ENGINEERING PROPERTIES OF RING SHAPED POLYTHEYLENE TEREPHTHALATE (RPET) FIBER SELF-COMPACTING CONCRETE

FAISAL BIN SHEIKH KHALID

A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy

FACULTY CIVIL AND ENVIRONMENTAL ENGINEERING UNIVERSITY TUN HUSSEIN ONN MALAYSIA

APRIL 2015

Specially dedicated to my beloved mother,

Amna Shaikh Salleh,

To my loving siblings, Siti Faezah Sheikh Khalid, Sheikh Mohd Fauzi Sheikh Khalid, Sheikh Munir Sheikh Khalid, Siti Faradinah Sheikh Khalid, &

Siti Faradibah Sheikh Khalid,

Thank you for your prayers, sacrifices, patience, understanding and being the ones who lift me up every time I fall down.

Also to my beloved friends, Muhamad Asyraf Roslan, Mohd Khairil Annas Mohamad, Mohd Zainuri Mohd Hatta, Amirul Imran Abu Kasim, Mohd Reeza Hilmi, & Azreen Makalis

Who are always there when I need them.

Thank you for your support.

Last but not least, the highest appreciation to my supervisor, Assoc. Prof. Dr. Mohd Irwan Juki, Assoc. Prof. Dr. Norzila Othman, Dr Mohd Haziman Wan Ibrahim, Dr Raziah & Mr. Koh Heng Boon

Thanks for your precious guideline

ACKNOWLEDGEMENT

وللأوالرجم الجيم

Praise be to Allah, for without His grace and compassion, none of this would have been possible. I would like to take this opportunity to extend my appreciation and thankfulness to my supervisor, Assoc. Prof. Dr. Mohd Irwan Juki and my co-supervisors Assoc. Prof. Dr. Norzila Othman, and Dr Mohd Haziman Wan Ibrahim for his and her kind guidance and support toward the accomplishment of this study.

The appreciation also goes to the all parties involved in completing this project, especially to Structure and Material Laboratory, University of Tun Hussien Onn Malaysia (UTHM). My sincere appreciation also extends to my family, especially to my mother, Amna Shaikh Salleh with her understanding and support.

Last but not least, I would like to thank also to all my UTHM comrades, especially to my best friends, Muhamad Asyraf Roslan, Mohd Khairil Annas Mohamad, Mohd Zainuri Mohd Hatta, Amirul Imran Abu Kasim, Mohd Reeza Hilmi, and Azreen Makalis that always cheers me up at my difficult time.

With Allah's willing, such enduring aids and advices given by all of you definitely had contributed a lot toward building up my confidence, to produce the best in this study. Thank you very much.

ABSTRACT

Polyethylene terephthalate (PET) bottles are plastic containers that are typically discarded, and thus, cause environmental pollution. To solve this problem, PET bottles are recycled in concrete. Previous studies have mostly used PET with straight or irregularly shaped fibers. It has been shown that PET has a weak interfacial bond with cement paste in the pullout load because of the lamellar shape of fibers. Therefore, ringshaped PET (RPET) fibers are introduced in this study to overcome the limitations of traditional straight, lamellar, or irregularly shaped fibers. RPET fibers are mainly designed with a special shape to mobilize fiber yielding rather than fiber pullout. RPET fibers are made directly from waste bottles. The diameter of RPET bottles is fixed at $60 \pm$ 5 mm. The width of RPET fibers is fixed at 5, 7.5, or 10 mm and designated as RPET-5, RPET-7.5, and RPET-10 respectively. This study mainly determines the optimum waterbinder ratio and fiber content of RPET fiber concrete (FC) through self-compacting, as well as through compressive, tensile, and toughness strength tests. A water-binder ratio of 0.55 and working ranges from 0.25% to 1% of fiber content are successfully accepted for all sizes of RPET fibers. Result of the pullout test shows that RPET fiber interfacial bond strength ranges from 0.502 MPa to 0.519 MPa for RPET-5 fiber, from 0.507 MPa to 0.529 MPa for RPET-7.5 fiber, and from 0.516 MPa to 0.540 MPa for RPET-10 fiber. This study presented that the compressive and tensile strength of RPET fiber exhibited an increase of 17.3% and 35.7%, respectively compared to normal concrete. RPET FC shows improvement in first crack load for flexural toughness strength of RPET FC with increase of 24.5% compared to normal concrete specimen. Moreover, 156 FC cylinders were used to develop new equations for predicting the compressive and tensile strengths of RPET FC via multiple regression analysis. Two equations are obtained. These equations are included in calculating compressive and tensile strength of RPET FC limited up to 28 days In conclusion, incorporating RPET fibers when recycling waste PET bottles in concrete produces FC with An improvement performance comparable to that of normal concrete.

ABSTRAK

Polyethylene Terephthalates (PET) botol merupakan sebahagian dalam produk plastik yang telah dibuang terus dan meyebabkan pencemaran kepada alam sekitar. Sehubungan dengan itu, salah satu cara untuk mengatasi masalah ini adalah dengan mengitar semula di dalam bentuk *fiber*. Kajian terdahulu menjurus kepada bentuk lurus atau bentuk tidak seragam. Rumusan kajian terdahulu menunjukkan bentuk lurus and bentuk tidak seragam PET fiber di dalam konkrit mempunyai kelemahan dari segi kekuatan ikatan permukaan antara fiber dan konkrit semasa ujian penarikan fiber. Oleh itu, bagi mengatasi masalah ini bentuk bulatan PET atau di pangil sebagai Ring shaped PET (RPET) di perkenalkan di dalam kajian ini. RPET fiber dapat menahan kesan pernarikan fiber dan mengalami kegagalan pada kekuatan tegangan maksimum *fiber* itu sendiri. *RPET fiber* dihasilkan secara terus dari botol kitar semula. Ia mempunyai diameter bersaiz 60 ± 5 mm. Kelebaran RPET fiber terbahagi kepada tiga iaitu 5 mm, 7.5 mm, dan 10 mm yang bermaksud kepada RPET-5, RPET-7.5, dan RPET-10. Objektif utama kajian ini adalah menentukan kesesuain dalam nisbah air-simen dan kandungan fiber melalui ujian seperti anti pemadatan konkrit, kekuatan mampatan, kekuatan tegangan, kekuatan keutuhan konkrit fiber itu sendiri. Di akhir ujian menunjukkan 0.55 nisbah air-simen dan kandungan effektif sebanyak 0.25% hingga 1.00% adalah terbaik untuk semua saiz RPET fiber. Keputusan ujian penarikan daya ikatan permukaan RPET fiber adalah sebanyak 0.502 MPa hingga 0.519 MPa, 0.507 MPa hingga 0.529 MPa, dan 0.516 MPa hingga 0.540 MPa untuk *RPET-5*, *RPET-7.5*, dan *RPET-10 fiber*. Kajian ini menunjukkan peningkatan sebanyak 17.3% sehingga 35.7% untuk ujian kekuatan mamapatan dan ujian ketegangan dibandingkan dengan spesimen normal konkrit. Malahan, RPET fiber konkrit memberi peningkatan sebanyak 24.5% untuk kekuatan rekahan pertama setelah dibandingkan dengan normal konkrit spesimen. Kemudian, 156 silinder konkrit melalui ujian kekuatan mampatan dan tegangan diambil serta dianalisa untuk menghasilkan formula baru melalui keadah Multiple Regression. Dua formula ini dapat menentukan secara teori bagi kekuatan mampatan dan tegangan fiber konkrit, namun terhad sehingga tempoh matang konkrit 28 hari sahaja. Akhir kata, campuran RPET fiber dengan konkrit adalah berkesan dalam penghasilan *fiber* konkrit setelah dibandingkan dengan konkrit normal.

