
 

THE PERFORMANCE OF SOFT COMPUTING TECHNIQUES 

ON CONTENT-BASED SMS SPAM FILTERING 

 
 
 
 
 
 
 
 
 
 
 

    WADDAH WAHEEB HASSAN SAEED 
 
 
 
 
 
 
 
 
 
 
 

A thesis submitted in partial 

fulfillment of the requirement for the award of the 

Degree of Master of Computer Science (Soft Computing) 
 
 
 
 
 
 
 
 
 
 
 

Faculty of Computer Science and Information Technology 

Universiti Tun Hussein Onn Malaysia 
 
 
 
 
 
 
 
 
 
 
 
 
 

FEBRUARY 2015

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iii

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and Most Merciful, I would like to

thank Allah S.W.T. for helping me in the compilation until the completion of this thesis.

I would like to express my sincere appreciation to my supervisor, Associate Professor

Dr. Rozaida binti Ghazali for the constant support throughout the duration of my

studies at FSKTM-UTHM. I am fortunate to have her as my supervisor and I will

always be grateful for her guidance and encouragement.

I would also like to thanks to my father, mother and beloved wife and daughter

for their infinite patience, love, motivation and prayers. Finally, my appreciation goes

to those who have contributed directly or indirectly towards the compilation of this

thesis.PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iv

ABSTRACT

Content-based filtering is one of the most widely used methods to combat SMS (Short

Message Service) spam. This method represents SMS text messages by a set of se-

lected features which are extracted from data sets. Most of the available data sets have

imbalanced class distribution problem. However, not much attention has been paid to

handle this problem which affect the characteristics and size of selected features and

cause undesired performance. Soft computing approaches have been applied success-

fully in content-based spam filtering. In order to enhance soft computing performance,

suitable feature subset should be selected. Therefore, this research investigates how

well suited three soft computing techniques: Fuzzy Similarity, Artificial Neural Net-

work and Support Vector Machines (SVM) are for content-based SMS spam filtering

using an appropriate size of features which are selected by the Gini Index metric as

it has the ability to extract suitable features from imbalanced data sets. The data sets

used in this research were taken from three sources: UCI repository, Dublin Institute of

Technology (DIT) and British English SMS. The performance of each of the technique

was compared in terms of True Positive Rate against False Positive Rate, F1 score and

Matthews Correlation Coefficient. The results showed that SVM with 150 features

outperformed the other techniques in all the comparison measures. The average time

needed to classify an SMS text message is a fraction of a millisecond. Another test

using NUS SMS corpus was conducted in order to validate the SVM classifier with

150 features. The results again proved the efficiency of the SVM classifier with 150

features for SMS spam filtering with an accuracy of about 99.2%.
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ABSTRAK

Penapisan berasaskan kandungan merupakan salah satu kaedah yang paling banyak

digunakan untuk mengatasi spam SMS (Short Message Service). Kaedah ini mewak-

ili mesej teks SMS dengan satu set ciri terpilih yang diekstrak daripada set-set data.

Kebanyakan daripada set-set data sedia ada mempunyai permasalahan pengagihan ke-

las yang tidak seimbang. Walau bagaimanapun, tidak banyak perhatian diberi dalam

menangani permasalahan ini yang mana ia memberi kesan pada ciri-ciri dan saiz ciri

yang dipilih dan menyebabkan prestasi yang tidak diingini. Pendekatan pengkomput-

eran lembut telah digunakan dengan jayanya dalam penapisan spam berasaskan kan-

dungan. Bagi meningkatkan kecekapan pengkomputeran lembut, subset ciri yang bers-

esuaian perlu dipilih. Oleh itu, kajian ini mengkaji bagaimana tiga teknik pengkomput-

eran lembut: Fuzzy Similarity, Artificial Neural Network dan Support Vector Machines

(SVM) sesuai bagi penapisan spam berasaskan kandungan menggunakan saiz ciri yang

bersesuaian yang dipilih menggunakan pengukuran Indeks Gini yang mempunyai ke-

upayaan untuk mengekstrak ciri yang bersesuaian daripada set-set data yang tidak se-

imbang. Set-set data yang digunakan dalam kajian ini telah diambil dari tiga sum-

ber: repositori UCI, Dublin Institute of Technology (DIT) dan British English SMS.

