 Fibrous fillers 19

1.2.2 Particulate fillers 21

1.2.3 Nanocomposites fillers 22

1.2.4 Benefit of fillers for polymers 23

1.3 Semiconductors and their action 23
CHAPTER 1: INTRODUCTION

1.3.1 Titanium dioxide as a semiconductor

1.3.2 Titanium dioxide as a photocatalyst

1.4 Service life of polymers

1.4.1 Polymer degradation

1.5 Stabilization of polyurethanes towards UV

1.6 Objectives of this work

1.7 Aim of Project

References

CHAPTER 2: EXPERIMENTAL

2.1 Reagents used

2.2 Preparation of hydroxylated rapeseed and sunflower monomers

2.2.1 Condensation method

2.3 Preparation of TiO₂

2.3.1 Doping TiO₂ (anatase) with molybdenum (Mo) and cr(III) nitrates

2.3.2 Doping TiO₂ (anatase) with molybdenum (Mo) via absorption method

2.4 Characterisation of hydroxylated rapeseed and sunflower monomers

2.4.1 Hydroxyl (OH) content of polyurethane polyols

2.4.2 Viscosity measurement

2.4.3 Gelation times of liquid polyurethane polymer

2.4.4 IR spectroscopy

2.4.4.1 Hydroxylated polyurethane monomers

2.4.5 Mass spectrometry

2.4.6 Nuclear Magnetic Resonance (NMR)

2.4.6.1 Proton (^1H) NMR

2.4.6.2 Carbon-13 (^13C) NMR
2.4.6.3 CP-MAS nmr (solid-state polymer) 49
2.4.7 UV/Vis spectroscopy 50
2.5 Curing and applications 50
2.5.1 Curing and preparation of thin films 51
2.5.1.1 Methods of preparing thin films (150-200 μm) of rapeseed (RS-PU) and sunflower polyurethane (SF-PU) doped with TiO₂ and stabilizer 52
2.5.2 Preparation and curing of dumb-bell and composite test specimens 54
2.5.3 Gel Permeation Chromatography (GPC) 55
2.6 Physical testing of rapeseed and sunflower polymer 56
2.6.1 Thermal Gravimetric Analysis (TGA) 57
2.6.2 Dynamic Mechanical Thermal Analysis (DMTA) 58
2.6.3 Differential Scanning Calorimetry (DSC) 60
2.6.4 Scratch Resistance 61
2.6.5 Hardness Test 62
2.6.6 Tensile Properties 63
2.7 Irradiation Sources 67
2.8 Microanalysis test 67

References 68

CHAPTER 3: SPECTROSCOPIC AND THERMAL CHARACTERIZATION OF STARTING VEGETABLE OILS, INTERMEDIATES (HYDROXYLATED MONOMERS) AND PRODUCTS IN THE PREPARATION OF POLYURETHANES

3.1 Characterisation of vegetable oils and their hydroxylated derivatives 71
3.1.1 Hydroxyl (OH) content of polyols from vegetable oils
3.1.1.1 'HNMR studies of RSO, SFO and theirs hydroxylated monomers
3.1.1.2 Viscometric studies of vegetable oils and their hydroxylated monomers
3.1.1.3 IR spectra of vegetable oils and their hydroxylated monomers
3.1.1.4 FAB and ESI mass spectrometry
3.1.1.4.1 FAB spectra of RSO and SFO
3.1.1.4.2 FAB spectra for rapeseed oil-based polyol (RS-OH) and sunflower oil-based polyol (SF-OH).
3.1.1.4.3 ESI spectra for hydroxylated vegetable oils
3.1.1.5 Titration results for hydroxyl numbers of rapeseed and sunflower oil-based polyols.

