AN IMPLEMENTATION OF PEAK TO AVERAGE POWER RATIO REDUCTION FOR MULTICARRIER SYSTEM (ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING)

YASIR AMER ABDUL-JABBAR

A thesis submitted in fulfillment of the requirement for the award of the Degree Masters in Electrical and Electronic Engineering

> Faculty of Electrical and Electronic Engineering University Tun Hussein Onn Malaysia

> > June 2015

DEDICATION

er dears er ... A Market Anders PERPUSTAKAAN Dedicate this work to my mother and my father dears

ACKNOWLEDGEMENT

All praise for Allah S.W.T, blessings to Prophet Muhammad S.A.W along with his family and friends. Thanks to Allah because gave this permission to me prepared and accomplished this master thesis in the title "An Implementation of Peak to Average Power Ratio Reduction for Multicarrier System (Orthogonal Frequency Division Multiplexing)" in its time.

In this opportunity I am heartily thankful to my supervisor, **Dr. Khairun Nidzam Bin Ramli**, whose encouragement, supervision and support from the preliminary to the concluding level enabled me to develop an understanding until accomplished this thesis.

Special thanks for my great family who were by dint of blessings their calls and support until successes.

ABSTRACT

Orthogonal frequency division multiplexing (OFDM) has been becoming more popular modulation technique in the high-speed wireless communication system. It is used especially in Large Term Evaluation technique (LTE) which depended from the fourth-generation (4G) of wireless communication system. OFDM proves high efficiency to transmit data rate as high as 100 Mbps, the capability to combat multipath fading channel and utilization the whole bandwidth. Although, OFDM technology has more advantages, the same time has some obstacles also.

The highest Peak to average power ratio (PAPR) considers the main restrict which cause non-linearity at receiving end. Coding, clipping and phase rotation among many PAPR reduction techniques are proposed to overcome this problem. In this project, we investigated the PAPR reduction performance with two PAPR reduction techniques selective mapping (SLM) and partial transmit sequence (PTS). These two PAPR reduction methods consider sub-parts of signal scrambling technique that depend on phase rotation technique in its operation.

The simulation results show SLM and PTS methods have improved the PAPR reduction performance with different parameters. Moreover, different kinds of SLM and PTS schemes are also plotted. Generally, PTS and SLM techniques are leading the PAPR reduction better performance. The results are verified using MATLAB software.

ABSTRAK

Frekuensi Ortogon Bahagian Pemultipleksan (OFDM) merupakan teknik modulasi yang semakin popular dalam sistem komunikasi pantas tanpa wayar terutamanya teknik *Large Term Evaluation* (LTE) yang berasaskan kepada sistem komunikasi tanpa wayar 4G. OFDM terbukti mempunyai keberkesanan yang tinggi untuk menghantar data dengan kadar sehingga 100 Mbps, keupayaan untuk melalui saluran pudar pelbagai arah dan penggunaan kesemua lebar jalur. Walaupun teknologi OFDM mempunyai banyak kelebihan, tetapi pada masa yang sama ia juga mempunyai banyak kekangan.

Nisbah Kuasa Puncak ke Kuasa Purata (PAPR) merupakan kekangan utama yang menyebabkan keadaan tak linear pada bahagian penerima. Pengkodan, keratan dan putaran fasa diantara kebanyakan teknik pengurangan PAPR diutarakan untuk mengatasi masalah tersebut. Dalam projek ini, prestasi pengurangan PAPR telah dikaji dengan dua teknik PAPR iaitu *selective mapping* (SLM) dan *Partial Transmit Sequence* (PTS). Kedua- dua teknik pengurangan PAPR ini boleh dikatakan pecahan dari teknik gegasan isyarat yang berdasarkan kepada teknik putaran fasa dalam operasinya.

