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Abstract 

 

 

 

 

There are various engineering applications which required one has to solve an 

internal or an external flow problem. The design of flying vehicles such as aircraft, 

helicopter, missiles are examples which the ability to solve an external flow problem 

will determine the success in designing such flying vehicles. While for the case of 

flows pass through intake of the engine, compressor, turbine and nozzles, the ability 

to deal with internal flow problem is needed. Basically the external and internal flow 

problems are governed by the same equation, their difference may come from their 

difference in term of their boundary conditions.  If both flow problems are under 

high Reynolds number condition and involves with the flow problems pass through a 

streamline body at relatively a low angle of attack, the viscous effects can be 

ignored. However if the flow is belong to class of a flow above a high subsonic flow, 

the suitable governing equation of fluid motion is a compressible Euler equations. 

Unfortunately, such a kind governing equation of fluid motion cannot be solved 

analytically; a numerical approach is required for solving it.   

The present work focuses on the use of two types of Finite Volume methods. 

The first Finite volume method is a Cell-Centered Finite volume Scheme, while the 

second one is the Roe’s Finite Volume Scheme. In parallel to the development of 

computer code based on finite volume schemes, the present works also carry out 

work on solving the governing equation of fluid motion by use of Finite Difference 

Approach.   In this respect the present work focuses on the use of Steger Warming 

Scheme and MacCormack Scheme are applied to Nozzle flow problems. 

 

To implement the Finite volume method as well as the Finite difference 

method in relating to the case of internal and external flow problems, the present 

work applies a combination of Algebraic grid generation and Elliptic Grid. In 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 
 

addition to this, the developed computer codes are designed in such away to allow 

one solve the flow problem by use of  structured grid  or  unstructured grid.  

To validate the developed computer codes, their results compare with the 

result for the flow problem which the experimental results are available such as for 

the case airfoil NACA 0012. While for other test cases such the flow past rotor 

blades is compared with the result provided from solving the flow problem by use of   

Fluent software. Through comparison result with the Fluent software as well as the 

available experimental results indicate that the developed computer code are in a 

good agreement.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 
 

 

 

 

In this chapter, the background of the research is outlined, followed by problem 

statements, the objectives and the scopes of the research, process of methodology 

and lastly contributions. 

 

 

1.1 Research Background 

 

 

Computational Fluid Dynamics, known today as CFD, is defined as the set of 

methodologies that enable the computer to provide us with a numerical simulation of 

fluid flows. Used the word ‘simulation’ to indicate that we use the computer to solve 

numerically the laws that govern the movement of fluids, in or around a material 

system, where its geometry is also modelled on the computer. Hence, the whole 

system is transformed into a ‘virtual’ environment or virtual product [1]. This can be 

opposed to an experimental investigation, characterized by a material model or 

prototype of the system. The use of Computational Fluid Dynamics (CFD) to predict 

external and internal flows, such as an aircraft, car model in a wind tunnel, and 

missiles for the external flows. In other hand, when predicting the flow properties in 

a prototype of an engine, compressor, turbine or nozzle, it will related in manner of 

one solve the internal flow problem. [2] 

Generally in fluid mechanics, external flow is such a flow that boundary 

layers develop freely, without constraints imposed by adjacent surfaces. 

Accordingly, there will always exist a region of the flow outside the boundary layer 

in which velocity, temperature, and/or concentration gradients are negligible. Such 

flow condition can be defined as the flow of a fluid around a body that is completely 
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submerged in it. While, internal flow is a flow for which the fluid is confined by a 

surface [3]. Hence the boundary layer is unable to develop without eventually being 

constrained. The internal flow configuration represents a convenient geometry for 

heating and cooling fluids used in chemical processing, environmental control, and 

energy conversion technologies [4]. Basically the external and internal flow 

problems are governed by the same equation. If the compressibility effect can be 

ignored and the flow under high Reynolds number condition which allowing one to 

ignore the viscous effect, these two types of flow can be well represented by the 

compressible Euler equations. In this respect, the difference between the internal and 

external flow came from their boundary conditions. The same numerical approach 

can be used for solving the governing equation for these two types of flow. [5, 6] 

In solving the governing equation of fluid motion as an internal or as an 

external flow problems numerically, basically there are three families of methods can 

be used. They are namely Finite Difference Method (FDM), Finite Volume Method 

(FVM) and Finite Element Method (FEM). Each of these methods carries various 

approximation techniques in solving the governing equation of fluid motion. [7, 8] 

The finite difference method is based on the properties of Taylor expansions 

and on the straight forward application of the definition of derivatives. It is perhaps 

the simplest method to apply, particularly on uniform meshes, but it requires a high 

degree of regularity of the mesh. In particular, the mesh must be set up in a 

structured way, whereby the mesh points, in an n-dimensional space, are located at 

the intersections of n family of rectilinear or curved lines. These curves appear as a 

form of numerical coordinate lines and each point must lie on one, and only one, line 

of each family. Finite Volume Method FVM is developed as a special case of FDM. 

