IMPACT RESISTANCE OF FOAMED CONCRETE SLAB AND ITS MODIFICATIONS SUBJECTED TO HEMISPHERICAL IMPACTOR

JOSEF HADIPRAMANA

A thesis submitted in fulfillment of the requirement for the award of the Doctor of Philosophy

Faculty of Civil and Environmental Engineering Universiti Tun Hussein Onn Malaysia

JANUARY 2015

In the name of Allah, the most gracious and most merciful. This thesis I dedicated for my beloved,

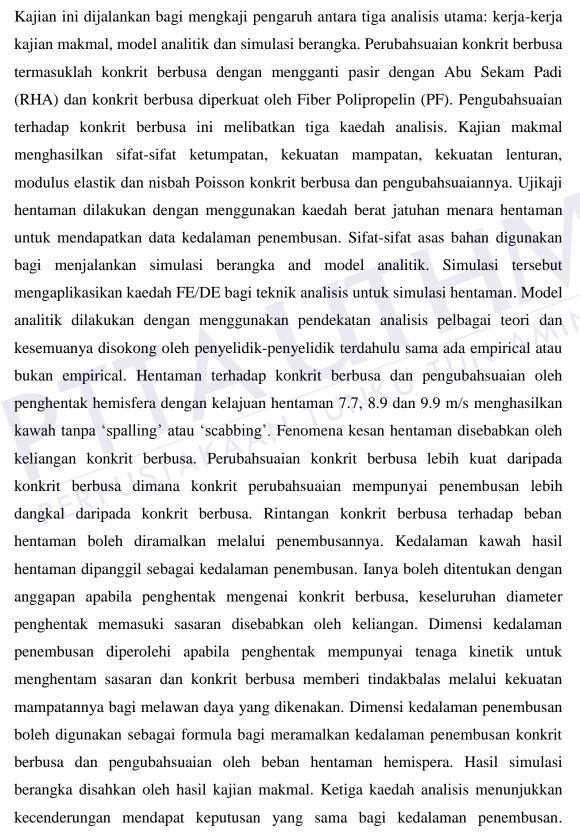
Fetra, my wife who always patient and gives me the support Athhar and Fatharani my children who always give me support with their happiness and cheerfulness

In memory, my beloved parent, RA. Siti Roniyun and Wignya Widjaya My parent in law, Zamanhuri and Risnidar

ACKNOWLEDGEMENT

The preparation of this thesis is a result of the direct investigations and extensive consultation involving many people. Since space of limitation with nourished regret all people who involved can not be mentioned. While can not be mentioned of everybody, the author would like to specifically record and express by deep gratitude and sincere appreciation to:

- Professor Ir. Dr. Abdul Aziz Dato' Abdul Samad, my research supervisor, Professor Dr. Ahmad Mujahid Ahmad Zaidi, my first research Co-Supervisor and Assc. Prof. Dr. Noridah Mohamad, my second research Co-Supervisor, for many constructive inputs and invaluable guidance. As well as their approaching, sharing and positive guidance enabled the author to remain focused on the correct track from the beginning to the very end. Without their constant support this thesis would be difficult to accomplish on schedule.
 - All the staff and assistants both of Materials and Structures Laboratory FKAAS and Materials Laboratory of FKMP of University Tun Hussein Onn Malaysia, for their help in allowing author to used specialized laboratory space and equipments while was conducting main experiment investigations.
 - Office for Research, Innovation, Commercialization, & Consultancy Management (ORICC) of Universiti Tun Hussein Onn Malaysia that has given the opportunity to execute the grant for the author's research investigations.
- Univeristi Tun Hussein Onn (UTHM), Johor Malaysia and acknowledgment the research and staffing resources provided by the Faculty of Civil and Environmental Engineering and Faculty (FKAAS) and Center for Graduate Studies (CGS) of the Universiti Tun Hussein Onn (UTHM) Malaysia.


The author remain deeply indebted to you all and to those yet unnamed collaborators who also assisted the author during the course study.

ABSTRACT

This research work examined the interplay between three main methods: experimental works, analytical model and numerical simulation. The three methods employed slabs of foamed concrete and its modifications. The modifications of foamed concrete included foamed concrete substituting sand with Rice Husk Ash (RHA) and foamed concrete reinforced by Polypropylene fibre (PF). Experimental work produced properties data of density, compressive strength, tensile strength, modulus of elasticity and Poisson's ratio of slab specimens. The experiment of impact was conducted by using falling-weight impact tower method to get the depth of penetration data. The depth of crater as product of impact is called penetration depth. The basic properties of materials were used to run the numerical simulation and analytical model. The simulation applied the FE/DE method, whilst the analytical model was conducted by applying various theories and all its support from previous researchers both in empirical and non-empirical. The slab target subjected to hemispherical impactor with 7.7, 8.9 and 9.9 m/s impact velocity produced the crater without spalling or scabbing. This impact phenomenon was due to effect of porosity in matrix of foamed concrete and its modifications as foam material. Foamed concrete modifications were stronger than foamed concrete, which gave the shallower penetration depth than penetration depth of foamed concrete. Resistance of slab specimens subjected to impact loading can be predicted by its penetration depth. It can be determined by the assumption, when impactor hit the slab target, the diameter of impactor shank entirely into target due to porosity. The dimensional of penetration depth was derived when the impactor had kinetic energy and target initiate gave a reaction by its compressive strength against the force of impact. The dimensional penetration depth can be used as a formula to predict penetration depth of foamed concrete and its modification slabs subjected to hemispherical impact loading. The numerical simulation results were validated by the experimental results. Those three of analyses methods showed a tendency the same results for penetration depth.