TABLE OF CONTENTS

TITLE		PAGE
TITLE		i
DECLARATIO	N	ii
DEDICATION		iii
ACKNOWLED	GEMENT	iv
ABSTRACT		V
ABSTRAK	Vi	
TABLE OF CO	vii	
LIST OF FIGU	RES	xi
LIST OF TABL	ES	xvi
LIST OF SYMI	BOLS AND ABBREVIATIONS	xix
LIST OF APPE	NDICES	xxi
CHAPTER I	INTRODUCTION	1
	1.1 Background	1
	1.2 Statement of problem	2
	1.3 Research objectives	5
	1.4 Scope of study	6
	1.5 Significant of study	6
	1.6 Organisation of thesis	7

CHAPTER 2	LIT	ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Definition of Fiber concrete	10
	2.3	Previous works on plastic fiber in self-compacting concrete	11
	2.4.	Fiber tensile and pullout loads	14
		2.4.1 Previous works on plastic fibers regarding	
		tensile and pullout loads	16
	2.5	Previous works on plastic fibers regarding	
		hardened-state FC properties	18
	2.6	Influence of fiber content on FCs	26
	2.7	Influence of fiber shape on FCs	29
	2.8	Influence of water-binder ratio on FCs	30
	2.9	Concluding remarks	31

	2.9	Conciu	ding remarks	31
CHAPTER 3	RES	SEARCH	IMETHODOLOGY	32
	3.1	Introduc	ction	32
	3.2	Prepara	tion of raw materials	34
		3.2.1	Cement	34
		3.2.2	Fly ash	34
		3.2.3	Chemical admixture	35
		3.2.4	Coarse aggregates	35
		3.2.5	Sand	35
		3.2.6	Water	35
		3.2.7	RPET fibers	35
	3.3	Design	mix proportion of RPET FC	37
	3.4	Prepara	tion mixtures of RPET FC	40
	3.5	Testing	fresh-state concrete properties	42
		3.5.1	Filling capability test	42
		3.5.2	Passing capability test	43
	3.0	6 Harden	ed-state of RPET FC	44
		3.6.1	Compressive strength test	44
			3.6.1.1 Preparation of specimens	47
			3.6.1.2 Setup of compressive strength test	47
		3.6.2	Splitting tensile strength	48
			3.6.2.1 Preparation of specimens	48
			3.6.2.2 Setup of splitting tensile strength test	49
		3.6.3	Flexural toughness of RPET FC using the	
			ASTM C1018 toughness method	50
			3.6.3.1 Preparation of specimens	50

	3.6.3.2 Setup flexural toughness	51
	3.6.3.3 ASTM C1018 test method for flexural	
	toughness measurements	52
3.7	Tensile strength of RPET fiber	53
3.8	Fibre pullout test	55
	3.8.1 Preparation of materials and RPET fiber	55
	3.8.2 Preparation of concrete mixtures	56
	3.8.3 Preparation of specimens	57
	3.8.4 Pullout test apparatus and data analysis	60
3.9	Mathematical model	62
3.10	Concluding remarks	63

CHAPTER 4 ANALYSIS AND DISCUSSION ON FRESH, HARDNED-STATE, AND PULLOUT PROPERTIES OF SELF-COMPACTING CONCRETE RPET FC 64

4.1	Introdu	iction	64
4.2	Fresh-s	state of self-compacting RPET FC	64
	4.2.1	Filling capability test	65
		4.2.1.1 Effect of fiber content	67
		4.2.1.2 Effect of RPET fiber size	71
	4.2.2	Passing capability test	75
		4.2.2.1 Effect of RPET fiber content	76
		4.2.2.2 Effect of RPET fiber size	80
	4.2.3	Selecting the optimum water-binder ratio for	
		RPET FC	82
		4.2.3.1 Filling capability	83
		4.2.3.2 Passing capability	84
		4.2.3.3 Compressive strength	86
	4.2.4	Concluding remarks on fresh-state	
		self-compacting RPET FC	89
4.3	Compr	essive strength of RPET FC	91
	4.3.1	Effect of fibre content on compressive strength	93
	4.3.2	Effect of RPET fiber size on compressive strength	99
	4.3.3	Effect on age on compressive strength	101
	4.3.4	Correlation between compressive and	
		tensile strength	102
4.4	Splittin	ig tensile strength	104
	4.4.1	Effect of RPET fiber content on tensile strength	106
	4.4.2	Effect of RPET fiber size on tensile strength	109

	4.4.3	Correlation I	between compressive strength	
		and tensile s	strength	110
4.5	Flexural	toughness of	RPET FC using the	
	ASTM C	C1018 toughn	less method	117
	4.5.1	Failure mode	e	122
	4.5.2	First crack lo	bad	124
	4.5.3	Load-deflect	tion response	128
	4.5.4	Effect of RP	ET fiber content on flexural toughness	128
	4.5.5	Effect of RP	ET fiber size on flexural toughness	133
	4.5.6	Concluding	remarks on hardened-state of RPET FC	134
4.6	Tensile,	pullout, and i	nterfacial bond strength	
	of RPET	fiber		135
	4.6.1	Tensile stren	igth of RPET fiber	135
	4.6.2	Fiber pullou	t test	137
		4.6.2.1	Load-End displacement response	138
		4.6.2.2	Effect of embedded length of fiber on	
			pullout load	140
		4.6.2.3	Effect of RPEt fiber size on pullout	
			load	142
		4.6.2.4	Effect of embedded length RPET fiber	
			on interfacial bond strength	145
		4.6.2.5	Effect of RPET fiber on interfacial	
			bond strength	147
	4.6.3	Concluding	remarks on tensile and interfacial	
		bond streng	th of RPET fiber	149

CHAPTER 5 DEVELOPMENT OF COMPRESSIVE AND TENSILE STRENGTH RPET FC MODEL 150

5.1	Introdu	iction	150		
5.2	Develo	pment of a new equation: Compressive			
	strengtl	strength of RPET FC			
	5.2.1	General form	151		
	5.2.2	Regression analysis	154		
	5.2.3	Equation models	155		
		5.2.3.1 Coefficient of determinant (R^2)	155		
		5.2.3.2 <i>t</i> -Test	156		
		5.2.3.3 <i>t</i> -statistic	158		
5.3	Develo	pment of a new equation: Tensile strength			
	of RPE	T FC	159		
	5.3.1	General form	159		

	5.3.2	Regression analysis	162
	5.3.3	Equation model	163
		5.3.3.1 Coefficient of determinant (R^2)	163
		5.3.3.2 <i>t</i> -Test	164
		5.3.3.3 <i>t</i> -statistic.	165
5.4	Discus	sion on the model	167
5.5	Conclu	iding remarks	176

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 177

6.1	Introduction	177
6.2	Conclusions on fresh-state of RPET FC	177
6.3	Conclusions on hardened-state of RPET FC	178
6.4	Conclusions on tensile and interfacial bond strength	
	of RPET fiber	179
6.5	Conclusions on mathematical models of RPET FC	180
6.6	Research contributions	181
6.7	Recommendations for future research	182
EFERENCES		183
PPENDIX		197