[9] 

However, it gained much popularity due to the fact that FVM is more 

physically based. That is to say, each term in the calculation represent a physical 

phenomenon. Most of the commercial CFD package programs use FVM. In any 

FVM code, first, the governing equations are integrated over the control volumes 

(cells). Secondly, the discretisation is applied by representing all the physical terms 

of the flow (like convection, diffusion and sources) as finite difference 

approximations. Lastly, the unknown properties in each cell are solved 

simultaneously and iteratively. The basic idea behind the FVM is that all the 

governing equations represent the conservation of some property. Finite Element 
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Method FEM is originally developed for structural stress analysis, but it can also be 

used for fluid mechanics. This method is more mathematically based and uses the 

principle that the field variables can be approximated by linear combinations of 

simple piecewise functions locally. Under these approaches they are various 

methods. [10, 11] 

The present work used the combine technique of FDM and FVM in 

particular, the MacCormak’s scheme (Steger - worming) will be applied for the 

FDM, while both Cell-Centred scheme and Roe's scheme used for FVM. Based on 

these methods, the developed Computer codes used to investigate aerodynamic 

behaviours of internal flow problems as well as external flow problems. In order to 

solve various types of flow problem, the present work involves the development of a 

number of numerical grid generation codes. In order to ensure appropriate boundary 

conditions,, A series of assessments were carried out to investigate their influence on 

both types of flow problems. 

It is necessary to be noted that the present work focused more on the 

development of CFD code based on the use of Finite Volume approach rather than, 

based on the Finite Difference Approach. This is due to the fact, the Finite Volume 

Method give more flexibility in defining the mesh flow domain. In addition to this, it 

had been found, the spatial discretization of the flow domain will determine in 

manner how the computer code based on the Finite Volume approach to be 

implemented.  The spatial discretization can be carried by use of a structured grid or 

an unstructured grid [12, 13]. It is therefore, two computer codes need to be 

developed if one deals with structured grid and in other cases one to use unstructured 

grid.  In order to achieve a well-developed computer codes, the present work carried 

out step by step code developments. It starts with applying the finite volume and 

finite difference methods for solving a shock tube problem, followed with the test 

case of flow pass through nozzle, flow pass through a bump, airfoil, and single 

cascade configuration up to multi cascade configurations.   For each study case as 

mentioned previously, data are compared to the available previous numerical work, 

experiment or present generated FLUENT software. 
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1.2 Problem statement 

 

 

The analysis of internal or external flow field which are generated by the external 

compression surfaces  such as occurred in the external flow pass through aircraft, 

airfoils or missiles and the internal flow through  compressor, turbine[1], and nozzles 

[14] are complicated due to the formation of multiple shock waves [15, 16]. In the 

case of external flow pass a streamline body at relatively low to moderate angle of 

attack and the case of flow through duct with gradual varying cross section [17, 18], 

both flow problems can be treated as inviscid flow. Basically whether the flow is 

internal or external flow problem, they are governed by the same governing equation 

of fluid motion called as The Navier Stokes Equation [16, 19]. Unfortunately for 

solving the Navier Stokes Equation for an arbitrary flow problems are very difficult 

and if it is possible will require computer resources may beyond the computer 

capability at present time. However for a special flow problems as mentioned above 

[20, 2], the viscous term can be eliminated from the Navier Stokes equation resulted 

the new governing equation of fluid motion called the Euler Equation. This equation 

can be applied for solving the external as well as the internal flow problem [21, 22]. 

Considering this equation just ignoring the viscous effect,  as result,  the Euler 

equation will represent the governing equation which allows the discontinuity flow 

phenomena due to shock wave or vortex and  the density variation in the flow field 

are appeared in their solution[23]. Unfortunately, the Euler equations are still 

representing  a non-linear differential equation which there is no analytical solution. 

As a result, a numerical approach are required in solving the Euler equations. [24, 

25] 

 

 

1.3 Significance of study 

 

 

The outcome of the current research work is aimed to provide a useful solver for 

aerodynamic designers to carry out their aerodynamics analysis in solving the 

internal and external flow problems they are facing.  This flow solver will provide 

the solution of the flow field that involves flow variables in term of velocity in both x 

and y direction, density, temperature, pressure and Mach number distribution. Such 

information are essential, since the aerodynamics designers can deduce the presence 
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of the shock wave, type of shock wave as weak or strong shock wave, the pressure 

gradient along the body surface to indicate the possibility of flow separation, the 

overall aerodynamics characteristics in term of lift coefficient, moment pitching 

coefficient to case of external flow problem or the excessive pressure drop may 

occurred if one deals with flow pass through turbine blade. Such information will 

decrease the cost and saving the time of design process. [26, 27, 28] 

 

 

1.4 Research objectives 

 

 

1. To develop a CFD software for aerodynamic analysis of two dimensional 

inviscid compressible flow as well as laminar viscous flow applicable for 

internal as well as external Flow problem.  

2. To develop codes of mesh flow domain under structured grid and 

unstructured grid model. 

 

 

1.5 Scope of study 

 

 

1. Develop computer code for compressible inviscid flow as well as laminar 

viscous flow starting from the case of one dimensional flow problem, quasi 

one dimensional flow problem and two dimensional flow problems with 

various numerical schemes.  

2. Develop numerical structured and unstructured grid generation tool based on 

algebraic and elliptic approach. 

3. Develop Euler Solver for the test case as above by using Finite Volume 

Methods (FVM) Cell-Centred scheme and Roe’s scheme 

4. Grid generation of the flow domain with Gambit software and flow 

calculation by Fluent software.  

5. Further extension on the works for the case of N number of blade cross 

sections. 
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1.6 Contribution to knowledge 

 

 

This work will provide a new computer algorithm in manner how to solve one and 

two dimensional compressible flow pass through Internal and External Flows. The 

basic numerical schemes for the flow solver are Cell-Centered and Roe’s Finite 

Volume scheme and the numerical grid generation developed based on multi block 

scheme. In addition, this work will provide a useful solver for aerodynamic designers 

to carry out their aerodynamics analysis in solving the internal and external flow 

problems that they are facing. Such information will decrease the cost and saving the 

time of design process aerodynamic designers. [24]. 
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