ABSTRAK

CONTENT

	TITLE		i	
	DECLARATION			
	DEDICATION			
	ACKNOWLEDGEMENT			
	ABSTRACT ABSTRAK CONTENT			
	LIST OF	TABLES	xv	
	LIST OF	FIGURES	xvii	
	LIST OF	SYMBOLS AND ABBREVIATIONS	xxviii	
	LIST OF	UNIT AND CONVERTION	xxxi	
	LIST OF	APPENDICES	xxxii	
CHAPTER 1	INTROD	UCTION	1	
	1.1- A	Back ground	1	
	1.1.1	Impact on concrete and basic theory	1	
	1.1.2	Foamed concrete and impact loading	3	
	1.2	Problem statement	4	
	1.3	Objective	5	
	1.4	Scope of research	5	
	1.5	Research significance	6	
CHAPTER 2	LITERA	TURE REVIEW	7	
	2.1	Foamed concrete	7	
	2.1.1	Characteristic of foamed concrete	7	
	2.1.2	Pre-foaming method	8	
	2.1.3	Substitution material and filler as		
		reinforcement of foam concrete	9	
	2.2	Ballistic application	9	

2.2.1	Phenomena of projectile effect on concrete	10
2.2.2	Nose shape of projectile, concrete	
	penetration and velocity	15
2.2.3	Impact velocity	18
2.2.4	Specific design thickness of concrete target	
	due to impact loading	19
2.2.5	Dimensionless penetration depth modified	
	formula	20
2.2.5.1	Modified Petry formula (I and II)	22
2.2.5.2	Ballistic Research Laboratory (BRL)	
	formula	23
2.2.5.3	Army Corp of Engineering (ACE) formula	23
2.2.5.4	Modified National Defense Research	
	Committee (NDRC) formula	24
2.2.5.5	Amman and Whitney formula	25
2.2.5.6	UKEA (United Kingdom Atomic Energy	
	Authority) formula	26
2.2.5.7	Hughes formula	27
2.3	Impact loading on foamed concrete	28
2.4	Deformation mechanism in cellular materials	29
2.4.1	Deformation of air porous of foamed	
	concrete	30
2.4.2	Mechanism of foamed concrete under	
	impact loading	31
2.5	Energy-absorption mechanism	32
2.5.1	Elastic and plastic stress wave in energy	
	absorption mechanism	32
2.5.2	Energy absorption in foam materials	34
2.5.3	Plastic impact and dissipation of impact	
	energy	35
2.6	Numerical and Simulation modeling	36
2.6.1	Quasi-brittle materials fracture	37
		5,

	2.6.2	Computational modeling and simulation of	
		quasi-brittle materials	37
	2.6.3	Finite and Discrete Element method (FE/DE	
		method)	39
	2.6.4	The result validity	40
	2.6.5	Crack development	40
	2.6.5.1	The rotating crack model	41
	2.6.5.2	The isotropic of Mohr-Coulomb model	42
	2.7	Conclusion of literature review	43
CHAPTER 3	RESEA	RCH OF METHODOLOGY	46
	3.1	Introduction	46
	3.2	Experimental work method	49
	3.2.1	Material preparation	49
	3.2.1.1	Foaming agent	50
	3.2.1.2	Cement	50
	3.2.1.3	Fine aggregate	51
	3.2.1.4	Water	51
	3.2.1.5	Rice Husk Ash (RHA)	51
	3.2.1.6	Polypropylene Fibre (PF)	52
	3.2.2	Mix proportion and produce model	
		specimens	53
	3.2.2.1	Foamed concrete and ratio of its material	
		constituent	54
	3.2.2.2	Ratio foamed concrete with RHA	55
	3.2.2.3	Ratio foamed concrete with PF	55
	3.2.2.4	Curing	56
	3.2.3	Testing of specimen	56
	3.2.3.1	Determination of chemical content and	
		material composition	56
	3.2.3.2	Microstructure and identification element	
		composition of materials	57
	3.2.3.3	Compressive strength	58

3.2.3.4	Tensile strength	58
3.2.3.5	Modulus elasticity and Poisson's ratio	60
3.2.4	Impact experiment	60
3.2.4.1	Slab fabrication	61
3.2.4.2	Specific design for localised effect subjected	
	to impact loading	63
3.2.4.3	Drop Weight Impact Test	67
3.2.4.3.1	Impactor	67
3.2.4.3.2	Drop Height Tower	68
3.2.4.3.3	Slab target	70
3.2.4.3.4	Measuring penetration depth	71
3.3	Analytical Model	72
3.3.1	Hemi-spherical nose-shape of impactor	72
3.3.2	Penetration depth area	73
3.3.3	Diameter assumption	73 73
3.3.4	Impact velocity of penetration depth	
	prediction	73
3.4	Numerical simulation methods	74
3.4.1	Consideration in utilizing ELFEN software	75
3.4.2	ELFEN simulation of foamed concrete slab	
	impact	75
3.4.3	Numerical Models	76
3.4.3.1	Model description	76
3.4.3.2	Loading	79
3.4.3.3	Boundary condition	79
3.4.3.4	Target materials properties: Foamed	
	concrete properties	80
3.4.3.5	Meshing	84
3.5	Conclusion of methodology	85