Prestasi teknik-teknik ini telah dibandingkan dari segi True Positive Rate against False

Positive Rate, F1 score dan Matthews Correlation Coefficient. Hasil dapatan menun-

jukkan bahawa SVM dengan 150 ciri lebih baik daripada kedua-dua teknik bandin-

gan dalam kesemua pengukuran perbandingan. Purata masa yang diperlukan untuk

mengkelaskan mesej teks SMS adalah pecahan milisaat. Bagi mengesahkan penge-

las SVM dengan 150 ciri, pengujian lain menggunakan NUS SMS corpus dijalankan.

Hasil dapatan membuktikan bahawa kecekapan pengelas SVM dengan 150 ciri bagi

menapis spam SMS dengan ketepatan sekitar 99.2%.
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CHAPTER 1

INTRODUCTION

1.1 Overview

SMS which stands for “Short Message Service” is a service used to send short text

messages from a mobile device or via the web and received by a mobile device. This

service is a very popular type of communication between people, for its ease of use,

its fast response and its relatively cheap cost as compared to telephone calls. Thus in

2012, 7.5 trillion SMS messages were sent all over the world (GSMA, 2013). However,

not all SMS messages are solicited - mobile device users receive legitimate messages

as well as unwanted messages which are called spam.

SMS spam forms 20 to 30% of all SMS traffic in some parts of Asia such

as China and India (GSMA, 2011). Some methods are used to combat SMS spam

such as black-and-white listing, traffic analysis and content-based filtering (Delany,

Buckley & Greene, 2012). According to Delany et al. (2012), content-based filtering

method is required to counteract the increasing threat of SMS spam and to avoid the

disadvantages of other filtering methods. Content-based filtering uses some techniques

to analyze the contents of SMS text messages to ascertain whether it is legitimate or

spam.

Many studies on content-based SMS spam filtering selected some features (lex-

ical or stylistic) to represent SMS text messages and these selected features are ex-
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tracted from SMS data sets with imbalanced class distribution problems. However,

not much attention has been paid to handle the imbalanced class distribution problem

which could produce unsuitable features or a huge number of features in order to filter

SMS spam. Therefore, a suitable feature selection metric is required to select proper

features from the imbalanced data sets in order to improve filtering performance. Be-

sides a suitable feature selection metric, a suitable technique which has been engaged

in spam filtering is essential. Soft computing techniques have been present in almost

every domain (e.g. spam filtering) and their ability have been proven (El-Alfy & Al-

Qunaieer, 2008; Guzella & Caminhas, 2009).

In this research, the main purpose is to find out how well suited soft computing

techniques, namely Fuzzy Similarity, Artificial Neural Network (ANN) and Support

Vector Machines (SVMs) are for content-based SMS spam filtering using appropriate

features which are selected by the Gini Index metric.

1.2 Problem Statement

SMS spam is a growing problem. Mobile device users in the U.S. received 1.1 billion

spam messages in 2007 (Hart, 2008) and 4.5 billion in 2011 (Kharif, 2012). SMS spam

can be defined as unsolicited bulk electronic messages. Unsolicited means the recip-

ients receive unwanted messages without their consent and bulk because the sender

sends many identical messages to different recipients (Bueti, 2005).