3.2 Characterization of polyurethanes based on cross-linking polyols with MDI
3.2.1 FTIR spectroscopy of rapeseed and sunflower oil-based polyurethanes
3.2.2 UV-Visible spectra of thin films of rapeseed and sunflower oil-based polyurethanes
3.2.3 Magic Angle Spinning (CP-MAS-NMR) spectrum of foam of polyurethane based on euphorbia
3.2.4 Thermogravimetric Analysis (TGA) of rapeseed and sunflower oil-based polyurethanes
3.2.5 Differential Scanning Calorimetric (DSC) and DMTA of rapeseed and sunflower oil-based polyurethanes

3.3 Characterisation of liquid polyurethanes
3.3.1 Viscometric-kinetic studies

3.4 Summary of characterisation studies
CHAPTER 4: THERMAL DEGRADATION OF POLYURETHANES107

AND THEIR PRECURSORS

4.1 IR analysis of the pyrolysis products from euphorbia polyurethane foam (E-PU)

4.1.1 IR analysis of condensate of pyrolysis 114

4.1.2 IR analysis of material trapped in gas cell 116

4.1.3 1H and ^{13}C n.m.r analysis of condensate material from pyrolysis 117

4.1.4 Microanalysis of condensate materials of pyrolysis 119

4.2 Studies of E-PU foam

4.2.1 Slow pyrolysis 121

4.2.2 Thermal Gravimetric Analysis (TGA) measurements for E-PU foam 125

4.2.3 Weight loss kinetics of E-PU foam 126

4.3 Conclusion 131

References 132

CHAPTER 5: PHOTODEGRADATION OF POLYURETHANES 133

5.1 Photodegradation of PU films 133

5.1.1 Infra-red spectra of PU films 133

5.1.2 Kinetics of growth of carbonyl group 138

5.1.2.1 Comparison of Carbonyl Index (CI) for different types of polymer 140

5.1.3 UV-visible changes on UV-irradiation 141

5.2 Effects of different types of TiO$_2$ on photodegradation 143

5.2.1 Kinetics of growth of carbonyl group 143
LIST OF TABLES

Chapter 1

Table 1.1: Chemical families of fillers for plastics 17
Table 1.2: Fillers and their function 18
Table 1.3: Thermal events influencing the degradation of polymers 28

Chapter 2

Table 2.1: Chemical grades and suppliers 43
Table 2.2: Commercial titanium dioxide brands and suppliers 43

Chapter 3

Table 3.1: Viscosities of vegetable oils and their polyol derivatives 75
Table 3.2(a): Calculated and experimental m/z values by ESI of RS-OH. 83
Table 3.2(b): Calculated and experimental m/z values by ESI of SF-OH 84
Table 3.3: Experimental results for hydroxyl numbers of vegetable oil-based polyols. 91
Table 3.4: Peak picking results of CP-MAS 13C n.m.r spectrum 96

Chapter 4

Table 4.1: Percentages of chemical elements in E-PU foam upon vacuum pyrolysis and also following UV irradiation obtained by C, H, N analysis 120
Table 4.2: Decomposition temperatures for different polyurethane (PU) 125
Table 4.3: Initial rates of weight loss as a function of temperature for E-PU foam

Chapter 5

Table 5.1: Percentage of enhancement of carbonyl indices for RS-PU doped with aggressive forms of pigments

Table 5.2: Percentage reduction of carbonyl indices for RS-PU doped with non-aggressive forms of TiO₂ pigments

Table 5.3: Percentage of enhancement of carbonyl indices for different types of polymer doped with 4% Degussa P25 pigment

Table 5.4: Percentage reduction of carbonyl indices for RS-PU and SF-PU doped with stabiliser; Tinuvin 770 and 10% TiO₂

Chapter 6

Table 6.1: Decomposition temperature for different polyurethanes (PU) and their composites

Table 6.2: Effect of UV irradiation on glass transition temperature, maximum of tan δ, and cross-link densities of RS-PU
LIST OF FIGURES

Chapter 1

Figure 1.1:	World production and uses of oils and fats	2
Figure 1.2:	Chief exports of renewable raw materials	5
Figure 1.3:	World supply of vegetable oils from the ten major sources in 2004-2005	5
Figure 1.4:	Unusual fatty acids in the seed oil of one-year old plants	7
Figure 1.5:	Fatty acid (vernolic acid) in *Euphorbia lagascae*	8
Figure 1.6:	A triglyceride contains three fatty acid chains linked to by a glycerol molecule	9
Figure 1.7:	Polymerization of lactic acid to polylactide	9
Figure 1.8:	Flexible and rigid segments in a polyurethane elastomer	11
Figure 1.9:	Renewable vegetable oils that are rich in fatty acids	12
Figure 1.10:	Preparation of low hydroxylated *Euphorbia*	14
Figure 1.11:	Process involved in making a polyurethane polymer from renewable vegetable oil	15
Figure 1.12:	The energy bands and band gap in (A) insulators, (B) semiconductors, and (C) conductors	23
Figure 1.13:	Functioning of a photochemically excited TiO$_2$ particle	26
Figure 1.14:	Using energy from light, TiO$_2$ creates two oxidation reactants: hydroxyl radicals and superoxide anion	27
Figure 1.15:	Schematic of tautomerism	32
Figure 1.16:	Regenerative mechanism of HALS	33
Figure 1.17:	Tinuvin 770	33
Chapter 2