APPENDIX

LIST OF FIGURES

NO	TITLE	PAGE
1.1	Previous studied on waste PET in concrete	3
2.1	General profile of a single fiber pullout curve	15
3.1	Flow chart of research methodology	33
3.2	The ring bottle of plastic PET bottle	36
3.3	The dimension of ring waste bottles	37
3.4	Determination of mass RPET fiber for 1m ³ concrete	38
3.5	The tilting drum mixer	40
3.6	Procedure mixes SCC concrete of RPET fiber	41
3.7	Slump flow apparatus and measurement	42
3.8	L-Box apparatus for passing capability test	43
3.9	Cylinder steel formwork	47
3.10	Compressor plate and cylinder concrete	48
3.11	Apparatus for tensile strength test	49
3.12	Prism mould for flexural toughness test	51
3.13	Specimen under third point loading	51
3.14	Description of the flexural toughness according to ASTM C1018	52
3.15	Dog-bone shape of RPET fiber	53
3.16a	Hinge roller of tensile test	54
3.16b	Full setup of tensile test	54
3.17a	RPET-5 fiber	56
3.17b	RPET-7.5 fiber	56
3.17c	RPET-10 fiber	56
3.18	Mould of 100 x 100 x 100 mm	57
3.19a	Embedment 15 mm of RPET fiber	58
3.19b	Embedment 20 mm of RPET fiber	58

3.19c	Embedment 25 mm of RPET fiber	59
3.20	Hardened RPET fiber before test	59
3.21	Hinge support for pullout strength test	60
3.22	Minimized compressive forces on sample	60
3.23	Complete setup pullout test	61
4.1	Slump flow for normal SCC and RPET FC	65
4.2a	Great scc mixture	69
4.2b	Fiber balling occurred	70
4.3	Present study (RPET-5 FC) and other previous researches	71
4.4a	Slump flow FC of 0.45 water binder ratio	72
4.4b	Slump flow FC of 0.55 water binder ratio	73
4.4c	Slump flow FC of 0.65 water binder ratio	73
4.5a	RPET-5 fiber in concrete mixture	74
4.5b	RPET-10 fiber in concrete mixture	74
4.6a	Passing flow for normal SCC	75
4.6b	Passing flow for RPET FC	75
4.7	Comparison result between present study and other previous researches	79
4.8a	Passing index of RPET-5, RPET-7.5, and RPET-10 fiber at 0.45 water binder ratio	81
4.8b	Passing index of RPET-5, RPET-7.5, and RPET-10 fiber at 0.55 water binder ratio	81
4.8c	Passing index of RPET-5, RPET-7.5, and RPET-10 fiber at 0.65 water binder ratio	81
4.9	The slump flow results for normal SCC and RPET FC (1.00% fiber content)	83
4.10	The passing index results for normal SCC and RPET FC (1.00% fiber content)	85
4.11	The compressive strength of RPET-5 FC at age of 28 days	87
4.12	The compressive strength of RPET-7.5 FC at age of 28 days	88
4.13	The compressive strength for RPET-10 FC at age of 28 days	88
4.14a	After test for normal SCC	92
4.14b	After test for 0.75 % volume of RPET-5 FC	92
4.15a	After test for 1.00 % volume of RPET-5 FC	92

4.15b	After test for 1.50 % volume of RPET-5 FC	92
4.16	Effect of fiber content on the compressive strength of RPET FC	93
4.17	Fiber bridging concrete by synthetic manufactured fiber	96
4.18	Successive stages of crack propagation across a RPET fiber	97
4.19	Compressive strength from present study and observed by previous researches	98
4.20	The surface area of RPET fiber	100
4.21	Compressive strength between RPET FC (1.00% fiber content) and observed by previous researches.	101
4.22	Correlation between compressive strength and age of concrete of RPET-5, RPET-7.5, and RPET-10 FC	103
4.23	Normal SCC after tensile test	106
4.24	RPET-5 FC after tensile test	106
4.25	Effect of fiber content on the experimental tensile strength of RPET FC	107
4.26	Comparison between RPET FC and those reported by previous researcher.	108
4.27	Correlation between tensile strength and compressive strength of RPET-5, RPET-7.5, and RPET-10 FC	111
4.28	Normal SCC	121
4.29	REPT-5 FC containing 0.5% of RPET-5 fiber after flexural toughness test	121
4.30	REPT-5 FC containing 1.0% of RPET-5 fiber after flexural toughness test	121
4.31	REPT-5 FC containing 1.5% of RPET-5 fiber after flexural toughness test	122
4.32	Failure pattern-separation between RPET fiber and concrete matrix	122
4.33	Failure pattern-fiber rupture	123
4.34a	Failure pattern-fiber rupture after yielding	123
4.34b	Failure pattern-cone type concrete fracture	123
4.34c	Failure pattern-separation between RPET fiber and concrete matrix	123
4.35	Load-displacement of RPET-5 FC (specimen 1)	125
4.36	Load-displacement of RPET-7.5 FC (specimen 1)	125
4.37	Load-displacement of RPET-10 FC (specimen 1)	126
4.38	First Crack Load of REPT FC	127

4.39	Flexural toughness of RPET-5 FC	129
4.40	Flexural toughness of RPET-7.5 FC	129
4.41	Flexural toughness of RPET-10 FC	130
4.42	Toughness strength result from present study and observed by previous researches	132
4.43	Toughness Indices I20 of 0.50 % and 1.00 % fiber content	133
4.44	Load- Displacement curves for RPET-5 fiber (specimen 1)	137
4.45	Load- Displacement curves for RPET-7.5 fiber (specimen 1)	137
4.46	Load- Displacement curves for RPET-10 fiber (specimen 1)	138
4.47	Load- Displacement curves for all sizes of RPET fiber in 25 embedded lengths (specimen 1)	139
4.48	The maximum of pullout load according to the size of RPET fiber	142
4.49	The surface area of RPET fiber in concrete	143
4.50	The comparison between RPET fiber and previous researcher on surface embedded area.	144
4.51	Pullout load result from present study and observed by previous researchers	144
4.52	Interfacial bond strength RPET fiber	146
4.53	The comparison of interfacial bond strength between RPET fiber and those reported by previous researchers	146
5.1	Ratio of compressive strength observed from experimental work over to predicted Equation 5.9	169
5.2 PE	Ratio of tensile strength observed from experimental work over to predicted Equation 5.17	169

LIST OF TABLES

NO	TITLE	PAGE
2.1	Prediction of MSW in Kuala Lumpur	9
2.2	Solid wastes composition of selected locations in Kuala Lumpur, Malaysia	10
2.3	The mix proportion of plastic fiber SCC and workability as reported by different researches	12
2.4	The mix proportion of plastic fiber SCC and workability as reported by different researches	17
2.5	The mix proportion of plastic fiber SCC and hardened-state results as reported by different researches	23
2.6	Remarks from previous researches on the suitable fiber content for FC properties	27
3.1	Chemical composition of the Portland cement and fly ash	34
3.2	Dimension of RPET fiber	36
3.3	Mixtures Proportion for 1m ³ of concrete	39
3.4	Number of specimens cast to determine the optimum RPET fiber content	45
3.5	Mixture proportion of RPET FC adopted in the present study	46
3.6	Mixture proportion of SCC to test pullout strength of RPET fiber	57
3.7	Number of RPET fiber tested for pullout strength	58
4.1	Slump flow of RPET-5, RPET-7.5, and RPET-10 FC	66
4.2	Slump flow of RPET FC	68
4.3	Passing Index for RPET-5, RPET-7.5, and RPET-10 FC	75
4.4	Analysis of passing Index for RPET-5, RPET-7.5, and RPET-10 FC	76
4.5	The compressive strength of normal SCC and RPET FC at age of 28 days	86
4.6	Summary of RPET-5, RPET-7.5, and RPET-10 FC for fresh properties concrete	89