Many reasons motivate spammers to use this service which support the growth

of this problem such as the attraction to read all received messages by mobile device

users, the accessibility of this service from anywhere, lack of laws and regulations

to control the purchase of phone numbers and the handling of this problem in some

countries (Liu & Yang, 2012). In addition, there is an increasing number of mobile

device users who can be targeted (GSMA, 2013), the limited availability of mobile

applications for SMS spam filtering (Almeida, Hidalgo & Yamakami, 2011), the higher

response rate for this service and the availability of very cheap bulk pre-paid SMS
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packages in some countries in Asia with easy solutions to send bulk messages (Delany

et al., 2012) as well as mobile network operators who contribute to this problem by

sending messages about their offers.

SMS spam has caused mobile device users and mobile network operators a lot

of problems. Spam messages irritate mobile users by filling their in-boxes and wasting

their time reading and deleting the messages (Uysal et al., 2012). Some types of SMS

spam try to bill mobile device users by tricking them to call premium rate numbers or

subscribe to services or, trick the users to call certain numbers to collect confidential

information from them to use for other purposes — called phishing (GSMA, 2011).

Other types of SMS spam attack mobile device users to steal their money (GSMA,

2011), subject smart-phones to viruses (Murynets & Jover, 2012), harm mobile device

operating systems, spread viruses to other mobile device users and violate privacy. Fur-

thermore, in some countries mobile device users pay to receive their messages which

may include spam messages (Almeida et al., 2011). Mobile network operators also

suffer from this problem. They are prone to lose their subscribers because the perfor-

mance of the network is affected by the load that SMS spam generates which in turn

delay the reception of legitimate messages (Yadav et al., 2011). They may also lose

some revenue because they cannot bill the sender(s) a termination fee as some types of

SMS spam are sent from fraudulent addresses (Cisco, 2005).

Many methods have been used to prevent SMS spam due to these problems,

such as black-and-white listing which is used by mobile applications such as android

applications (GooglePlay, n.d.), traffic analysis (GSMA, 2011), content-based filter-

ing(Hidalgo, Bringas & Sánz, 2006; Almeida et al., 2011; Sohn et al., 2012) and

a combination of black-and-white listing and content-based filtering (Deng & Peng,

2006; Mahmoud & Mahfouz, 2012). With black-and-white listing, the mobile de-

vice user saves the phone numbers of legitimate and spam message senders into two

groups: legitimate group (white list) and spam group (black list). The disadvantages

of the black-and-white listing method, is that if the phone numbers are not in the black

list, the recipient will receive the spam message(s). In addition, this method will dis-
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card legitimate messages that may be sent from a black-listed phone number(s) (Uysal

et al., 2012). Another anti-spam method uses traffic analysis to compare the sub-

scriber’s volume of sent messages to volume limits, but spammers avoid this method

by sending low volumes of messages to observe the operator system response and then

determine the operator’s volume limit policies (Delany et al., 2012). Content-based

filtering method uses some techniques to analyze SMS text message content in order

to decide whether it is legitimate or spam. The spammer tries to avoid these filters by

making sophisticated message modifications (GSMA, 2011), however, content-based

filtering still needs to avoid spammers’ traffic analysis tricks (Delany et al., 2012) as

well as the black-and-white listing.

Many studies in the literature on content-based SMS spam filtering selected

some features to represent SMS text messages and these selected features are extracted

from SMS data sets with imbalanced class distribution problem. However, not much

attention has been paid to handle the imbalanced class distribution problem which

affect the characteristics and the size of the selected features and cause undesired per-

formance. Therefore, in order to select suitable features from the imbalanced data sets,

a suitable feature selection scheme is needed. The Gini Index (Shang et al., 2007) is

a feature selection metric which has the ability to handle class imbalance problem by

selecting proper features (Ogura, Amano & Kondo, 2011) which will improve the per-

formance of filtering. Besides a suitable feature selection metric, a suitable technique

which has been engaged in spam filtering is required. Soft computing techniques have

been present in almost every domain (e.g. spam filtering) and their ability has been

proven (El-Alfy & Al-Qunaieer, 2008; Guzella & Caminhas, 2009).