Keputusan simulasi menunjukkan kaedah SLM dan PTS telah meningkatkan prestasi pengurangan PAPR pada parameter yang berlainan. Tambahan lagi, jenis – jenis skim SLM dan PTS yang berlainan juga dipaparkan pada graf. Umumnya, teknik SLM dan PTS menunjukkan pencapaian yang lebih baik untuk pengurangan PAPR. Keputusan dibuktikan menggunakan perisian MATLAB.

CONTENTS

TITLE	Ι
DECLARATION	II
DEDICATION	III
ACKNOWLEDGEMENT	IV
ABSTRACT	V
CONTENTS	VII
LIST OF FIGURES	XII
LIST OF ABBREVIATION AND SYMBOLS	XV
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Project Scope	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6
2.2	OFDM System	6
2.3	Principle of OFDM	7

	2.4	Opera	tion of Ol	FDM	9
		2.4.1	Multicar	rier System and Single Carrier	12
			2.4.1.1	Single carrier system basic structure	12
			2.4.1.2	Multicarrier system basic structure	13
		2.4.2	Cyclic P	Prefix of OFDM System	14
		2.4.3	OFDM A	Advantage and Disadvantage	15
	2.5	Peak-t	o-Averag	e Power Ratio in OFDM	16
		2.5.1	PAPR D	Definition	17
		2.5.2	Criteria	for PAPR Reduction	19
			2.5.2.1	Capability of PAPR Reduction	20
			2.5.2.2	Low Average Power	20
			2.5.2.3	Low Complexity	20
			2.5.2.4	Less Bandwidth Expansion	21
			2.5.2.5	Less BER Performance Degradation	21
			2.5.2.6	Less Additional Power Need	21
			2.5.2.7	Good Spectral Efficiency	21
	2.6	Proba	ability Dis	stribution Function of PAPR	22
	2.7	Study	ing of PA	PR Reduction Techniques	23
		2.7.1	Signal S	crambling Methods	23
			2.7.1.1	SLM Selective Mapping	23
			2.7.1.2	PTS Partial Transmit Sequence	24
		2.7.2	Coding	Techniques	25
		2.7.3	Signal I	Deformation	26

CHAPTE 3 METHODOLOGY

3.1	Introd	luction	27
	3.3.1	Flow chart Methodology	27
3.2	Peak-	to-Average Power Ratio (PAPR)	29
3.3	Overa Scran	all Research Work and Methodologies for Signal abling techniques	30
	3.3.1	Selected Mapping Method (SLM)	31
	3.3.2	Simulation of Original OFDM Signal	34
	3.3.3	Simulation of SLM Scheme	35
		3.3.3.1 Comparison the PAPR performance of original OFDM signal and	35
		SLM reduction method. 3.3.3.2 Comparison the PAPR reduction performance for different values of M while N is fixed at 128	35
		3.3.3.3 Comparison the PAPR reduction performance for different N values while M is fixed at 8	36
3.4	Partial	Transmit Sequence (PTS)	36
	3.4.1	Proposed Techniques	39
		3.4.1.1 Sub-block partition scheme	39
		3.4.1.2 Suboptimal iterative algorithm	40
		3.4.1.3 The proposed algorithm steps	41
	3.4.2	PTS Scheme Simulation	41

	3.4.2.1 Comparison the PAPR performance	42
	original OFDM signal and	
	PTS reduction method	
	3.4.2.2 PAPR reduction performance effect	42
	by number of sub-blocks V	
	3.4.2.3 PAPR reduction performance effect	42
	by different value range W	
	3.4.2.4 PAPR reduction performance effect	42
	by different sub block partition scheme	
	3.4.2.5 PAPR reduction performance using	43
	sub-optimal iteration algorithm	
3.4.3	Comparison SLM and PTS Algorithm	43
T AND	DISCUSSION	44

4.1	Introdu	action	44
4.2	PAPR	of OFDM Multicarrier Signals	45
4.3	The in	fluential Parameters on PAPR Performance	46
	4.3.1	Number of Sub-carriers (N)	48
	4.3.2	Modulation Schemes	51
	4.3.3	Oversampling Rate Factor (L)	52