Figure 2.1: Sample and sample holder for UV/Vis spectroscopy 50
Figure 2.2: Surface of neat RS-PU thin film 52
Figure 2.3: Thin film of RS-PU loaded with 5% TiO₂ 53
Figure 2.4(a): Thin films of (i) RS-PU, (ii) RS-PU loaded with 0.5% Tinuvin 770, and (iii) RS-PU loaded with a combination of 0.5% Tinuvin 770 and 10% TiO₂.
Figure 2.4(b): Thin films of (i) SF-PU, (ii) SF-PU loaded with 0.5% Tinuvin 770, and (iii) SF-PU loaded with a combination of 0.5% Tinuvin 770 and 10% TiO₂.
Figure 2.5: Tensile sample of (i) neat rapeseed-based PU and (ii) rapeseed-based PU with 2.5% TiO₂ loading
Figure 2.6: Frame L and clamp type C of DMA apparatus 60
Figure 2.7: Schematic of Pencil Test Method 61
Figure 2.8: Schematic of Durometer Hardness Testing 63
Figure 2.9: Typical stress/strain curves 65
Figure 2.10: Test specimen dimension types 1A and 1B 66
Figure 2.11: Q-Panel, accelerated Weatherometer mounted with film samples 66

Chapter 3

Figure 3.1: Reactive (hydroxyl) sites on different fatty acid chains for different vegetable oils. 72
Figure 3.2: Proton NMR spectra of RSO 72
Figure 3.3: Proton NMR spectra of SFO 73
Figure 3.4: Proton NMR spectra of hydroxylated rapeseed oil (RS-OH) 73
Figure 3.5: Proton NMR spectra of hydroxylated sunflower oil (SF-OH) 74
Figure 3.6: IR spectra of rapeseed oil (RSO) and the corresponding polyol (RS-OH) 76
Figure 3.7: IR spectra of sunflower oil (SFO) and the corresponding polyols (RS-OH) 76
Figure 3.8: FAB mass spectrum of rapeseed oil (RSO), NBA matrix 78
Figure 3.9: Calculated m/z value of rapeseed oil 78
Figure 3.10: FAB mass spectra of sunflower oil (SFO), NBA matrix 79
Figure 3.11: Calculated m/z value of sunflower oil 79
Figure 3.12: FAB mass spectrum for RS-OH 81
Figure 3.13: FAB mass spectrum for SF-OH 82
Figure 3.14: ESI mass spectrum for RS-OH 86
Figure 3.15: ESI mass spectrum for SF-OH 87
Figure 3.16: FTIR spectrum for thin film (150-200 μm) for RS-PU 92
Figure 3.17: FTIR spectrum for thin film (150-200 μm) for SF-PU 92
Figure 3.18: UV-Vis spectrum for thin film (150-200 μm) of RS-PU 94
Figure 3.19: UV-Vis spectrum for thin film (150-200 μm) of SF-PU 94
Figure 3.20: CP-MAS 13C spectrum of PU (euphorbia) foam ground to a fine powder 95
Figure 3.21a: Thermogram of weight loss for RS-PU 97
Figure 3.21b: Thermogram of weight loss for SF-PU 98
Figure 3.22a: DSC curves of RS-PU 100
Figure 3.22b: DSC curves of SF-PU 100
Figure 3.23: Tan δ vs temperature curves from DMTA analysis 101
of RS-PU and SF-PU

Figure 3.30: Plots of viscosity versus time for (A) RS-PU (0.15 % MDI), (B) RS-PU (0.15% MDI loaded with 5% TiO₂), (C) RS-PU (0.15% MDI loaded with 7.5% TiO₂) and (D) RSO (0.15% MDI loaded with 10% TiO₂) at 60 °C.