CHAPTER 4	EXPERI	MENTAL WORKS ANALYSIS	87
	4.1	Introduction	87
	4.2	Material properties	87
	4.2.1	Contribution of RHA as substitute Fine	
		Aggregate to improving strength of foamed	
		concrete	88
	4.2.1.1	XRD and XRF analysis	88
	4.2.1.2	Microstructure of foamed concrete with	
		RHA as sand replacement	90
	4.2.1.3	Compressive strength of foamed concrete	
		containing RHA	93
	4.2.1.4	Compressive strength with differences of	
		curing days	94
	4.2.1.5	Tensile strength of foamed concrete with	
		RHA	95
	4.2.2	Influence of Polypropylene Fibre in foamed	
		concrete	97
	4.2.2.1	Contribution PF on compressive strength of	
		foamed concrete	98
	4.2.2.2	Contribution PF on tensile strength of	
		foamed concrete	100
	4.2.2.3	Comparison of compressive and tensile	
		strength with differences curing days	100
	4.2.2.4	Microstructure of foamed concrete with PF	101
	4.3	Impact experiment analysis	103
	4.3.1	Influence of thickness on the impact loading	
		in present study	108
	4.3.2	Deformation mechanism of cell porous of	100
		foamed concrete	108
	4.3.3	Effect of RHA and PF in foamed concrete	
		subjected to impact loading	110
	4.3.3.1	Effect of RHA in foamed concrete subjected	
		to impact loading	111

113
114
117
117
117
120
123
123
125
125
126
126
127
130
134
139
139
139 141
141
141 145
141 145 147

	6.2.1	Parametric local damage	148
	6.2.2	Post failure of foamed concrete in numerical	
		simulation	150
	6.2.3	Post failure of modifications of foamed	
		concrete in numerical simulation	156
	6.2.4	Appraisal of penetration depth	165
	6.3	Validation of simulation model and	
		experimental results	168
	6.4	Kinetic energy	174
	6.5	Elastic and inelastic energy of target slab	179
	6.5.1	Elastic and inelastic energy of foamed	
		concrete target	179
	6.5.2	Elastic and inelastic energy of foamed	
		concrete with RHA	181
	6.5.3	Elastic and inelastic energy of foamed	
		concrete with PF	184 NAH
	6.6	Conclusion of numerical simulation	185
CHAPTER 7	CONCL	USION AND RECOMENDATIONS	187
	7.1	Foamed concrete as the selected target	
		material	188
	7.1.1	Porosity of foamed concrete and its	
		modifications	188
	7.1.2	Absorb impact energy on foamed concrete	189
	7.1.3	Foamed concrete with RHA and PF	
		modification	189
	7.1.4	Ratio of foamed concrete and its	
		modifications	190
	7.1.5	Properties of foamed concrete and its	
		modifications	191
	7.2	Penetration depth investigation	192
	7.2.1	The impact loading and ballistic application	193

	7.2.3	Experimental result and observation for	
		penetration depth of foamed concrete and its	
		modifications	194
	7.3	The development analytical model	195
	7.3.1	Penetration depth formula from previous	
		researchers	195
	7.3.2	Present study penetration depth empirical	
		formula	196
	7.3.3	Dimensionless function to predict the	
		penetration depth of foamed concrete and its	
		modifications	197
	7.3.4	Comparison of the analytical model and	
		previous formula	197
	7.3.5	Energy absorption	198
	7.4	Development and validation of simulation	
		model with experimental work	199
	7.4.1	Constitutive FE/DE method	199
	7.4.2	Consideration and selection of ELFEN	200
	7.4.3	Numerical simulation modelling	201
	7.4.4	Simulation results and validation of	
		experimental result	201
	7.5	The research contributions	202
	7.6	Recommendation for further research	203
References			204
APPENDICES			210

xiv

LIST OF TABLE

3.1	The materials constituent ratio for producing	
	foamed concrete.	55
3.2	Ratio of foamed concrete with RHA.	55
3.3	Ratio of foamed concrete with PF.	56
3.4	Amount of slab specimens.	62
3.5	Dimensionless of penetration depth function	
	as reference of slab thickness.	65
3.6	Impactor material properties.	78
3.7	Properties of foamed concrete and its	78
	modifications for elastic phase in simulation	
	modelling.	80
3.8	Properties of foamed concrete and its	
	modifications for slab target required to	
	plastic phase in simulation modelling.	82
3.9	Values of strain rate dependency of foamed	
	concrete and its modifications.	83
3.10	Summary of test specimens and slab target	
	for the experimental work.	86
4.1	Chemical composition of un-control burning	
	of RHA.	89
4.2	Foamed concrete with RHA for each target	
	density.	93
4.3	List of samples specimens.	98
4.4	Compressive and tensile strength of foamed	
	concrete with ratio PF_2C_3 in different curing	
	days.	101