CHAPTER 4 RESULT AND DISCUSSION

4.4	Selected Mapping Technique (SLM)	53

- 4.4.1 Influence Route Number on SLM Method 54
- 4.4.2 Influence Sub-carrier Number on SLM Method 55
- Partial Transmit Sequences (PTS) 4.5 57
 - Influence Sub-block (V) on PTS Method 4.5.1 58

	4.5.2	Influence Number of Weighting Factor (W) on PTS Technique	59
	4.5.3	Influence Sub-block Partition Schemes	60
		4.5.3.1 Adjacent Partition Sachem	61
		4.5.3.2 Pseudo-random Partition Schemes	62
		4.4.3.3 Interleaved Partition Schemes	63
		4.5.3.4 Comparison The Three Types	64
		of Partition Schemes	
	4.5.4	Sub-optimal Iterative Algorithm	65
4.6	Compa	rison SLM and PTS Methods	66
CHAPTER 5 CON	ICLUSIC	N AND FUTURE WORKS	68
5.1	Introd	luction	68
5.2	Conc	usion	68
5.3	Sugge	stions for Future Work	70
REFERENCES			72

APPENDIX

LIST OF FIGURES

NO.	FIGURES	PAGES
2.1	Concept of OFDM signal orthogonal multicarrier technique and versus conventional multicarrier technique	8
2.2	Multi-carriers of OFDM signal	10
2.3	OFDM system block diagram	11
2.4	Single carrier system basic structure.	12
2.5	Multicarrier system basic structure	13
2.6	OFDM symbols with added cyclic prefix	15
2.7	An OFDM signal waveform in time domain	18
2.8	OFDM when sub-carriers are modulated by same symbols	19
2.9	SLM technique for PAPR reduction	24
2.10	Block diagram of PTS based OFDM system	25
3.1	Block diagram of PTS based OFDM system	28
3.2	Block diagram of basic principle of selected mapping	32
3.3	Block diagram of PTS algorithm	36
4.1	Normal OFDM signal power in time domain	46
4.2	OFDM signal power when modulated by same phase	46
4.3	Comparison PAPR of the normal OFDM signal and PAPR of OFDM signal modulated with the same phases	47
4.4	CCDF of the PAPR performance with different numbers of sub-carrier	rs N 49

XII

4.5	Peak power values with different numbers of sub-carriers N	50
4.6	Mean power values with different numbers of sub-carriers N	50
4.7	CCDF of the PAPR performance with different modulation schemes	51
4.8	CCDF of the PAPR performance with different numbers of oversampling factor L	52
4.9	Comparison SLM reduction method and the PAPR of original OFDM signal	53
4.10	Comparison PAPR of original OFDM signal and SLM reduction method with different route number M	54
4.11	Comparison PAPR of original OFDM signal and SLM reduction method with different sub-carrier number (N= 256)	55
4.12	Comparison PAPR of original OFDM signal and SLM reduction method with different sub-carrier number (N= 1024)	56
4.13	Comparison PAPR of original OFDM signal and PTS reduction method	57
4.14	Comparison PAPR of original OFDM signal and PTS reduction method with different number of sub-block (V)	59
4.15	Comparison PAPR of original OFDM signal and PTS reduction method with different number of sub-weighting factor (W)	60
4.16	Comparison PAPR of original and PTS reduction method with different number of sub-block (V) using the adjacent partition scheme	61
4.17	Comparison PAPR of original and PTS reduction method with different number of sub-block (V) using pseudo-random scheme	62

4.18	Comparison PAPR of original and PTS reduction method with different	63
	number of sub-block (V) using interleaving scheme	
4.19	Comparison PAPR of original and PTS reduction method with different	64
	number of sub-block (V) using three types of partition schemes:	
	interleaving, pseudo-random and adjacent partition schemes	
4.20	Comparison PAPR of original and PTS reduction method with two	65
	algorithms: optimal and sub-optimal algorithm	
4.21	Comparison SLM method and PTS method with V and M= 4	66
4 22	Comparison SI M method and PTS method with different values	67
1.22	of V and M	07