Chapter 4

Figure 4.1: IR spectra of rapeseed oil (RSO) and the corresponding polyol (RS-OH)

Figure 4.1a: FTIR spectrum for hydroxylated rapeseed oil (RS-OH) after pyrolysis at 200 °C for 24 hours.

Figure 4.1b: FTIR spectrum for hydroxylated sunflower oil (SF-OH) after pyrolysis at 200 °C for 24 hours.

Figure 4.2: Mechanisms for the thermal degradation of RS-OH and SF-OH oils.

Figure 4.3a: FTIR spectrum for RS-PU after pyrolysis at 200 °C for 24 hours and before pyrolysis.

Figure 4.3b: FTIR spectrum for SF-PU after pyrolysis at 200 °C for 24 hours.

Figure 4.4a: Furukawa reaction mechanisms for the thermal degradation of polyurethane

Figure 4.4b: Reaction mechanisms for the thermal degradation of RS-PU and SF-PU

Figure 4.5: Pyrolysis apparatus

Figure 4.6: Products of pyrolysis of E-PU foam sample inside the pyrolysis tube

Figure 4.7: IR spectra of condensate from E-PU foam via pyrolysis (a) top extract, (b) bottom extract, (c) residue and (d) untreated foam.
Figure 4.8: IR spectrum of volatiles from pyrolysis of E-PU foam trapped in gas cell.

Figure 4.9 a: 1H n.m.r spectrum of 'top' extract of pyrolysis product from E-PU foam.

Figure 4.9 b: 1H n.m.r spectrum of 'bottom' extract of pyrolysis product from E-PU foam.

Figure 4.10 (a) and (b): Steps involved in pyrolysis of E-PU foam sample.

Figure 4.11 a: IR spectra of E-PU foam after pyrolysis at 200 °C for 150 mins.

Figure 4.11 b: IR spectra of E-PU foam after pyrolysis at 250 °C for 120 mins.

Figure 4.11 c: IR spectra of E-PU foam after pyrolysis at 250 °C for 150 mins.

Figure 4.11 d: IR spectra of E-PU foam after pyrolysis at 300 °C for 30 mins.

Figure 4.11 e: IR spectra of E-PU foam after pyrolysis at 300 °C for 60 mins.

Figure 4.11 f: IR spectra of E-PU foam after pyrolysis at 350 °C for 45 min.

Figure 4.12: Thermogram of weight loss of E-PU foam sample.

Figure 4.13 (a): Thermogram of weight loss of E-PU foam sample for 973 K.

Figure 4.13 (b): Thermogram of weight loss of E-PU foam sample for 1173 K.

Figure 4.14: First order reaction rate kinetics of E-PU foam: $f(t) = [-\ln(1-\alpha)]$.

Figure 4.15: The initial rate (R_i) for decomposition of E-PU foam at different temperatures.

Chapter 5

Figure 5.1a: FT-IR spectra of original film, (A) and that UV-irradiated for 1200 hrs (B), for RS-PU.

Figure 5.1b: FT-IR spectrum of SF-PU film UV-irradiated for 1200 hrs.

Figure 5.2: Plot of carbonyl index with respect to time for RS-PU and SF-PU.
SF-PU films during UV irradiation.

Figure 5.3: Plot of carbonyl index (CI) with respect to time for different types of polymer

Figure 5.4: UV-Vis spectra of RS-PU: original film, A and UV irradiated film, B

Figure 5.5: FT-IR spectra of original RS-PU film, and that UV-irradiated for 1200 hrs

Figure 5.6: Plot of change in carbonyl index (CI) with respect to time for UV irradiation of RS-PU films loaded with different types of modified TiO$_2$

Figure 5.7: Plot of change in carbonyl index (CI) with respect to time for UV irradiation of RS-PU films loaded with different types of modified TiO$_2$.

Figure 5.8: Plot of change in carbonyl index (CI) with respect to time for UV irradiation of different types of polymer loaded with 4 % Degussa P25

Figure 5.9: Plot of change in carbonyl index (CI) with respect to time for UV irradiation of RS-PU and SF-PU thin films loaded with a ratio of 0.5:1.0:0.5 MDI/OH/Tinuvin 770, and loaded with 10 % Degussa P25.