4.5	Results of local effect on foamed concrete	
	and its modification	107
4.6	FC+RHA properties in 28 curing days used	
	as slab target specimens	115
4.7	Foamed concrete with PF in 28 curing days.	116
5.1	Calculation of penetration depth of foamed	
	concrete and its modification comforting to	
	Equation 5.22 which the diameter	
	assumption is using the diameter of	
	impactor.	128
5.2	Calculation of penetration depth of foamed	
	concrete using Equation 5.22 where the	
	diameter assumed is the diameter of hemi-	
	spherical of crater from the experiment	
	results.	132
5.3	Comparison calculation previous	132 AMINAH
	investigation with Equation 5.22 for foamed	
	concrete and its modifications as target	
	material.	137
5.4	Energy absorption between experimental	
	results and prediction.	142
5.5	Behaviour of impactor after stroke on	
	foamed concrete and its modifications	144
6.1	Comparison diameter of crater between	
	simulation and experiment results.	149
6.2	Comparison of penetration depth of	
	simulation and experimental results.	168
7.1	Modifications foamed concrete ratio	191

LIST OF FIGURES

1.1	Relation and dependence of dimensionless	
	penetration depth (h/d) in impact function (I) for	
	concrete target, that comparison between	
	empirical and experimental.	3
2.1	Phenomena projectile when hit on concrete.	11
2.2	Projectile penetration on slab concrete create	
	crater and crack propagation.	11
2.3	Penetration Cone Cracking.	12
2.4	Front face damage as cratering and spalling, is	12 AMINAH
	created when projectile hits the high strength	
	concrete.	12
2.5	Radial crack (a) proximal and (b) distal face.	13
2.6	Spalling (front face) and Scabbing (rear face).	14
2.7	Perforation.	14
2.8	The mesh reinforced concrete slab overall failure	
	after hit by non deformable projectile.	15
2.9	Soft nose projectile buckling after hit slab	
	reinforced concrete.	16
2.10	Scabbing of slab reinforced concrete after hit by	
	hard nose projectile.	16
2.11	Maximum reaction force on target thickness	
	when hit by different hardness of projectile nose	16
2.12	Penetration depth versus different nose-shape	
	projectile.	17
2.13	Impact velocity versus penetration depth of	
	concrete target object.	18

2.14	Comparison local damage failure with results of	
	the NDRC formula.	19
2.15	Local damage due to impact loading.	20
2.16	The comparison of various empirical formulas	
	for penetration depth (X).	21
2.17	The examples of comparison between various	
	empirical of penetration depth of calculation.	21
2.18	Variation coefficient of concrete penetrability K _p	
	with the unconfined compressive strength of	
	concrete.	22
2.19	Results comparison of (a) high strength normal	
	concrete subjected by conical-nose shape	
	projectile impact, (b) foamed concrete impacted	
	by conical-nose shape projectile and (c) foamed	
	concrete impacted by flat-nose projectile.	29
2.20	Foam effect on cell porous of foamed concrete	
	when impact loading generate mechanism of	29 AMINAH
	deformation (a) open cell of porous (b) cell wall	
	porous bending and wall axial deformation (c)	
	air flow between cell porous.	30
2.21	Schematic compressive stress-strain curves for	
	elastic-plastic foam materials.	31
2.22	Stress wave propagation when target slab	
	subjected to impact loading.	32
2.23	Compressive stress wave produce reflected	
	tensile wave and spalling.	33
2.24	Deformation or cracking occur at constrained	
	slab due to increasing compressive stress wave.	
	Energy will be dissipated in this area.	33
2.25	Comparison energy absorption in stress-strain	
	curve between dense elastic solid and foam	
	material.	35

2.26	Reasonable comparison of experimental result	
	and discrete modelling.	38
2.27	Penetration of flat nose on concrete slab with 102	
	m/s impact velocity (left) and 186 m/s are the	
	same results as experimental work.	39
2.28	Rotating crack model	42
2.29	Mohr-Coloumb model provided by ELFEN	43
3.1	Research Methodology flow chart.	47
3.2	Foam generator and its product of effervescence.	50
3.3	Natural sand as fine aggregate.	51
3.4	The sample of the Rice Husk Ash.	52
3.5	Chopped Polypropylene fibre.	53
3.6	Cube specimens 100x100x100 mm ³ .	54
3.7	Specimens cylinder 300 mm of height and 150	
	mm of diameter.	54
3.8	X-Ray Diffraction machine.	57
3.9	Scanning Electron Microscope (SEM).	57
3.10	Universal Testing Machine.	58
3.11	Compression Machine 3000kN and test	
	specimen.	59
3.12	Mixture of foamed concrete.	61
3.13	Slab target.	63
3.14	Mold of slab foamed concrete specimens.	63
3.15	Slab specimen were remove from mold and air	
	curing.	64
3.16	Relations between I and X_f / d as reference	
	designing of thickness.	66
3.17	Schematic diagram of the drop weight impact,	
	where H is height of drop and t is thickness of	
	slab target.	67
3.18	Bowling ball composite as a model of non-	
	deformable spherical nose projectile.	68

3.19	Implementation of dropping impactor from the	
	box impactor host	68
3.20	Box impactor host.	68
3.21	Scaffolding and box impactor host with slab	
	target.	69
3.22	Placement and mounting slab target bearing.	70
3.23	Locating the mid-point of the surface target by	
	wing a steel plumb bob.	70
3.24	Measurement of yarn on diameter crater.	71
3.25	Cross section of crater due to impact loading	
	with penetration depth X_p and radius r_c	71
3.26	The impactor spins when dropped. The bottom	
	part is the area of the hemi-spherical, A (shaded	
	in area).	72
3.27	Geometric properties of slab target made of	76 NAH
	foamed concrete and its modifications.	76
3.28	Geometric properties if impactor (1/2 size) and	
	foamed concrete slab target model in 2D.	77
3.29	Geometric properties of impactor and foamed	
	concrete slab target model in 3D.	77
3.30	Symmetrical modeling of impactor (1/8 size) and	
	target (1/4 size).	78
3.31	Constraints of impactor and slab target model.	80
3.32	Dependency of strain rate of foamed concrete.	83
3.33	Strain rate of foamed concrete with RHA.	84
3.34	Strain rate of foamed concrete with PF.	84
4.1	XRD amorphous of RHA uncontrolled burning	
	700° C, ± 6 hours.	90
4.2	Microstructure of cross section foamed concrete	
	with RHA as sand replacement.	90
4.3	EDS result test for chemical composition of S01.	91
4.4	EDS result test for chemical composition of S02.	92