4.7	Compressive strength test for RPET-5, RPET-7.5, and RPET-10 FC	91
4.8	Compressive strength of RPET FC	93
4.9	Analysis of compressive strength between sizes of RPET FC	100
4.10	Direct tensile strength test for RPET FC	105
4.11	Analysis of tensile strength between sizes of RPET FC	110
4.12	Comparison of compressive and tensile strength for RPET-5 FC (experimental and predicted)	114
4.13	Comparison of compressive and tensile strength for RPET- 7.5 FC (experimental and predicted)	115
4.14	Comparison of compressive and tensile strength for RPET-10 FC (experimental and predicted)	116
4.15	Flexural toughness of RPET-5 FC	118
4.16	Flexural toughness of RPET-7.5 FC	119
4.17	Flexural toughness of RPET-10 FC	120
4.18	First crack load of RPET FC	127
4.19	Analysis of toughness indices from flexural toughness test	131
4.20	Tensile strength of RPET fiber	135
4.21	Tensile fiber strength from present study and observed by previous researchers	136
4.22	Result of pullout test for RPET fiber	138
4.23	Analysis of maximum load from pullout test	141
4.24	Interfacial bond strength of RPET fiber	145
5.1	Combination of general equation for compressive strength of RPET fiber concrete	153
5.2	Results of regression analysis using SPSS	154
5.3	Coefficient of determinant for Equation 5.7, 5.8, and 5.9	156
5.4	MSR and MSE values from SPSS output	157
5.5	Degree of freedom	157
5.6	Critical t value from APPENDIX F	157
5.7	Significance of Equation 5.7	158
5.8	Significance of Equation 5.8	158
5.9	Significance of Equation 5.9	158
5.10	Combination of general equation for tensile strength of RPET	162

5.11	Results of Regression Analysis using SPSS	162
5.12	Coefficient of determinant for Equation 5.15, 5.16, and 5.17	164
5.13	MSR and MSE values from SPSS output	164
5.14	Degree of freedom	165
5.15	Critical t value from APPENDIX F	165
5.16	Significance of Equation 5.15	165
5.17	Significance of Equation 5.16	166
5.18	Significance of Equation 5.17	166
5.19	Selection of <i>RPET-Age</i> of RPET FC	168
5.20	Selection of interfacial bond stress, df	168
5.21	Coefficient of α and β	168
5.22	Ratio of experimental over predict equation 5.9 for	170
5 23	compressive strength of RPET FC Ratio of experimental over predict equation 5.17 for tensile	174
5.25	strength of RPET FC	NAH

LIST OF SYMBOLS AND ABBREVIATIONS

ø diameter constant κ stress of specimen σ concrete strain Ecc D_f thickness of PET fiber $E_{\mathcal{C}}$ Modulus of Elasticity (MOE) UN AMINA compressive strength (Eurocode) fck compressive strength (British Standard) fcu tensile strength fct flexural tensile strength fct,fl splitting tensile strength fct,sp fr modulus rupture of concrete first crack loading by UNI 11039-2 fIf G_{f} fracture energy h_b height of specimen in flexural tensile strength Lf length of PET fiber first crack loading by UNI 11039-2 Plf V_f volume fraction of PET fibers ACI American Concrete Institute ASTM American Standard Test Method _ BS **British Standard** _ CPET **Crystalline PET** _ EG Ethylene glycol _ European Standard EN conventional fiber factor F

FA		Fly ash
FRC	-	Fiber Reinforced Concrete
HDPE		High Density Polyethylene
ILSI	-	International Life Science Institute
ISIS	-	Intelligent Sensing for Innovative Structures
LB	-	L-box
LVDT	-	Liner Variable Differential Transformer
MC	-	Moisture content
MPMA	-	Malaysian Plastic Industry
MSE	-	Mean square residual or error
MSR	-	Mean square regression
MSW	-	Municipal Solid Waste
PA	-	passing ability
PET	-	Polyethylene Terephthalate
PP		Polypropylene
RC	-	Reinforced Concrete
UTF	-	Universal Test Frame
UTM		Universal Test Machine
UTHM	TD	Universiti Tun Hussein Onn Malaysia
SCC	$\sum_{i=1}^{n}$	Self-compacting concrete
SF	-	Slump flow
SPSS	-	statistical analysis in social science
TPA	-	Terephthalic acid
PTA	-	Pure Terephthalic acid
VF	-	Flow rate

LIST OF APPENDICES

APPEND	IX TITLE	PAGE
А	A sample calculation to determine toughness indices of RPET	197
	FC	
В	Compressive strength test used in Regression multiple	205
	analysis	
С	MODEL 1-Compressive strength	209
D	MODEL 2-Compressive strength	210
Е	MODEL 3-Compressive strength	211
F	Table t-distribution	212
G	Tensile strength test used in Regression multiple analysis	213
Н	MODEL 1-Tensile strength	215
I	MODEL 2-Tensile strength	216
JPE	MODEL 3- Tensile strength	217

CHAPTER 1

INTRODUCTION

1.1. Background of study

The rapid development of the construction industry has increased the demand for tall and long-span concrete structures and the attempt to satisfy this demand with fiber concrete (FC) (Ashour *et al.*, 1992). Fibers are primarily used as replacements for conventional reinforcement in non-structural applications to control early thermal contraction and drying shrinkage cracking. These benefits have increased the application of fibers in structures, particularly those with low reliability levels, such as slabs on grade, foundations, and walls. The use of fibers as a part of the overall structural design of structural applications is continuously increasing. Fibers are added to improve the fracture characteristics and behavior of structures through the capability of the fibers to bridge cracks. Therefore, many studies have been extended to analyze various fiber types and shapes, particularly in investigating the performance of concrete reinforced with fibers (Ochi *et al.* 2007, Kim *et al.* 2010, Foti, 2011 & Fraternalli *et. al.* 2011). The possibility of using waste materials as fibers to be incorporated in concrete has been determined. Adding waste fibers has good effects on the properties of the final products and benefits the environment.

Waste polyethylene terephthalate (PET) bottles can be used in various applications such in construction. The development of new construction materials using recycled PET fibers is important in the construction and PET recycling industries.

In the field of civil engineering research, the recycled PET has begun to be adopted in the concrete. Studies have incorporated PET waste into concrete (Ochi *et al.* 2007, Pereire *et al.* 2011, Foti, 2012, & Irwan *et al.* 2013). These studies have shown that recycled PET fibers produce different results depending on their shape and content. An example of study that has been conducted by Ochi *et al.* (2007) revealed that using 30 mm-long PET fibers can increase tensile strength for volume replacement up to 1.5% compared with that made of 20 mm-long fibers. They claimed that long fibers have the capability to interlocking fiber bridges in concrete because fibers can be inserted between aggregates compared with 20 mm-long fibers. However, recycled PET fibers exhibit limited performance because of the weak interfacial bond strength of PET surface during fiber bridge stress, particularly in fibers with lamellar and irregular shapes (Fratenali *et al.*, 2010 & Irwan *et al.*, 2014).

Therefore, traditional straight, lamellar, or irregularly shaped fibers have limitations in providing significant results for engineering properties. Thus, this study produces ring-shaped PET (RPET) fibers and investigates the possibility of incorporating them into concrete. Optimum fiber content needs to be determined, and the performance of recycled PET FC need to be investigated.

1.2 Statement of problem

The amounts of plastic consumed annually have been increasing steadily. Therefore, selecting PET waste products as recycled materials is appropriate from the perspective of civil engineering applications. Recycled PET may be used as fiber reinforcement for structural concrete. Fiber-reinforced concrete (FRC) can enhance crack control and ductility in quasi-brittle concrete and can be an alternative for mass consumption, which is an important issue in recycling waste materials (Kim *et al.*, 2008). Major studies using PET bottles with different sizes, shapes, fiber contents, and mix concrete water–cement ratios have been performed, as shown in Figure 1.1.

- Use irregular shape of PET fiber incorporated with concrete,
- Use PET volume ranged of 0.5% to 1.50% fiber content,
- Have a slightly increase in compressive strength. It shows an exhibited improvement strength on tensile and first crack ductility compared to normal concrete, and
- PET FC made of self-compacting concrete (SCC) mixture exhibited improvement on filling and passing capability compared PET FC (without SCC).