Chapter 6

Figure 6.1: Thermogram of weight loss of RS-PU (7.5 % loaded with TiO$_2$)

Figure 6.2: Value of storage modulus and loss modulus determined by DMTA for RS-PU and SF-PU.

Figure 6.3: Value of tan delta determined by DMTA for RS-PU (unirradiated or control sample and irradiated to UV for 3000 hours)

Figure 6.4: Values of storage modulus determined by DMTA for neat RS-PU (unirradiated or control sample) and sample UV-irradiated for 3000 hours
Figure 6.5: Influence of (i) TiO₂ loading and (ii) extensive UV-irradiation (for 3000 hours) on tan δ value of RS-PU.

Figure 6.6: Influence of TiO₂ loading on RS-PU samples on E' (storage modulus) value for unirradiated samples.

Figure 6.7: Influence of TiO₂ loading on RS-PU samples upon UV-irradiation.

Figure 6.8: Value of Tₐ determined both by DSC and DMTA for RS-PU for unirradiated samples, loaded with different percentages of TiO₂.

Figure 6.9: Influence of UV irradiation on Tₐ (measured by DSC) for samples of RS-PU loaded with different percentages of TiO₂.

Figure 6.10: Tensile strength for 5 different RS-PU samples.

Figure 6.11: Influence of TiO₂ loading tensile strength of RS-PU samples.

Figure 6.12: Pencil scratch hardness of RS-PU and SF-PU samples versus % loading with TiO₂.

Figure 6.13: RS-PU and SF-PU loaded with different percentages of TiO₂.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>Carbonyl Index</td>
</tr>
<tr>
<td>DMTA</td>
<td>Dynamic Mechanical Thermal Analysis</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>ESO</td>
<td>Epoxidized Soybean Oil</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray Ionisation</td>
</tr>
<tr>
<td>FAB</td>
<td>Fast Atom Bombardment</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>HALS</td>
<td>Hindered Amine Light Stabilizers</td>
</tr>
<tr>
<td>MDI</td>
<td>Methylene di-p-phenyl diisocyanate</td>
</tr>
<tr>
<td>M_w</td>
<td>Weight Average Molecular Weight</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly(vinyl chloride)</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>QUV</td>
<td>Accelerated Weatherometer</td>
</tr>
<tr>
<td>RSO</td>
<td>Rapeseed Oil</td>
</tr>
<tr>
<td>RS-OH</td>
<td>Hydroxylated Rapeseed Oil</td>
</tr>
<tr>
<td>RS-PU</td>
<td>Rapeseed Polyurethane</td>
</tr>
<tr>
<td>SFO</td>
<td>Sunflower Oil</td>
</tr>
<tr>
<td>SF-OH</td>
<td>Hydroxylated Sunflower Oil</td>
</tr>
<tr>
<td>SF-PU</td>
<td>Sunflower Polyurethane</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium Dioxide</td>
</tr>
<tr>
<td>Tₙ</td>
<td>Glass Transition Temperature</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal Gravimetric Analysis</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>UVAs</td>
<td>Ultraviolet Light Absorbers</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

First of all I would like to thank God and the many people that had helped me to make this study and thesis possible. I am indebted to my supervisor, Prof Terence J. Kemp, for being my mentor for the last four years, for his keen guidance, encouragement and valuable comments throughout my research.

I would also like to express my thanks to all the Chemistry staff of the University of Warwick, i.e. Prof. Dave Haddleton’s group (access to chemistry equipment), Dr Andrew J. Clark (for discussion of synthetic procedure), Dr Robin McIntyre (supply of modified TiO₂), Dr John Bickerton (mass spectrometry testing and discussion), Dr Adam Clark (NMR measurement) and the Departmental technical staff, especially Rob Jenkins for his invaluable support in dealing with technical problems. Dr Nick Tucker and Dr Rebecca Steward from ATC, University of Warwick, are thanked very much for their help and contribution in access to materials testing equipment.