Therefore, this research investigates the performance of three selected soft

computing techniques: Fuzzy Similarity, Artificial Neural Network and Support Vec-

tor Machines and whether they are suitable for content-based SMS spam filtering using

appropriate size of features selected by the Gini Index metric.
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1.3 Aim of Research

The aim of this research is to filter SMS spam based on its contents using soft com-

puting techniques, namely Fuzzy Similarity, Artificial Neural Network and Support

Vector Machine with appropriate features selected by the Gini Index metric.

1.4 Objective of Research

In order to achieve the above mentioned aim of the research, the following are three

research objectives:

i To select feature subsets using the Gini Index metric to represent SMS text mes-

sages.

ii To apply soft computing techniques: Fuzzy Similarity, Artificial Neural Network

and Support Vector Machine for SMS spam filtering with feature subsets selected

in (i).

iii To compare the performance of (ii) in terms of True Positive Rate (TPR) against

False Positive Rate (FPR), F1 score and Matthews Correlation Coefficient (MCC).

1.5 Scope of Research

This research was to filter English SMS text message into two classes either legitimate

or spam based on its contents. The data was taken from three sources: UCI machine

learning repository (Bache & Lichman, 2013), Dublin Institute of Technology (DIT)

(Delany et al., 2012) and British English SMS (Nuruzzaman, Lee & Choi, 2011). Fea-

ture subsets were selected using the Gini Index metric (Shang et al., 2007). Three soft

computing techniques: Fuzzy Similarity (Widyantoro & Yen, 2000), Artificial Neu-

ral Network which trained using Scaled Conjugate Gradient algorithm (SCG) (Møller,

1993) and Support Vector Machine with Radial Basis Function (RBF) kernel (Chang
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& Lin, 2011) were used to filter SMS spam. Results were compared in terms of True

Positive Rate (TPR) against False Positive Rate (FPR) , F1 score and Matthews Corre-

lation Coefficient (MCC).

1.6 Significance of Research

The efficiency of soft computing techniques for SMS spam filtering with feature sub-

sets selected by the Gini Index metric was examined in this research. Therefore, this

research was conducted to establish a comparison in performance between Fuzzy Sim-

ilarity, Artificial Neural Network and Support Vector Machine to investigate whether

they can provide better results based on the selected feature subsets. The outcome of

this research could contribute to verifying the best performance with small size features

for SMS spam filtering and also contribute to future work in exploring the possibility of

other feature selection metrics with soft computing techniques in SMS spam filtering.

1.7 Research Outline

The remaining part of this research is arranged in the following chapters. Chapter 2 is

concerned with the relevant background in using content-based filtering technique for

SMS spam filtering. Likewise, the chapter also highlights soft computing techniques,

namely Fuzzy Similarity, Artificial Neural Network and Support Vector Machine.

Chapter 3 describes briefly steps on how to use soft computing techniques for

SMS spam filtering, starting from data collection, data preprocessing, dimensionality

reduction, data partition, training and testing, and selecting the best soft computing

technique based on specified measures.

Simulations results with analysis which evaluate the soft computing techniques

are presented in Chapter 4. Feature subset characteristics and classification time are

also analyzed. The best soft computing technique with the best feature subsets are

tested using another SMS corpus. In order to simplify the discussions, graphs that
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summarize the results are provided. Chapter 5 concludes the work done and provides

several recommendations to improve and validate the performance of the soft comput-

ing techniques for SMS spam filtering.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Many real world problems cannot be solved using hard computing techniques that

deal with precision and certainty due to the fact that either these real-world problems

are difficult to model mathematically or computationally expensive or require huge

amounts of memory (Shukla, Tiwari & Kala, 2012). However, in some cases, human

experts can deal with these problems successfully, e.g. face recognition. According

to Zadeh, soft computing is “an emerging approach to computing, which parallels

the remarkable ability of the human mind to reason and learn in an environment of

uncertainty and imprecision” (Zadeh, 1994). From this definition, it is clear that soft

computing is inspired by natural processes — especially the human brain. Therefore,

soft computing techniques are needed to offer simple, reliable and low cost solutions

to these types of problems with best results.