Figure 1.1: Previous studies on waste PET in concrete

Ochi *et al.* (2007) studied recycled PET bottles with 30 mm-long fibers. The fiber surface was indented to provide sufficient friction energy. The authors claimed that a high percentage of fiber content produced fiber bundles during mixing and pouring. Binder material and superplasticizer help fiber distribute well in concrete compared normal concrete (without binder and superplasticizer). The results of previous studies have shown that PET has a weak interfacial bond with cement paste in the pull-out load because of the lamellar shape of fibers (Pelliser *et al.*, 2012). Pelliser *et al.* (2012) claimed that lamellar-shaped PET fibers exhibit limited performance in PET FC.

Ramadevi *et al.* (2012) exhibited that compressive strength increased up to 2% replacement content of waste PET fibers. An increase in fiber content increases concrete strength. Foti (2012) studied the possibility of using fibers from PET bottles to increase concrete ductility. Foti (2012) claimed that ring PET fibers exhibit impressive performance compared with lamellar-shaped PET fibers, particularly in tensile strength. The ring shape is the main factor that contributes to fiber bridges during tensile stress. Irwan *et al.* (2013) used a waste bottle with irregularly shaped PET fibers. The authors claimed that concrete mixture is not the only factor that contributes to the improvement of the compressive strength of FC. Fiber size and shape also have roles to prevent slip out fiber at high stress load and exhibited fiber concrete (FC) performance.

To overcome the limitations of traditional straight or irregularly shaped fibers, ring-shaped fibers were selected in this study. Ring-shaped fibers are mainly designed to mobilize fiber yielding (rupture by tensile) rather than fiber pullout (slipped by fiber force), which is a primary advantage over straight or irregularly shaped PET fibers as per discussed in Foti, 2011. The more number of fibers in concrete that will increase fiber interlocking mechanism between fiber and matrix concrete is needed. Besides, PET fiber made of SCC mixture exhibited sufficient result on workability and strength concrete compared to PET fiber without SCC mixture. Therefore, this study aimed to prove the advantage of ring-shaped PET fiber in terms of fresh and hardened-state of RPET FC on mixture design according to self-compacting concrete (SCC).

REFERENCES

- Abdul K. (2007). Self -compatibility of high volume hybrid fiber reinforced concrete. *Construction and Building Materials*, 21 (2007). pp. 1149–1154.
- ACI Committee 237R. (2007). ACI 237R-07. Self-consolidating concrete (ACI 237R-07). American Concrete Institute (ACI), Farmington Hills Mich., United State of America (USA), pp. 30.
- ACI Committee 318. (1995). ACI 318-95. Building code requirements for structural concrete (ACI-318-05) and commentary (ACI 318R-95). American Concrete Institute (ACI), Farmington Hills Mich., United State of America (USA), pp. 430.
- ACI Committee 363. (2006). ACI 363.1R-06. State-of-the art report on high strength concrete. *American Concrete Institute (ACI)*. Farmington Hills, MI: United State of America (USA).
- ACI Committee 440. (2006). ACI 440.1R-06. Guide for the design and construction of concrete reinforced with FRP bars. *American Concrete Institute (ACI)*, Farmington Hills Mich., United State of America (USA), pp. 45.
- Ackay, B. & Tasdemir, M. A. (2012). Mechanical behaviour and fibre dispersion of hybrid steel fibre reinforced self-compacting concrete. *Construction and Building Materials*, 28 (2012). pp. 287-293.
- Agamuthu P. & Faizura P.N. (2005). Biodegradability of Degradable Plastic Waste. *Waste management*, 23(2), pp. 95-100.
- Ahmad, M. di Prisco, C. Meyer, G.A. Plizzari, & S. Shah. (2004). International Workshop on Advances in Fiber Reinforced Concrete, Bergamo, Italy. 24-25. pp. 135-148.
- Ahmed S. F. U, Maelaj M. & Paramasiam P. (2007). Flexural response of hybrid steelpolythylene fiber reinforced cement composites containing high volume fly ash. *Construction and Building Materials*, 21(2007). pp 1088-1097.

- Al-Manaseer, A.A., Dalal, T.R. (1997). Concrete Containing Plastic Aggregates. *Concrete International*, 19(8), pp. 47–52.
- Alavi Nia A., Hedayantian M., & Nili M., & Sabet V. A. (2012). An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fibre-reinforced concrete. *International Journal of Impact Engineering*. 46 (2012). pp. 62-73.
- Albano C, Camacho N, Hernandez M, & Gutierrez A. (2009). Influence of Content and Particle Size of Waste Pet Bottles on Concrete Behaviour at Different W/C Ratios. *Waste Management*, 29 (2009), pp. 2707–2716
- Alberti M. G., Enfadaque A., & Galvez J. C. (2014). On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. *Construction and Building Materials*, 55 (2014), pp. 274-288.
- Ali M., Xioyang Li, & Nawawi chuow (2013). Experimental investigations on bond strength between coconut fibre and concrete. *Material & Design*, (2013). pp. 596-605.
- Alvarez, M., Salas, J. & Veras, J. (1988). Properties of Concrete Made with Fly Ash. *The International Journal of Cement Composites and Lightweight Concrete*, 10(2), pp. 109-120.
- Ashour, S. A., Hasanain, G. S. & Wafa, F. F. (1992). Shear Behaviour of High- Strength Fiber Reinforced Concrete Beams. *American Concrete Structure Structural Journal*, March-April (1992), pp. 176-184
- ASTM C1611-05. Standard test method for slump for of self-compacting concrete. *The American Society for Testing and Materials Standard*, USA.
- ASTM C469 / C469M 10 Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. *The American Society for Testing and Materials Standard*, USA.
- ASTM C 469-87a. Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. *The American Society for Testing and Materials Standard*, USA.
- ASTM C-494 Type A & F. Standard Specification for Chemical Admixtures for Concrete. *The American Society for Testing and Materials Standard*, USA.

- ASTM C618-03. Standard Specification for Fly Ash and Raw Calcined Natural Pozzolan for Use as Mineral Admixture in Portland Cement Concrete. *The American Society for Testing and Materials Standard* (ASTM), USA
- ASTM D638-10.Standard test method for tensile properties of plastic. *The American Society for Testing and Materials Standard* (ASTM), West Conshohocken, Pennsylvania, USA
- ASTM C1018-97. Standard test method for flexural toughness and first crack load strength of fiber reinforced concrete, *The American Society for Testing and Materials Standard* (ASTM), West Conshohocken, Pennsylvania, USA
- B.W. Jo, S. K. Park, & C. H. Kim. (2006). Mechanical Properties of Polyester Polymer Concrete Using Recycled Polyethylene Terephthalate. ACI Structural Journal, 103(2), pp. 219–225
- Barros, J., Pereira, E., Ribeiro, A., Chuna, V., & Antunes, J. (2004). Self-Compacting Steel Fibre Reinforced Concrete for Precasted Sandwich Panels – Experiments and Numerical Research. Fibre Reinforced Concrete from Theory to Practice
- Bataneyh M., Marie I., & Asi (2007). Use of selected waste material in concrete mixes. *Waste Management*. 27 (2007), pp. 1870-1876.
- Benaicha, M., Jalbaud, O., Hafidi, A. A., & Burtschell, Y. (2013). Rheological and mechanical characterization of fibre reinforced self-compacting concrete *International Journal of Engineering and Innovation Technology*, 2 (2013). pp. 2277-3754
- Bilodeau, A. & Malhotra, V. M. (2000). High-Volume Fly Ash System in Concrete Solution for Sustainable Development. *ACI Materials Journal*, pp. 41-50
- Borosnyói, A. (2002). Serviceability of CFRP prestressed concrete beams. Doctor of Philosophy (PhD) Thesis, Budapest University of Technology and Economics. Faculty of Civil Engineering, Budapest, Hungary

British Standard Institution. (2009). Eurocode 2: Design of concrete structures: EN 12350 - 1:2009: Testing fresh concrete: Sampling: British standard. London: BSi.