Special gratitude to my loving husband, Mohammad Faiz Liew Abdullah: for being a wonderful husband and for your support to our family, even though you are striving for your PhD research studies at the same time. To you I wish you the very best of luck in your viva and I owe everything to you with compound interest. A special thanks goes to my brother, Akmal for his invaluable support. To our three loving children, Zu Arasy (6), Sadrina (5) and Syakib (3), who was born 4 months after we began our PhD studies, for constantly bringing joy, excitement and always testing our parenting skill. Finally this thesis is also dedicated to our “baby” who is going to be born in 2007. Looking back, this has been a long tiring journey of experience that required sacrifice and patience from all my family over the last four years.
DECLARATION

The work described in this thesis is entirely original and my own, except where otherwise indicated. It has not been submitted for a higher degree elsewhere.

Parts of this work were presented at international conferences, namely:

Polymer Degradation Meeting, University of Sussex, September 1-3, 2005, Awarded First Prize (see Appendix)

Royal Society of Chemistry Group, April 4, 2006, Runcorn, Cheshire, UK

Signed

Date

19/2/2007

Signed

Date
ABSTRACT

In recent years, the use of polymers made from renewable materials has been developed in diverse areas especially in furniture, mattresses, automotive or building components. Polyurethanes (PU's) made from renewable materials are one of the most important groups of polymers because of their versatility and they can be manufactured in a wide range of grades, densities and stiffness. In this project, polymers based on renewable materials such as rapeseed (RS) and sunflower oil (SF) were synthesized and cross-linked with methylene di-p-phenyl diisocyanate (MDI) to form polyurethanes.

Treatment with titanium dioxide (TiO₂) was found to affect the physical properties of the polyurethane in a systematic way. As the loadings of TiO₂ were increased (up to 10% of monomer weight), large strain responses were obtained; thus the stress vs. strain curves plotted by the Instron tensile test showed an increase from 5% to 31%. This study also revealed a remarkable characteristic in the pigmented polymer exhibiting soft – but – tough behaviour at high TiO₂ loading.

The DMTA test also showed that the properties of the sample loaded with 10 % TiO₂ increased its tan delta peak (damping factor) from 0.43 to 0.7. The tan delta peak showed that the damping properties of the material were improved markedly upon loading with TiO₂. This is useful since noise is radiated by vibration, and the application of damping materials to the vibrating surface converts the energy into heat, which is dissipated within the damping materials rather than being radiated as airborne noise. Increase in TiO₂ loading also gave a progressive increase of hardness (Shore D) for both RS and SF oil – based polyurethanes.

The effect of prolonged exposure to UV₂ light, in general promotes photodegradation for both RS and SF-based polyurethanes, both neat and also material loaded with TiO₂. The photodegradation of the PU’s depends on the grade of titanium dioxide. The addition of 10 % Degussa P25 pigment, gives the greater degradation while PUs loaded with 5 % Kronos 2220 show the slowest rates of degradation due to the effect of the coating of this pigment.

The photostabiliser Tinuvin 770 also offers high protection from UV₂, while the combination of Tinuvin 770 and Degussa P25 gave the highest protection from UV₂. Addition of Tinuvin 770 at the stage of preparation of the PUs also greatly reduced the undesirable yellow colouration prevalent during PU syntheses.
CHAPTER 1
INTRODUCTION

1.1 Polymers based on renewable materials

1.1.1 Survey of approaches to renewable polymers

Polymers play a major role in industrial and domestic life, a role which is always increasing. The raw materials for the production of polymers are traditionally derived from petroleum products (oil) and natural gas. The use of petroleum-based monomers in the manufacture of consumer products is expected to decline in coming years because of the continuous rise in the price of oil and the high rate of depletion of known oil reserves [1,2]. Recently, the use of renewable resources has attracted the attention of many researchers [3-10] because of their potential to substitute petrochemical derivatives. Moreover, with the need to conserve these non-renewable resources, interest has begun to develop in the topic of preparing feed-stocks for the polymer industry that come from renewable resources, particularly from vegetable crops.

By renewable resource is meant agricultural products, where the materials are synthesized by sunlight. These natural products are already processed by the chemical industry and used in many fields of application and include in particular sugar, starch, cellulose, proteins and natural fats and oils [11]. Starch, for example, is a complex homo-polymer composed of α-D-glucose units linked together in two different forms: the linear form amylose and the highly branched amylopectin [12]. The composition and structure of starch granules varies considerably between different plants, affecting