XIV

LIST OF ABBREVIATION AND SYMBOLS

	2G	Second Generation
	3G	Third Generations
	4G	Fourth Generation
	IP	Internet Protocol
	OFDM	Orthogonal Frequency Division Multiplexing
	WLAN	Wireless Local Area Network
	WMAN	Wireless Metropolitan Area Network
	DVB-T	Digital Video Broadcasting — Terrestrial
	PAPR	Peak-to-Average Power Ratio
	SLM	Selective Mapping Technique
	PTS	Partial Transmit Sequence Technique
	UPEN	Correlation Detectors Factor
	DFT	Discrete Fourier Transforms
	FFT	Fast Fourier Transforms
	IFFT	Inverse Fast Fourier Transforms
	DSP	Digital Signal Processing
	СР	Cyclic Prefix
	S/P	Serial to Parallel
	P/S	Parallel to Serial

- Analog to Digital Convertor ADC
- High Power Amplifier HPA
- SNR Signal-to-Noise Ratio
- R Transmission Rate
- Tmc Time Multichannel
- Ν Number of sub-carrier
- Inter-sample interference ISI
- MCM Multi carrier modulation
- di **Complex Modulation Symbols**
- CCDF Complementary Cumulative Distribution Function
- BER Bit Error Rate

Pm

V

W

- AMINA Statistical Independent Sequences (route number) in SLM technique М
 - Rotation factor or weighting factor in SLM technique
- 16-QAM 4-Bits (Quadrature Amplitude Modulation)
 - Non-overlapping sub-block in PTS technique
- Weighting Factor in PTS Technique bv
 - Number of Phase Variation values in PTS Technique

CONTENTS

TITLE	Ι
DECLARATION	II
DEDICATION	III
ACKNOWLEDGEMENT	IV
ABSTRACT	V
CONTENTS	VII
LIST OF FIGURES	XII
LIST OF ABBREVIATION AND SYMBOLS	XV
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Project Scope	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6
2.2	OFDM System	6
2.3	Principle of OFDM	7

	2.4	Opera	tion of Ol	FDM	9
		2.4.1	Multicar	rier System and Single Carrier	12
			2.4.1.1	Single carrier system basic structure	12
			2.4.1.2	Multicarrier system basic structure	13
		2.4.2	Cyclic P	Prefix of OFDM System	14
		2.4.3	OFDM A	Advantage and Disadvantage	15
	2.5	Peak-t	Peak-to-Average Power Ratio in OFDM		
		2.5.1	PAPR D	Definition	17
		2.5.2	Criteria	for PAPR Reduction	19
			2.5.2.1	Capability of PAPR Reduction	20
	2.6		2.5.2.2	Low Average Power	20
			2.5.2.3	Low Complexity	20
			2.5.2.4	Less Bandwidth Expansion	21
			2.5.2.5	Less BER Performance Degradation	21
			2.5.2.6	Less Additional Power Need	21
			2.5.2.7	Good Spectral Efficiency	21
		Proba	ability Dis	stribution Function of PAPR	22
	2.7	Study	ing of PA	PR Reduction Techniques	23
		2.7.1	Signal S	crambling Methods	23
			2.7.1.1	SLM Selective Mapping	23
			2.7.1.2	PTS Partial Transmit Sequence	24
		2.7.2	Coding	Techniques	25
		2.7.3	Signal I	Deformation	26