- British Standard Institution. (2000). Eurocode 2: Design of concrete structures: EN 12390
 3:2000: Testing hardened concrete: Compressive strength for test specimens: British standard. London: BSi.
- British Standard Institution. (2000). Eurocode 2: Design of concrete structures: EN 12390
 6:2000: Testing of hardened concrete: Tensile strength test: British standard. London: BSi.
- British Standard Institution. (1997). Eurocode 2. Design of concrete structures Part I: General rules and rules for buildings. British standard. London: BSi.
- British Standard Institution. (1983). British Standard: Testing concrete: BS 1881 -121:1983: Method for determination of static modulus of elasticity in compression: British standard. London: BSi.
- Carino, N.J., and H.S.Lew, 1982. Re-examination of the Relation between Splitting Tensile and Compressive Strength of Normal Weight Concrete. *Journal of American Concrete Institute*, 79(3), May-June (1982). pp. 214-219.
- Carrasquillo, R. L., Slate F. O., Nilson, & A. H. (2003). Microcracking and Behaviour of High Strength Concrete Subjected to Short Term Loading", ACI Materials Journal, 78(3), pp. 179-186.
- CEB-FIP Model Code. Model code for concrete structures. Comite Euro-International due Beton/Federation Internationale de la Precontrainte, Paris; 1990
- CEN. (1992). "Eurocode 2: Design of concrete structures Part 1.1: General rules and rules for buildings (EN 1992-1-1:1992)." Comité Europeen De Normalisation, Brussels, pp.195.
- CEN. (2004). "Eurocode 2: Design of concrete structures Part 1.1: General rules and rules for buildings (EN 1992-1-1:2004)." Comité Europeen De Normalisation, Brussels, pp. 225.
- Chawla, &Y.L. Shen. (2001). Mechanical Behavior of Particle Reinforced Metal Matrix Composites. *Advanced Engineering Materials*, 3(6), pp. 357-360.
- Choi O. C. & Lee C. (2003). Flexural performance of ring type steel fibre reinforced concrete. *Cement and Concrete Research*, 33(2003). pp 841-849.

186

- Choi Y.W, Moon D., J. S. Chung, & S. K. Cho. (2005). Effects of Waste PET Bottles Aggregate on the Properties of Concrete. *Cement and Concrete Research*, 35(4), pp. 776–781.
- Choi Y. W., Moon D, Kim Y, & Lachemi M. (2009). Characteristics of Mortar and Concrete Containing Fine Aggregate Manufactured From Recycled Waste Polyethylene Terephthalate Bottles. *Construction Building Material*. 23 (2009), 2829–35.
- CPH. (2008). "Instrucción de Hormigón Estructural EHE-08." Comisión Permanente Del Hormigón. Ministerio De Fomento, Madrid (Spain), pp. 722.
- Deepa S. Shri, R. Thenmozhi, & M. Anitha. (2012). Mechanical properties of SCC with polypropylene fibres. Advanced Scientific Research & Technology, Vol. 2, No.3 (2012), pp. 375-388.
- Dong, J., Wang, Q. & Guan, Z. (2012). Structural behaviour of RC beams with external flexural and flexural-shear strengthening by FRP sheets. Composites: Part B 44 (2012). pp. 604-612.
- Dossland, (2008). Fibre Reinforcement in Load Carrying Concrete Structures. Doctor of Philosophy (PhD) Thesis. Norwegian University of Science and Technology, Norway (NTNU).
- Doughlas R. (2004). Properties of self-compacting concrete containing type F fly ash. Master of Applied Science Thesis, Northwestern University, USA.
- EFNARC. (2002). "Specification and guidelines for self-compacting concrete". *European Federation of Supplies of Specialist Construction Chemicals*, Farnham, Surrey, UK.

Eurocede 2: 1992-1-1:2004. Design of Concrete structures. European Standard, London

- European Commission DG ENV: 2011. Plastic Waste in the Environment, *Institute European Environmental Policy*, France
- Fantilli, A.P., Ferretti, D., and Rosati, G. (2005). Effect of Bar Diameter on the Behavior of Lightly Reinforced Concrete Beams. *Journal of Materials in Civil Engineering*, 17(1), pp. 10-18.

- Ferrara L., Yong Dork P., & Shah Surendra P. (2007). A method for mix design of fiber reinforced self-compacting concrete. *Cement and Concrete Research*, 37, pp. 957-971.
- Fischer, G. and V. Li (2006). Effect of Fiber Reinforcement on the Response of Structural Members. Engineering Fracture Mechanics, 74. pp. 258-272.
- Foti D. (2011). Preliminary Analysis of Concrete Reinforced With Waste Bottles PET Fibers. *Construction and Building Materials*, 25, pp. 1906-1915.
- Foti D. (2012). Use of recycled waste PET bottles fibers for the reinforcement of concrete. *Composite Structure*.
- Fraternali A., Ciancia V., Chechile R., Rizzano G (2011). Experimental Study of Thermo-Mechanical Properties of Recycled PET Fiber-Reinforced Concrete. *Composites Structures*, 93, pp. 2368-2374.
- Frigione M. (2010). Recycling of PET Bottles as Fine Aggregates in Concrete. Waste Management. 110(2), pp. 31-35.
- Grace, N. F., Soliman, A. K., Abdel-Sayed, G. & Sale, K. R. (1998). Behaviour and Ductility of Simple and Continuos FRP Reinforced Beams. *Journals of Composites for Construction*. 2 (1998), pp. 149-203.
- Grunewald S. & Walvaren (2010). Maximum fiber content and passing ability of selfcompacting fibre reinforced concrete. *American Concrete Institution*. 274(2), pp. 15-30.
- Guo, Z.h. & Zhang X. (1999). Investigation of Complete Stress-Deformation Curves for Concrete in Tension. *ACI Materials Journal*, 84(5), pp. 278-285.
- Hassan M.J., Afroz M., & Mahmud H.M.I. (2011). An experimental investigation on mechanical behavior macro synthetic fiber reinforced concrete. *International Journal of Civil & Environmental Engineering*. 11(3), pp. 18-23.
- Irwan J.M., N. Othman, H.B.Koh, R.M. Asyraf, S.K. Faisal, & M.M.K. Annas, (2013) the Mechanical Properties of PET Fiber Reinforced Concrete from Recycled Bottle Wastes, *Advanced Materials Research*, Vol. 795, pp. 347-351.