The development of soft computing techniques has attracted the interest of re-

searchers from different disciplines over the past two decades. Soft computing tech-

niques are applied in various domains such as bioinformatics, biomedical systems, data

mining, image processing, machine control, robotics, time series prediction, wireless

networks, etc.(Shukla et al., 2012).

Classification problem is one of three main categories of problems for which
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soft computing is applied (Shukla et al., 2012). A classification problem relates an

object depending on its attributes into a known group or class. If there are many dif-

ferences among the classes based on their attributes then the classification problem

becomes quite simple. However, if the classes are quite similar, it becomes rather

difficult. Therefore, soft computing is needed to offer solutions to these problems.

In this research, three soft computing techniques are used, namely Fuzzy Sim-

ilarity, Artificial Neural Networks and Support Vector Machine to classify SMS text

messages into two classes either legitimate or spam. These techniques have been used

for email spam filtering (El-Alfy & Al-Qunaieer, 2008; Guzella & Caminhas, 2009).

Therefore, in order to be more certain about these techniques, this chapter provides a

discussion on them. This chapter also reviews the related works regarding the problem

under study; the content-based filtering for SMS spam.

2.2 Fuzzy Logic

The concept of fuzzy logic was introduced in 1965 by Zadeh as a new concept to deal

with problems in which the imprecision is the absence of precisely defined criteria of

class membership (Zadeh, 1965). The acceptance of fuzzy logic started in the second

half of the 1970s after the success of the first practical application which is called fuzzy

control. Since then, fuzzy logic has been applied in many mathematical and practical

areas including clustering, optimization, operations research, control and expert sys-

tems, medicine, data mining and pattern recognition (Zimmermann, 2010).

Fuzzy logic deals with fuzzy sets which are an extension of the definition on

crisp sets. Unlike the characteristic function for crisp sets, the characteristic function

(membership function) of fuzzy sets is represented by a degree of relevance in the range

[0,1]. This provides flexibility in dealing with uncertainty in systems such as spam

filtering (El-Alfy & Al-Qunaieer, 2008). Fuzzy logic has not received much attention

for SMS spam filtering. Fuzzy Similarity (Widyantoro & Yen, 2000) performs well in

email spam filtering (El-Alfy & Al-Qunaieer, 2008). Thus, this research investigates
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the effectiveness of Fuzzy Similarity in content-based SMS spam filtering.

2.2.1 Fuzzy Similarity

Fuzzy similarity is adapted from the Rocchio algorithm (Rocchio, 1971). In this al-

gorithm, a cluster center is created for each category from training samples and the

similarity between each test sample and a category is measured using cosine coeffi-

cient. In fuzzy similarity which was proposed by (Widyantoro & Yen, 2000), a fuzzy

term-category relation is developed, whereby the Rocchio cluster is represented by a

set of membership degree of words to a particular category. Based on the fuzzy term-

category relation, the similarity between a document and a category’s cluster center is

calculated using fuzzy conjunction and disjunction operators, and the calculated simi-

larity represents the membership degree of document to the category.

Fuzzy similarity has two finite sets, a set of terms T = t1, t2, . . . , tn and a set

of categories C = c1,c2, ...,cn. A fuzzy relation R : T ×C → [0,1] , whereby the

membership value of the relation, which denotes by µR(ti,c j), specifies the degree of

relevance of term ti to category c j. The membership values of this relation are extracted

from a training set.