CHAPTE 3 METHODOLOGY

3.1	Introd	27	
	3.3.1	Flow chart Methodology	27
3.2	Peak-	29	
3.3	Overa Scran	30	
	3.3.1	Selected Mapping Method (SLM)	31
	3.3.2	Simulation of Original OFDM Signal	34
	3.3.3	Simulation of SLM Scheme	35
		3.3.3.1 Comparison the PAPR performance of original OFDM signal and	35
		SLM reduction method. 3.3.3.2 Comparison the PAPR reduction performance for different values of M while N is fixed at 128	35
		3.3.3.3 Comparison the PAPR reduction performance for different N values while M is fixed at 8	36
3.4	Partial	Transmit Sequence (PTS)	36
	3.4.1	Proposed Techniques	39
		3.4.1.1 Sub-block partition scheme	39
		3.4.1.2 Suboptimal iterative algorithm	40
		3.4.1.3 The proposed algorithm steps	41
	3.4.2	PTS Scheme Simulation	41

	3.4.2.1 Comparison the PAPR performance	42
	original OFDM signal and	
	PTS reduction method	
	3.4.2.2 PAPR reduction performance effect	42
	by number of sub-blocks V	
	3.4.2.3 PAPR reduction performance effect	42
	by different value range W	
	3.4.2.4 PAPR reduction performance effect	42
	by different sub block partition scheme	
	3.4.2.5 PAPR reduction performance using	43
	sub-optimal iteration algorithm	
3.4.3	Comparison SLM and PTS Algorithm	43
T AND	DISCUSSION	44

4.1	Introdu	action	44
4.2	PAPR	of OFDM Multicarrier Signals	45
4.3	The in	fluential Parameters on PAPR Performance	46
	4.3.1	Number of Sub-carriers (N)	48
	4.3.2	Modulation Schemes	51
	4.3.3	Oversampling Rate Factor (L)	52

CHAPTER 4 RESULT AND DISCUSSION

4.4	Selected Mapping Technique (SLM)	53

- 4.4.1 Influence Route Number on SLM Method 54
- 4.4.2 Influence Sub-carrier Number on SLM Method 55
- Partial Transmit Sequences (PTS) 4.5 57
 - Influence Sub-block (V) on PTS Method 4.5.1 58

	4.5.2	Influence Number of Weighting Factor (W) on PTS Technique	59
	4.5.3	Influence Sub-block Partition Schemes	60
		4.5.3.1 Adjacent Partition Sachem	61
		4.5.3.2 Pseudo-random Partition Schemes	62
		4.4.3.3 Interleaved Partition Schemes	63
		4.5.3.4 Comparison The Three Types	64
		of Partition Schemes	
	4.5.4	Sub-optimal Iterative Algorithm	65
4.6	Compa	rison SLM and PTS Methods	66
CHAPTER 5 CON	ICLUSIC	N AND FUTURE WORKS	68
5.1	Introd	luction	68
5.2	Conc	usion	68
5.3	Sugge	stions for Future Work	70
REFERENCES			72

APPENDIX

LIST OF FIGURES

NO.	FIGURES	PAGES
2.1	Concept of OFDM signal orthogonal multicarrier technique and versus conventional multicarrier technique	8
2.2	Multi-carriers of OFDM signal	10
2.3	OFDM system block diagram	11
2.4	Single carrier system basic structure.	12
2.5	Multicarrier system basic structure	13
2.6	OFDM symbols with added cyclic prefix	15
2.7	An OFDM signal waveform in time domain	18
2.8	OFDM when sub-carriers are modulated by same symbols	19
2.9	SLM technique for PAPR reduction	24
2.10	Block diagram of PTS based OFDM system	25
3.1	Block diagram of PTS based OFDM system	28
3.2	Block diagram of basic principle of selected mapping	32
3.3	Block diagram of PTS algorithm	36
4.1	Normal OFDM signal power in time domain	46
4.2	OFDM signal power when modulated by same phase	46
4.3	Comparison PAPR of the normal OFDM signal and PAPR of OFDM signal modulated with the same phases	47
4.4	CCDF of the PAPR performance with different numbers of sub-carrier	rs N 49