4.5	Compressive strength of foamed concrete with	
	RHA as sand replacement and FC control in	
	various density: 1400 kg/m ³ , 1600 kg/m3 and	
	1800 kg/m^3 .	94
4.6	Compressive strength of foamed concrete with	
	ratio C ₃ RH ₃ of RHA with different curing days.	95
4.7	Tensile strength foamed concrete with and	
	without RHA in various densities: 1400. 1600	
	and 1800 Kg/m ³ .	96
4.8	Tensile strength foamed concretewith RHA in	
	various ratio of Cement/Sand/RHA.	96
4.9	Compressive strength foamed concrete with PF	
	and without PF.	99
4.10	Tensile strength foamed concrete with and	
	without PF.	100
4.11	Micro crack found on foamed concrete (FC ₂).	101
4.12	(a) PF fill in porous (circle); (b) Interfacial	
	bonding between PF and matrix (circle), in	
	PF_2C_2 .	102
4.13	Local effect on foamed concrete with 9.9 m/s	
	impact velocity.	104
4.14	Local damaged on foamed concrete with 8.9 m/s	
	impact velocity.	104
4.15	Local damaged on foamed concrete with 7.7m/s	
	impactor velocity.	105
4.16	Local damage on foamed concrete: (a) crater that	
	formed by 9.9 m/s impact velocity; (b) fragment	
	was not found in crater by 7.7 m/s impact	
	velocity.	106
4.17	Penetration depth vs impact velocity for foamed	
	concrete.	107
4.18	Penetration depth for various thicknesses of slab	
	target: 160mm, 270mm, 380mm and 490 mm.	108

4.19	Surface of structure of foamed concrete 0.6 w/c	
	ratio.	109
4.20	Foamed concrete structure w/c 0.6 similar to cell	
	porous materials.	109
4.21	Comparison of penetration depths of FC,	
	FC+RHA and FC+PF	111
4.22	Fragment in crater field of foamed concrete with	
	RHA due to 9.9 m/s impact velocity.	112
4.23	Crater formed on surface of foamed concrete due	
	to 9.9 m/s impact velocity and fragments in the	
	field of crater.	113
4.24	Crater formed on surface of foamed concrete	
	with PF due to 9.9 m/s impact velocity and radial	
	crack seen in around the crater (black line).	114
5.1	(a) Stage 1: penetration of missile into slab rigid	
	concrete. (b) Transition between stage 1 and stag	
	2: Shear bell shape plug is formed. (c) Stage 2:	
	Scabbing process on the rear slab face where the	
	plug of shear fails.	124
5.2	Penetration depth of foamed concrete between	
	analytical and experimental work.	129
5.3	Penetration depth of foamed concrete with RHA	
	between analytical and experimental work.	130
5.4	Penetration depth of foamed concrete + PF	
	between analytical and experimental work.	130
5.5	Penetration depth of foamed concrete between	
	analytical and experimental work with diameter	
	of hemi-spherical assumption.	133
5.6	Penetration depth of foamed concrete with RHA	
	between analytical and experimental work with	
	diameter of hemi-spherical assumption.	133

5.7	Penetration depth of foamed concrete with PF	
	between analytical and experimental work with	
	diameter of hemi-spherical assumption.	133
5.8	Dimensionless of Penetration depth X_p/d on	
	impact function I, comparing the analytical	
	prediction and experiment results by using	
	average crater diameter assumption.	140
5.9	Energy absorption – Penetration depth of foamed	
	concrete.	143
5.10	Energy absorption – Penetration depth of foamed	
	concrete + RHA.	143
5.11	Energy absorption – Penetration depth of foamed	
	concrete + PF.	144
6.1	Foamed concrete slab target subjected to	
	impactor at 9.9 m/s impact velocity.	150
6.2	Local damage simulation of foamed concrete	
	slab subjected to a 9.9 m/s impact velocity.	151
6.3	Plastic energy of foamed concrete slab subjected	
	to a 9.9 m/s impact velocity at 0.801659µs.	153
6.4	Plastic energy of foamed concrete slab subjected	
	to a 9.9 m/s impact velocity at 0.882592µs.	153
6.5	Plastic energy of foamed concrete slab subjected	
	to a 9.9 m/s impact velocity at 0.947338µs.	153
6.6	Plastic energy of foamed concrete slab subjected	
	to a 9.9 m/s impact velocity at post failure.	154
6.7	Local damage simulation of foamed concrete	
	slab subjected to an 8.9 m/s impact velocity.	155
6.8	Plastic energy of foamed concrete slab subjected	
	to an 8.9 m/s impact velocity at post failure.	155
6.9	Local damage simulation of foamed concrete	
	slab subjected to a 7.7 m/s impact velocity.	155
6.10	Plastic energy of foamed concrete slab subjected	
	to a 7.7 m/s impact velocity at post failure.	156