Every training example in the training set is represented by a set of term-

frequency pairs d = {(t1,o1),(t2,o2), ...,(tm,om)}where o j is the occurrence frequency

of term t j in the document. Given a set of training documents D, the membership value

of the relation R(ti,c j), denoted by µR(ti,c j), is calculated as follows. First, all docu-

ments are grouped according to their category. Next, the occurrence frequency of each

term for each category is collected by summing up the term frequency of individual

documents in that category. Then the value of µR(ti,c j) is calculated from the total

number of occurrences of term ti in category c j divided by the total number of term

frequency t j in all categories as expressed in Eq. (2.1).
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µR(ti,c j) =

∑
{wi∈dk∧dk∈D∧c(dk)=c j}

wi

∑
{wi∈dk∧dk∈D}

wi
(2.1)

Now, the membership values of fuzzy term-category relation are known, the

similarity between a document and the category’s membership values of the term is

given by Eq. (2.2),

Sim(d,c j) =

∑
tεd

µR(t,c j)⊗µd(t)

∑
tεd

µR(t,c j)⊕µd(t)
(2.2)

in which µd(t) is the membership degree that term t belongs to d for each term t in

d, ⊗ and ⊕ denote fuzzy conjunction (t-norm) and fuzzy disjunction (s-norm) opera-

tors, respectively. The category of the document is the category that has the highest

similarity measure.

2.2.2 T-norms and S-norms

There are various t-norms and s-norms which are frequently used in the literature. In

order to define any t-norms and s-norms operations, there are some axioms that should

be satisfied. For t-norms operation, any binary operation t should satisfy the following

axioms in order to be a t-norm operation, given x,y,z ∈ [0,1]:

Axiom1. t(x,1) = x (boundary condition)

Axiom2. y≤ z implies t(x,y)≤ t(x,z) (monotonicity)

Axiom3. t(x,y) = t(y,x) (commutativity)

Axiom4. t(x, t(y,z)) = t(t(x,y),z) (associativity)

Almost the same axioms are defined for s-norms operation, given x,y,z ∈ [0,1]:

Axiom1. s(x,0) = x (boundary condition)

Axiom2. y≤ z implies s(x,y)≤ s(x,z) (monotonicity)

Axiom3. s(x,y) = s(y,x) (commutativity)
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Axiom4. s(x,s(y,z)) = s(s(x,y),z) (associativity)

The boundary condition is to range the results to be in [0,1]. Monotonicity

and commutativity are to ensure that a decrease in the degree of membership in set

X or Y cannot produce an increase in the degree of membership in the intersection or

union. Commutativity ensures that the fuzzy intersection and fuzzy union are symmet-

ric therefore there is no consideration for order. The last axiom, associativity, allows

taking the intersection of any number of sets in any order of pairwise grouping desired

(Klir & Yuan, 1995).

Among the various t-norms and s-norms as shown in Table 2.1, the standard

fuzzy intersection and the standard fuzzy union have special features. One of the de-

sirable features is that the standard fuzzy intersection, min operator, and the standard

fuzzy union, max operator, prevent the compounding of errors in the operands which

is lacking in most alternative norms (Klir & Yuan, 1995). For example, If any error e

is associated with the membership values µA(x) and µB(x), then the maximum error

associated with the membership value of x in µĀ(x) , µA∪B(x) and µA∩B(x) remains e

(Klir & Yuan, 1995). For that, the standard fuzzy intersection, min operator, and the

standard fuzzy union, max operator, are selected in this research.

Table 2.1: T-norms and s-norms operators

t-norms t(x,y) s-norms s(x,y)
Standard intersection Standard union

t(x,y) = min(x,y) s(x,y) = max(x,y)
Algebraic product Algebraic sum

t(x,y) = x · y s(x,y) = x+ y− x · y
Bounded difference Bounded sum

t(x,y) = max(0,x+ y−1) s(x,y) = min(1,x+ y)
Drastic intersection Drastic union

t(x,y) =


x when y = 1
y when x = 1
0 otherwise.

s(x,y) =


x when y = 0
y when x = 0
1 otherwise.
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