XII

4.5	Peak power values with different numbers of sub-carriers N	50
4.6	Mean power values with different numbers of sub-carriers N	50
4.7	CCDF of the PAPR performance with different modulation schemes	51
4.8	CCDF of the PAPR performance with different numbers of oversampling factor L	52
4.9	Comparison SLM reduction method and the PAPR of original OFDM signal	53
4.10	Comparison PAPR of original OFDM signal and SLM reduction method with different route number M	54
4.11	Comparison PAPR of original OFDM signal and SLM reduction method with different sub-carrier number (N= 256)	55
4.12	Comparison PAPR of original OFDM signal and SLM reduction method with different sub-carrier number (N= 1024)	56
4.13	Comparison PAPR of original OFDM signal and PTS reduction method	57
4.14	Comparison PAPR of original OFDM signal and PTS reduction method with different number of sub-block (V)	59
4.15	Comparison PAPR of original OFDM signal and PTS reduction method with different number of sub-weighting factor (W)	60
4.16	Comparison PAPR of original and PTS reduction method with different number of sub-block (V) using the adjacent partition scheme	61
4.17	Comparison PAPR of original and PTS reduction method with different number of sub-block (V) using pseudo-random scheme	62

4.18	Comparison PAPR of original and PTS reduction method with different	63
	number of sub-block (V) using interleaving scheme	
4.19	Comparison PAPR of original and PTS reduction method with different	64
	number of sub-block (V) using three types of partition schemes:	
	interleaving, pseudo-random and adjacent partition schemes	
4.20	Comparison PAPR of original and PTS reduction method with two	65
	algorithms: optimal and sub-optimal algorithm	
4.21	Comparison SLM method and PTS method with V and M= 4	66
4 22	Comparison SI M method and PTS method with different values	67
1.22	of V and M	07

XIV

LIST OF ABBREVIATION AND SYMBOLS

	2G	Second Generation
	3G	Third Generations
	4G	Fourth Generation
	IP	Internet Protocol
	OFDM	Orthogonal Frequency Division Multiplexing
	WLAN	Wireless Local Area Network
	WMAN	Wireless Metropolitan Area Network
	DVB-T	Digital Video Broadcasting — Terrestrial
	PAPR	Peak-to-Average Power Ratio
	SLM	Selective Mapping Technique
	PTS	Partial Transmit Sequence Technique
	UPERI	Correlation Detectors Factor
	DFT	Discrete Fourier Transforms
	FFT	Fast Fourier Transforms
	IFFT	Inverse Fast Fourier Transforms
	DSP	Digital Signal Processing
	СР	Cyclic Prefix
	S/P	Serial to Parallel
	P/S	Parallel to Serial

REFERENCES

- [1] K. Srinivasarao, B. Prabhakararao, and M. Sairam, "PEAK-TO-AVERAGE POWER REDUCTION IN MIMO-OFDM SYSTEMS USING SUB-OPTIMAL ALGORITHM," *International Journal of Distributed & Parallel Systems*, vol. 3, 2012.
- [2] K. Young Kyun and R. Prasad, "4G Roadmap and Emerging Communication Technologies. Artech House," ISBN 1-58053-931-9.
- [3] J. Hou, J. Ge, D. Zhai, and J. Li, "Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme," *Broadcasting, IEEE Transactions on*, vol. 56, pp. 259-263, 2010.
 [4] I. Baig and V. Jeoti, "DOT"
- [4] I. Baig and V. Jeoti, "DCT precoded Selective Mapping technique for PAPR reduction in OFDM systems," in *Intelligent and Advanced Systems (ICIAS)*, 2010 International Conference on, 2010, pp. 1-6.
- [5] C.-P. Li, S.-H. Wang, and C.-L. Wang, "Novel low-complexity SLM schemes for PAPR reduction in OFDM systems," *Signal Processing, IEEE Transactions on*, vol. 58, pp. 2916-2921, 2010.
- [6] X. Ouyang, J. Jin, and Z. Wang, "A low complexity peak-to-average power ratio reduction method for OFDM systems," in *Communications and Networking in China (CHINACOM), 2011 6th International ICST Conference on*, 2011, pp. 114-117.
- [7] M. Naeiny and F. Marvasti, "Selected Mapping Algorithm for PAPR reduction of space-frequency coded OFDM systems without side information," *Vehicular Technology, IEEE Transactions on*, vol. 60, pp. 1211-1216, 2011.
- [8] I. Baig and V. Jeoti, "On the PAPR reduction in OFDM systems: a novel ZCT precoding based SLM technique," *Journal of Engineering Science and Technology*, vol. 6, pp. 266-378, 2011.