6.11	Local damage simulation of foamed concrete	
	slab with RHA subjected to a 9.9 m/s impact	157
	velocity.	
6.12	Plastic energy of foamed concrete slab with	
	RHA subjected to a 9.9 m/s impact velocity at	
	0.333954µs.	157
6.13	Plastic energy of foamed concrete slab with	
	RHA subjected to a 9.9 m/s impact velocity at	
	0.800808µs.	158
6.14	Plastic energy effect at the bottom of foamed	
	concrete slab with RHA subjected to a 9.9 m/s	
	impact velocity at post failure.	158
6.15	Local damage simulation of foamed concrete	
	slab with RHA subjected to an 8.9 m/s impact	
	velocity.	159 A M A H
6.16	Plastic energy of foamed concrete slab with	
	RHA subjected to an 8.9 m/s impact velocity at	
	post failure.	159
6.17	Plastic energy effect at the bottom of foamed	
	concrete slab with RHA subjected to an 8.9 m/s	
	impact velocity at post failure.	160
6.18	Local damage simulation of foamed concrete	
	slab with RHA subjected to a 7.7 m/s impact	
	velocity	160
6.19	Plastic energy of foamed concrete slab with	
	RHA subjected to a 7.7 m/s impact velocity at	
	post failure.	161
6.20	Local damage simulation of foamed concrete	
	slab with PF subjected to a 9.9 m/s of impact	
	velocity.	161
6.21	Plastic energy of foamed concrete slab with PF	
	subjected to a 9.9 m/s impact velocity at post	
	failure.	162

6.22	Plastic energy effect at the bottom of foamed	
	concrete slab with PF subjected to a 9.9 m/s	
	impact velocity at post failure.	162
6.23	Local damage simulation of foamed concrete	
	slab with PF subjected to an 8.9 m/s impact	163
	velocity.	
6.24	Plastic energy of foamed concrete slab with PF	
	subjected to an 8.9 m/s impact velocity at post	
	failure.	163
6.25	Local damage simulation of foamed concrete	
	slab with PF subjected to 7.7 m/s impact	164
	velocity.	
6.26	Plastic energy of foamed concrete slab with PF	
	subjected to 7.7 m/s impact velocity at post	
	failure.	164
6.27	Node 12 that has the maximum deformation as	
	maximum penetration.	165
6.28	Deformation Node 12 as representative of	
	penetration depth of foamed concrete and its	
	modifications with 9.9 m/s impact velocity.	166
6.29	Deformation Node 12 as representative of	
	penetration depth of foamed concrete and its	
	modifications with 8.9 m/s impact velocity.	167
6.30	Deformation Node 12 as representative of	
	penetration depth of foamed concrete and its	
	modifications with 7.7 m/s impact velocity.	167
6.31	Simulation result of foamed concrete subjected	
	by dynamic impact is mirrored to represent a full	
	slab.	169
6.32	Validation between simulation and experiment	
	result for foamed concrete subjected to a 9.9 m/s	
	impact velocity.	170

REFERENCES

- ACE. (1946). Fundamentals of Protective Structures, Report AT120 AT1207821, Army Corps of Engineers, Office of the Chief of Engineers.
- Adeli, H., & Amin, A. M. (1985). Local effects of impactors on concrete structures. *Nuclear Engineering and Design*, 88(3), 301-317.
- AI-Khalaf, M. N., & Yousif, H. A. (1984). Use of Rice Husk Ash in Concrete. The International Journal of Cement Composites and Lightweight Concrete, 6, 241-248.
- Aldridge, D. (2005). *Introduction To Foamed Concrete : What, Why, How?* Paper presented at the Used of Foamed Concrete in Construction, International Confrence of University of Dundee, Scotland UK.
- Aldrige, D., & Ansell, T. (2001). Foam concrete: production and equipment design, properties, application and potential. Paper presented at the In Proceedings one day seminar on foamed concrete: Properties, applications and latest technological developments, Loughborough University.
- Alhozaimy, A. M., Soroushian, P., & Mirza, F. (1996). Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. *Cement and Concrete Composites*, 18(2), 85-92.
- Ali, M., Qamhiyah, A., Flugrad, D., & Shakoor, M. (2006). Compact Energy Absorbing Cellular Structure. *Structure Under Shock and Impact IX*, 87, 413-429.
- Amirikian, A. (1950). Design of Protective Structures, Report NT-3276, The Americans Society of Civil Engineers. Bureau of Yards and Docks, Department of the Navy Washington, D.C.
- Ando, T., Kishi, N., Mikami, H., & Matsuoka, K. G. (2000). Weight Falling Impact Tests On Shear-failure Type RC Beams Without Stirrups. *Structures Under Shock and Impact VI*, 579-587.
- ASTM-230. (1998). Specification for flow table for use in test of hydraulic cement.
- ASTM-C31/C-31M-00. (2000). Standard Practice for Making and Curing Concrete Test Specimens in Field. 04.02.
- Backman, M. E., & Goldsmith, W. (1978). The mechanics of penetration of projectiles into targets. *International Journal of Engineering Science*, 16(1), 1-99.
- Bangash, M. Y. H. (1989). Concrete and Concrete Structures: numerical modelling and application. *Elsevier Applied Science*.
- Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. *Cement and Concrete Research*, *36*(7), 1263-1267.
- Barr, P. (1990). Guidelines for the design and assessment of concrete structures subjected to impact. . *Report, UK Atomic Energy Authority, Safety and Reliability Directortae, HMSO, London.*