- Irwan J.M, N. Othman, H.B. Koh, R.M. Asyraf, Faisal S.K, & M.M.K. Annas, (2014). Maximum crack spacing model for irregular -shaped polyethylene terephthalate fibre reinforced concrete beam. *Advances in Civil, Structural, Environmental & Bio-Technology*, CSEB 2014.
- ISIS Canada. (2001). Reinforcing concrete structures with fiber reinforced polymers -Design manual No. 3. ISIS Canada Corporation. University of Manitoba, Manitoba, Canada, pp. 158
- Jaturapitakkul, C., Kiattikomol, K., Tangchirapat, W. & Saeting, T. (2004). Use of Ground Coarse Fly Ash as a Replacement of Condensed Silica Fume in Producing High Strength Concrete. *Cement and Concrete Research*, 34, pp. 549-555.
- Jee, N.Y. Sangchun & Hongbum (2004). Prediction of compressive strength of in situ concrete based on mixture proportions. Asian Architect Building Engineering, 3, pp. 9-16.
- Jo B, Park S, & Park J. (2008). Mechanical Properties of Polymer Concrete Made With Recycled PET and Recycled Concrete Aggregates. *Construction Building Material*, 22, 2281–91.
- Khayat, K. H. (2000). Optimization and performance of air-entrained, self-consolidating concrete. *ACI Materials Journal*, Vol. 97, No. 5, pp. 526-535.
- Khedar, G.F., A.M. Al-Gabban & M.A. Suhad (2003). Mathematical model for prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours. *Material structures*, 36 (2003). pp. 693-701.
- Khunthongkeaw, J., Tangtermsirikul, S. & Leelawat, T. (2006). A study on carbonation depth prediction for fly ash concrete. *Construction and Building Materials*, 20(9), pp. 744-753
- Kim (2010). Material and Structural Performance Evaluation of Recycled PET Fiber Reinforced Concrete. *Cement & Concrete Composites*, 32, pp. 232-240.
- Kim, H. S. & Shin, Y. S. (2011). Flexural behaviour of reinforced concrete (RC) beams retrofitted with hybrid fiber reinforced polymers (FRPs) under sustaining loads. *Composites Structures*. 93 (2011). pp. 802-811.
- Légeron, F., Paultre, P. (2000). Prediction of Modulus of Rupture of Concrete. ACI Materials Journal, 97(2), pp. 193-200.

- Li, Q. & Ansari, F. (2000). High-Strength Concrete in Uniaxial Tension. ACI Materials Journal, 97(1), pp. 49-57.
- Li (2011). Investigate in quality control of fiber reinforced self-compacting concrete during construction", 2nd International Conference on Construction and Project Management, Vol. 15, Singapore.
- Liao W., Chao S., & Naaman A. (2010). Experience sith self-consolidating high performance fibre reinforced mortar and concrete. *American Concrete Institution*. 274 (6), pp. 79-94
- Lohtia, R. P. & Joshi, R. C. (1995). Mineral Admixtures. *Concrete Admixtures Handbook, Properties, Science, and Technology Second Edition,* New Jersey, USA: Noyes Publications.
- Lyslo. A. (2008). Fibre Reinforcement in Load Carrying Concrete Structures. Doctor of Philosophy (PhD) Thesis, Norweigian University of Science and Technology, Norway.
- Mahdi F, Abbas H, Khan A. Strength characteristic of poymer mortar and concrete using different compositions of resins derived from post-consumer PET bottle. *Construction Building Material*, 2010; 24:25-36
- Majdzadeh F. (2003). Fracture toughness of hybrid fibre reinforced self-compacting concrete, Master Thesis of University of British Columbia.

Malaysian Plastic Forum (2007). Plastic: Safety and Health. *Malaysian Plastics* Manufacturers Association (MPMA): Malaysia.

- Marzouk, H., Chen, & Z. W. (1995). Fracture Energy and Tension Properties of High-Strength Concrete. *Journal of Materials in Civil Engineering*, 7(2), pp. 108-116.
- Marzouk O, Dheilly R, & Queneudec M. (2007). Valorization of Post-Consumer Waste Plastic in Cementitious Concrete Composites. *Waste Management*, 27. pp. 310– 318.
- Mazaherpour, H., Gahnbarpour, S., Mirmoradi, S. H., & Hosseinpour, I. (2011). The effect of polypropylene fibres on the properties of fresh and hardened lightweight self-compacting concrete. *Construction and Building Materials*, 25 (2011). pp. 351-358.

- Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete Microstructure, Properties and Materials. 3rd ed. United States of America: McGraw Hill.
- Mindness, S., Young, J. F. & Darwin, D. (2003). Concrete. 2nd edition. United States of America: Prentice Hall.
- Minelli, F. (2005). Plain and Fibre reinforced concrete beam under shear loading. Doctor of Philosophy (PhD) Thesis, Department of Civil Engineering, University of Brescia, Italy.
- Mirmiran, A. E., Shahawy, M. & Samaan, M. (1999). Strength and Ductility of Hybrid FRP-Concrete Beam-Columns. Journals of Structural Engineering. Vol 125, pp 1085-1093.
- Mohamed, H. M. & Masmoudi, R. (2010). Flexural strength and behaviour of steel and FRP-reinforced concrete-filled FRP tube beam. Engineering Structures, 32 (2010). pp. 3789-3800.
- MS 522. (2007). Specification for Portland cement composites. Malaysian Standard,
- Mustafa (2007). Hybrid fiber reinforced self-compacting concrete with a high volume coarse fly ash. *Construction and Building Materials* 21 pp. 150-156
- Nawy, E. G. (1996). Fundamentals of High Strength High Performance Concrete. London, UK: Longman Group Limited.
- Neville, A. M., & Brooks, J. J. (2010). Concrete Technology. 2nd edition. United Kingdom: Longman.
- Nili Mahmoud & Afraoughsabet V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24. pp. 927-933.
- Ochi, T., Okubo, S. & Fukui, K. (2007). Development of Recycled PET Fiber and Its Application as Concrete- reinforcing Fiber. Cement & Concrete Composites, 29 (2007). pp. 448-455.
- Okamura H. (1997). Self-compacting high performance concrete. Concrete International, 19(7), pp. 2103-2112
- Oliveira, L. A. P. D., & Gomes, J. P. C. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials. 25 (2011). pp. 1712-1717.

- Oner, A., Akyuz, S. & Yildiz, R. (2005). An Experimental Study on Strength Development of Concrete Containing Fly Ash and Optimum Usage of Fly Ash in Concrete. *Cement and Concrete Research*, 35, pp. 1165–1171.
- Pacheco F.Torgal., Yining Ding, & Said Jalali (2012). Properties and durability of concrete containing polymetric wastes (tyre rubber and polyethylene terephthalate bottles). *Construction and Building Materials*, 30, pp. 714-724.
- Packaging Materials Report (2000): 1. Polyethylene Terephthalate (PET) for Food Packaging Applications: *International Life Science Institute (ILSI)*: Europe Packaging Material Task Force: Brussels, Belgium.
- Panyakapo P. & Panyakapo M. (2007). Reuse of Thermosetting Plastic Waste for Lightweight Concrete. *Waste management*, 28, pp. 1581-1588.
- Park, R., & Paulay, T. (1975). "Reinforced concrete structures". John Wiley and Sons. New York, United State of America (USA).1975. pp. 769.
- Pelisser F., Oscar Ruben Klagues Montedo (2012). Mechanical properties of recycled PET fibre in concrete. *Materials Research*, 15 (4); pp. 679-685.
- Pezzi L., P. De Luca, D. Vuono, F. Chiappetta, & A. Nastro. (2006). Concrete Products with Waste's Plastic Material (Bottle, Glass, Plate). *Materials Science Forum*, 514-516(2), pp. 1753–1757.
- Popovics. S. & J. Ujhelyi (2008). Contribution to the concrete strength versus water cement ratio relationship. *Material Civil Engineering*, 20, pp. 459-463.
- Rahmani E., Dehestani M., Beygi M.H.A., Allahyarhi H., & Nikbin I.M. (2013). On the mechanical properties of concrete containing waste PET particles. *Construction and Building Materials*, 47, pp. 1302-1308.
- Ramachandran, V. S. (1995). Concrete Admixtures Handbook. *Properties, Science, and Technology*, Park Ridge, New Jersey, U.S.A.: Noyes Publications.
- Ramadevi K. & Manju R. (2012). Experimental investigation on the properties of concrete with plastic PET (bottle) fibre as fine aggregates. International Journal of Emerging Technology and Advanced Engineering, 2(6), pp. 42-46.