- [9] J. Hou, J. Ge, and J. Li, "Peak-to-average power ratio reduction of OFDM signals using PTS scheme with low computational complexity," *Broadcasting*, *IEEE Transactions on*, vol. 57, pp. 143-148, 2011.
- [10] D. Guel and J. Palicot, "FFT/IFFT pair based digital filtering for the transformation of adding signal PAPR reduction techniques in tone reservation techniques," in *Wireless and Mobile Communications, 2009. ICWMC'09. Fifth International Conference on*, 2009, pp. 200-204.
- [11] D.Guel, J. Palicot, and Y. Louët, "Tone reservation technique based on geometric method for orthogonal frequency division multiplexing peak-toaverage power ratio reduction," *IET communications*, vol. 4, pp. 2065-2073, 2010.
- [12] S. B. Weinstein, "The history of orthogonal frequency-division multiplexing [History of Communications]," *Communications Magazine, IEEE*, vol. 47, pp. 26-35, 2009.
- [13] N. J. LaSorte, W. J. Barnes, and H. H. Refai, "The History of Orthogonal Frequency Division Multiplexing," in *GLOBECOM*, 2008, pp. 3592-3596.
- [14] C. Ciochina and H. Sari, "A review of OFDMA and single-carrier FDMA," in Wireless Conference (EW), 2010 European, 2010, pp. 706-710.
- [15] A. Peled and A. Ruiz, "Frequency domain data transmission using reduced computational complexity algorithms," in *Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'80.*, 1980, pp. 964-967.
- [16] L. J. Cimini, "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing," *Communications, IEEE Transactions on*, vol. 33, pp. 665-675, 1985.
- [17] E. Panayirci, H. Senol, and H. V. Poor, "Joint channel estimation, equalization, and data detection for OFDM systems in the presence of very high mobility," *Signal Processing, IEEE Transactions on*, vol. 58, pp. 4225-4238, 2010.

- [18] M. Ergen, "Principles of OFDM," in *Mobile Broadband*, ed: Springer, 2009, pp. 109-175.
- [19] U. S. Jha and R. Prasad, *OFDM towards fixed and mobile broadband wireless access*: Artech House, Inc., 2007.
- [20] N. Kaneda, Q. Yang, X. Liu, S. Chandrasekhar, W. Shieh, and Y.-K. Chen, "Real-time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM," *Journal of lightwave technology*, vol. 28, pp. 494-501, 2010.
- [21] D. Qu, Z. Wang, and T. Jiang, "Extended active interference cancellation for sidelobe suppression in cognitive radio OFDM systems with cyclic prefix," *Vehicular Technology, IEEE Transactions on*, vol. 59, pp. 1689-1695, 2010.
- [22] K. Nagatomi, H. Kawai, and K. Higuchi, "Complexity-reduced MLD based on QR decomposition in OFDM MIMO multiplexing with frequency domain spreading and code multiplexing," *EURASIP Journal on Advances in Signal Processing*, vol. 2011, p. 5, 2011.
- [23] P. Variorum, W. F. Al-Azzo, and B. M. Ali, "A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems," *Consumer Electronics, IEEE Transactions on*, vol. 56, pp. 2416-2420, 2010.
- [24] Y. Wang, W. Chen, and C. Tellambura, "A PAPR reduction method based on artificial bee colony algorithm for OFDM signals," *Wireless Communications, IEEE Transactions on*, vol. 9, pp. 2994-2999, 2010.
- [25] B. Farhang-Boroujeny and C. H. Yuen, "Cosine modulated and offset QAM filter bank multicarrier techniques: a continuous-time prospect," *EURASIP Journal on Advances in Signal Processing*, vol. 2010, p. 6, 2010.
- [26] J. Hou, J. Ge, D. Zhai, and J. Li, "Peak-to-average power ratio reduction of OFDM signals with nonlinear companding scheme," *Broadcasting, IEEE Transactions on*, vol. 56, pp. 258-262, 2010.