- Bazant, Z. P., & Kazemi, M. T. (1990). Determination of Fracture Energy, Process Zone Length and Brittleness number from Size Effect, With Application to Rock and Concrete. International Journal of Fracture, 44, 111-131.
- Bazant, Z. P., & Pfeiffer, P. A. (1987). Determination of Fracture Energy from Size Effect and Brittleness Number. ACI Material Journal 84(6), 463-480.
- Behnood, A., & Ghandehari, M. (2009). Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Safety Journal, 44(8), 1015-1022.
- Bentur, A., Mindess, S., & Vondran, G. (1989). Bonding in polypropylene fibre reinforced concretes. International Journal of Cement Composites and Lightweight Concrete, 11(3), 153-158.
- Beppu, M., Miwa, K., Itoh, M., Katayama, M., & Ohno, T. (2008). Damage evaluation of concrete plates by high-velocity impact. International Journal of Impact Engineering, 35(12), 1419-1426.
- Berriaud, C., Sokolovxky, A., Geuraud, R., Dulac, J., & Labrot, R. (1978). Local Behaviour of reinforced Concrete Walls Under Missile Impact. Nuclear Engineering and Design, 45, 457-469.
- Bischoff, P. H., & Perry, S. H. (1991). Compressive Behaviour of Concrete at High Strain Rates. Materials and Structures 24(6), 425-450.
- Booker, P. M., Cargile, J. D., Kistler, B. L., & La Saponara, V. (2009). Investigation on the response of segmented concrete targets to projectile impacts. MINAT International Journal of Impact Engineering, 36(7), 926-939.
- BS1881:Parts III. (1983). Testing Concrete. British Standards Institutions.
- BS-EN-12390-3:2009. (2009). Compressive Strength of Test Specimens.
- BS-EN-12390-6:2009. (2009). Testing Hardened Concrete Part 6: Tensile Splitting Strength of Test Specimens.
- BSEN-197-1. (2000). Cement —Part 1: Composition, specifications and conformity criteria for common cements.
- BSEN-450-1. (2005). Fly ash for concrete Part 1: Definition, specifications and conformity criteria.
- BSEN-882. (1992). Specification for aggregates from natural sources for concrete.
- Bulson, P. S. (1997). Explosive Loading of Engineering Structures. London: E & FN Spon.
- Cantwell, W. J., & Morton, J. (1989). The influence of varying projectile mass on the impact response of CFRP. Composite Structures, 13(2), 101-114.
- Chang, W. S. (1981). Impact of Solid Missiles on Concrete Barriers. J. Struct. Div. ASCE, 107(ST2), 257-271.
- Chareerat, T., Pimraksa, K., Chindaprasirt, P., Maegawa, A., & Hatanaka, S. (2008). Composition and Microstructure of Fly Ash Geopolymer Containing Rice Husk Ash. Paper presented at the Technology and Innovation for Sustainable Development Conference (TISD2008), Faculty of Engineering, Khon Kaen University, Thailand.
- Chelapati, C. V., Kennedy, R. P., & Wall, I. B. (1972). Probabilistic assessment of aircraft hazard for nuclear power plants. Nuclear Engineering and Design, 19(2), 333-364.
- Chen, X. W., & Li, Q. M. (2002). Deep penetration of a non-deformable projectile with different geometrical characteristics. International Journal of Impact Engineering, 27(6), 619-637.

- D.R.J.Owen, Feng, Y. T., Jianguo, y., & Peric, D. (2001). Finite/Discrete Element Analysis of Multi-Fracture and Multi-Contact Phenomena. VECPAR 2000, LNCS 1981, 483-505.
- Dancygier, A. N., & Yankelevsky, D. Z. (1996). High strength concrete response to hard projectile impact. *International Journal of Impact Engineering*, 18(6), 583-599.
- ELFEN3.7.1. (2004). Rockfield Software Ltd., Swansea, UK.
- Frew, D. J., Forrestal, M. J., & Cargile, J. D. (2006). The effect of concrete target diameter on projectile deceleration and penetration depth. *International Journal of Impact Engineering*, 32(10), 1584-1594.
- Furlan Jr, S., & de Hanai, J. o. B. (1997). Shear behaviour of fiber reinforced concrete beams. *Cement and Concrete Composites*, 19(4), 359-366.
- Gibson, L. J., & Ashby, M. F. (1997). *Cellular Solids Structure and Properties* (second ed.): Cambridge University Press.
- Gwaltney, R. C. (1968). Missile Generation and Protection in Light-Water-Cooled Power Reactor Plants (No. ORNL-NSIC--22 United StatesTue Feb 05 19:47:12 EST 2008Dep. CFSTI.ORNL; NSA-22-050739English).
- Haifeng, L., & Jianguo, N. (2009). Mechanical behavior of reinforced concrete subjected to impact loading. *Mechanics of Materials*, 41(12), 1298-1308.
- Haldar, A., & Hamieh, H. (1984). Local Effect of Solid Missiles on Concrete Structures. *ASCE J. Struct. Div.*, 110(5)(948-60).
- Hughes, G. (1984). Hard missile impact on reinforced concrete. *Nuclear Engineering and Design*, 77(1), 23-35.
- Hutchings, I. M. (1979). Energy Absorbed By Elastic Wave During Plastic Impact. J. *Phys. D*, 12, 1819-1824.
- Ismail, M. S., & Waliuddin, A. M. (1996). Effect of Rice Husk on High Strength Concrete. *Construction and Building Materials*, 10(7), 521-526.
- Jaini, Z. M., & Feng, Y. T. (2010). Computational Modelling of Damage and Fracture Behaviour of Reinforced Slabs Subjected to Blast Loading. Paper presented at the The first International Conference of Protective Structure
- Jensen, J. J. (1979). *Impact of falling loads on submerged structures*. Paper presented at the Proc. of Int. Symp. on Offshore Structure, Rio de Janeiro.
- Jensen, J. J., & Hoiseth, K. (1983). Impact of Droppred Objects on Lightweight Concrete. *Nordic Concrete Research*, 2, 102-113.
- Jones, M. R., & McCarthy, A. (2005). Preliminary views on the potential of foamed concrete as a structural material. *Mag Concr Res*, 57, 21-31.
- Jones, M. R., & McCarthy, A. (2006). Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. *Cement and Concrete Research*, *36*(6), 1032-1041.
- Jones, M. R., & Zheng, L. (2012). Energy Absorption of Foamed Concrete from Low-Velocity Impact. *ICE Publishing*, 65(4), 209-219.
- Jones, S. E., & Rule, W. K. (2000). On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction. *International Journal of Impact Engineering*, 24(4), 403-415.
- Just, A., & Middendorf, B. (2009). Microstructure of high-strength foam concrete. *Materials Characterization*, 60(7), 741-748.
- Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. *Construction and Building Materials*, 27(1), 73-77.