- Ramezanianpur, A. A. & Malhotra, V. M. (1995). Effect of Curing on Compressive Strength, Resistance to Chloride-Ion Penetration and Porosity of Concretes Incorporating Slag, Fly Ash or Silica Fume. *Cement and Concrete Composites*, 17, pp. 125-133.
- Raphael, J. M. (1984). Tensile strength of concrete. ACI J Proc, 81 (1984). pp. 158-65.
 Rashid, M. A., Mansur, M. A., & Paramasivam, P. (2002). Correlations between mechanical properties of high-strength concrete. *Journal of Materials Civil Engineering*, 14 (2002), pp. 203-38.
- Rebeiz K, Serhal S, & Fowler D. (1994). Structural Behaviour of Polymer Concrete Beams Using Recycled Plastics. ASCE Journal Material Civil Engineering, 6(1994), pp. 150–65
- Redon C. & Chermant J. (1999). Damage mechanics applied to concrete reinforced with amorphous cast iron fibers, concrete subjected to compression, *Cement and Concrete Composites*, 21 (3), pp. 197-204.
- Richardson A.E. & Sean Landless (2009). Synthetic fibres and steel fibres in concrete with regard to bond strength and toughness, *Built Environment Research*, 2 (2) (2009). pp. 128-140.
- RILEM TC-50 FMC (1985). Determination of fracture energy of mortar and concrete by means of three point bends test on notched beams. *Materials and Structure*, 18(106), pp 285-290.
- Saeed, M. O., Hassan, M. N. & Mujeebu, M. A. (2009). Development of Municipal Solid Waste Generation and Recyclable Components Rate of Kuala Lumpur: Perspective Study. Conference Paper. University Science of Malaysia; 1969.
- Sahmaran M. & Ozgur Yaman (2007). Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash.). *Construction and Building Materials*, 21, pp. 150-156.
- Sammer Hamoush, William Heard, & Brian Zornig (2010). Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. *Construction and Building Materials*, 25(1), pp. 39-46.
- Sata, V., Jaturapitakkul, C. & Kiattikomol, K. (2007). Influence of Pozzolan from Various By-Product Materials on Mechanical Properties of High-Strength Concrete. *Construction and Building Materials*, 21, pp. 1589-1598.

- Sedran, T., De Larrard, F., Hourst, F. y Contamines, C. (1996). Mix design of selfcompacting concrete. *International RILEM Production Methods and Workability of Concrete*, Edited Bartos, D.L. & Marrs D.J. Editorial: E & FN Spon, Londres, (1996), pp. 439-450.
- Sehaj Singh, Arun Shukla, & Richard Brown (2004). Pullout behaviour of polypropylene fibers from cementitious matrix, *Cement and Concrete Research*, 34 (2004), pp. 1919-1925.
- Semiha Akçaözog'lu & Cengiz Duran Atis (2011). Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates. *Construction and Building Materials*, 25 (2011). pp. 4052-4058.
- Sengul, O. & Tasdemir, M. A. (2009). Compressive Strength and Rapid Chloride Permeability of Concretes with Ground Fly Ash and Slag. *Journal of Materials in Civil Engineering ASCE*, 21(2009), pp. 494 – 501.
- Shannon O'Connell (2011). Development of a new high performance synthetic fiber for concrete reinforcement, July 2011, Dalhousie University Hailfax, Nova Scotia.
- Siddique R., Khatib J. & Kaur I. (2007). Use of Recycled Plastic in Concrete: A Review. *Waste management*, 28 (2007), pp. 1835-1852.
- Sikalidis C.A., A. A. Zabaniotou, & S. P. Famellos. (2002). Utilisation of Municipal Solid Wastes for Mortar Production. *Resources, Conservation, and Recycling*, 36(2), pp. 155–167.
- Silva D, Betioli A, Gleize P, Roman H, Gomez L, Ribeiro J. Degradation of recycled PET fibres in Portland cement-based materials. *Cement Concrete Resources*. 2005, 35. pp. 1741-6.
- Singh S.K., Jan. (2010). Polypropylene Fiber Reinforced Concrete, an overview. Central Building Research Institute, Roorkee & Honorary Secretary Institute of Engineers. CE&CR, Vol.24, No. 1.
- Soroushian, P., Mirza, F. Alhozaimy A. (1995). Permeability characteristic of polypropylene fibre reinforced concrete. *American Concrete Institution Material Journal*, 92(3). pp. 291-295.

- Som Md., H. (2005). Panduan mudah analisa data mengunakan SPSS Windows. Penerbit University Teknologi Malaysia Skudai Johor.
- Stahli (2008). On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. *Materials and Structures*, 41 (1). pp. 189-196.
- Steven C. Chapra, Raymond P. Canale, Numerical Methods for Engineering with Personal Computer Applications, McGraw-Hill, Inc., New York, NY, 1985.
- Suhad M.A. (2001). Mathematical model for the prediction of cement compressive strength at the ages of 7& 28 days within 24 hours, Master Thesis, Al-Mustansiriya University, college of engineering, Civil engineering department.
- Sulapha, P., Wong, S.F., Wee, T.H. & Swaddiwudhipong, S. (2003). Carbonation of Concrete Containing Mineral Admixtures. *Journal of Materials in Civil Engineering*, pp. 134-143.
- Taher Abu Lebdeh, Sameer Hamoush, William Heard, & Brian Zornig (2011). Effect of matrix strength on pullout behavior of steel fibre reinforced very high strength concrete composites. *Construction and Building Materials*, 25, pp. 39-46.
- Torrijos, M. C., Barragan, B. E., & Zerbino, R. L. (2008). Physical-mechanical properties, and mesostructure of plain and fibre reinforced self-compacting concrete. *Construction and Building Materials*. 22 (2008). pp. 1780-1788.
- Toutanji, H. A., and Saafi, M. (2000). "Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars." *American Concrete Institution Structural Journal*, 97(5). pp. 712-719.
- Vikrant S. Vairagade, Kavita S. Kene, Dr. N. V. (2013). Investigation on Compressive and Tensile Behavior of Fibrillated. *Engineering Research and Applications*. 2 (3); pp. 1111-1115.
- Wee, T.H., Lu H. R. & Swaddiwudhipong, S. (2000). Tensile Strain Capacity of Concrete under Various States of Stress. *Magazine of Concrete Research*, 52(3), pp. 185-193.
- Welle, F. (2011). Twenty years of PET bottle to bottle recycling: An overview. *Resources, Conservation and Recycling*, 55 (2011). pp. 865-875.

195

- Xu, B. W., & Shi, H. S. (2009). Correlations among mechanical properties of steel fiber reinforced concrete. *Construction and Building Materials*. 23 (2009). pp. 3468– 3474.
- Yan, L. & Chouw, N. (2013). Compressive and flexural behaviour and theoretical analysis of flax fibre reinforced polymer tube encased coir fibre reinforced concrete composite. *Materials and Design*. 52 (2013). pp. 801-811.
- Yang, K. H., Oh, M. H., Kim, M. H. & Lee, H. C. (2010). Flexural behaviour of hybrid precast concrete beams with H-steel beams at both ends. *Engineering Structures*, 32 (2010). pp. 2940-2949.
- Yang, I. H., Joh, C. & Kim, S. B. (2011). Flexural strength of ultra-high strength concrete beams reinforced with steel fibers. *Procedia Eengineering*, 14 (2011). pp. 793-796.
- Zain M.F.M. & S.M. Abd, Sopian, M. Jamil (2008). Mathematical regression model for the prediction of concrete strength. MAMECTIS'08 Proceedings of the 10th WSEAS international conference on Mathematical methods, computational techniques and intelligent systems, pp. 392-396.
- Zain M.F.M. & S.M. Abd. (2009). Multiple regression model for compressive strength prediction of high performance concrete. *Applied Sciences*, 9(1), pp. 155-160.
- Zhang, H., & Wen, Z. (2013). The consumption and recycling collection system of PET bottles: A case study of Beijing, China. *Waste Management*, 34 (2014). pp. 987-998.