- [27] M. Sabbaghian, Y. Kwak, B. Smida, and V. Tarokh, "Near Shannon limit and low peak to average power ratio turbo block coded OFDM," *Communications, IEEE Transactions on*, vol. 59, pp. 2042-2045, 2011.
- [28] J. Hou, J. Ge, and J. Li, "Peak-to-average power ratio reduction of OFDM signals using PTS scheme with low computational complexity," *Broadcasting*, *IEEE Transactions on*, vol. 57, pp. 145-149, 2011.
- [29] C.-P.Li, S.-H.Wang, and C.-L. Wang, "Novel low-complexity Selective mapping schemes for PAPR reduction in OFDM systems," *Signal Processing, IEEE Transactions on*, vol. 58, pp. 2916-2921, 2010.
- [30] I. Baig and V. Jeoti, "PAPR reduction in OFDM systems: Zadoff-Chu matrix transform based pre/post-coding techniques," in *Computational Intelligence*, *Communication Systems and Networks (CICSyN)*, 2010 Second International Conference on, 2010, pp. 373-377.
- [31] H.-L. Hung, "Using evolutionary computation technique for trade-off between performance peak-to average power ration reduction and computational complexity in OFDM systems," *Computers & Electrical Engineering*, vol. 37, pp. 57-70, 2011.
- [32] H.-L. Hung and Y.-F. Huang, "Peak-to-average power ratio reduction in orthogonal frequency division multiplexing system using differential evolution-based partial transmit sequences scheme," *Communications, IET*, vol. 6, pp. 1483-1488, 2012.
- [33] J.-C. Chen, "Partial transmit sequences for PAPR reduction of OFDM signals with stochastic optimization techniques," *Consumer Electronics, IEEE Transactions on*, vol. 56, pp. 1229-1234, 2010.
- [34] N. Taspinar, A. Kalinli, and M. Yildirim, "Partial transmit sequences for PAPR reduction using parallel tabu search algorithm in OFDM systems," *Communications Letters, IEEE*, vol. 15, pp. 974-976, 2011.
- [35] L. Wang and J. Liu, "PAPR reduction of OFDM signals by PTS with grouping and recursive phase weighting methods," *Broadcasting, IEEE Transactions on*, vol. 57, pp. 299-306, 2011.

- [36] Hyun-Seung Joo, Jong-Seon No," A New Subblock Partitioning Scheme Using Sub block Partition Matrix for PTS", *Broadcasting*, *IEEE Transactionson*, *International Conference on*, 2011, pp. 127 – 128.
- [37] J.-C. Chen, "Application of quantum-inspired evolutionary algorithm to reduce PAPR of an OFDM signal using partial transmit sequences technique," *Broadcasting, IEEE Transactions on*, vol. 56, pp. 110-113, 2010.
- [38] L. Hsinying, C. Houshou and W. Chao-Ming. 2009. A modified partial transmit sequence with PAPR reduction and error correction in 16-QA OFDM systems.
 In: Intelligent Signal Processing and Communications Systems, 2008. ISPACS2008, International Symposium on. pp. 1-4.
- [39] L. Wang and J. Liu, "PAPR reduction of OFDM signals by Partial transmit sequance with grouping and recursive phase weighting methods," *Broadcasting, IEEE Transactions on*, vol. 57, pp. 299-306, 2011.
 [40] A. Goel. P. Gupta and Mark
- [40] A. Goel, P. Gupta and M. Agrawal. 2012. SER analysis of Partial transmit sequance based techniques for PAPR reduction in OFDM systems. Digital Signal Processing.