- Karahan, O., & AtiÅŸ, C. D. (2010). The durability properties of polypropylene fiber reinforced fly ash concrete. *Materials & Design*, *32*(2), 1044-1049.
- Kearsley, E. P. (1999). Just foamed concrete an overview. In: Dhir R.K., Handerson NA, editors. Specialist techniques and materials for construction. London:Thomas Telford, pp. 227-237.
- Kearsley, E. P., & Mostert, H. F. (1997). Use of foamed concrete in South Africa. In: Proceedings from the ACI international conference on high performance concrete. sp 172-48. pp. 919-934.
- Kearsley, E. P., & Wainwright, P. J. (2001). The effect of high fly ash content on the compressive strength of foamed concrete. *Cement and Concrete Research*, 31(1), 105-112.
- Kearsley, E. P., & Wainwright, P. J. (2002). Ash content for optimum strength of foamed concrete. *Cement and Concrete Research*, 32(2), 241-246.
- Kearsley, E. P., & Wainwright, P. J. (2002). The effect of porosity on the strength of foamed concrete. *Cement and Concrete Research*, *32*(2), 233-239.
- Kennedy, R. P. (1976). A review of procedures for the analysis and design of concrete structures to resist missile impact effects. *Nuclear Engineering and Design*, 37(2), 183-203.
- Klerck, P. A., Sellers, E. J., & Owen, D. R. J. (2004). Discrete fracture in quasibrittle materials under compressive and tensile stress states. *Computer Methods in Applied Mechanics and Engineering*, 193(27–29), 3035-3056.
- Kojima, I. (1991). An experimental study on local behavior of reinforced concrete slabs to missile impact. *Nuclear Engineering and Design*, *130*(2), 121-132.
- Lee, Y. L., & Hung, Y. T. (2005). Exploitation of Solid Wastes in Foamed Concrete Challenges Ahead. Paper presented at the Use of Foamed Concrete in Construction, International Confrence of University of Dundee, Scotland, UK Thomas Relford.
- Leppänen, J. (2006). Concrete subjected to projectile and fragment impacts: Modelling of crack softening and strain rate dependency in tension. *International Journal of Impact Engineering*, 32(11), 1828-1841.
- Li, Q. M., & Chen, X. W. (2003). Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile. *International Journal of Impact Engineering*, 28(1), 93-116.
- Li, Q. M., Reid, S. R., & Ahmad-Zaidi, A. M. (2006). Critical impact energies for scabbing and perforation of concrete target. *Nuclear Engineering and Design*, 236(11), 1140-1148.
- Li, Q. M., Reid, S. R., Wen, H. M., & Telford, A. R. (2005). Local impact effects of hard missiles on concrete targets. *International Journal of Impact Engineering*, 32(1-4), 224-284.
- Li, Y.-X., Chen, Y.-M., Wei, J.-X., He, X.-Y., Zhang, H.-T., & Zhang, W.-S. (2006). A study on the relationship between porosity of the cement paste with mineral additives and compressive strength of mortar based on this paste. *Cement and Concrete Research*, 36(9), 1740-1743.
- Liew, A. C. M. (2005). *New Innovative Lightweight Foam Concrete Technology*. Paper presented at the Proceeding of the International Conference: Use of Foamed Concrete in Construction, University of Dundee, Scotland, UK.
- Lo, T. Y., & Cui, H. Z. (2004). Effect of porous lightweight aggregate on strength of concrete. *Materials Letters*, 58(6), 916-919.
- Lo, T. Y., Tang, W. C., & Cui, H. Z. (2007). The effects of aggregate properties on lightweight concrete. *Building and Environment*, 42(8), 3025-3029.

- Lu, G. a. Y., T. (2003). Energy Absorption of Structures and Materials. Abington Cambridge, England: Woodhead Publishing Limited.
- May, I. M., Chen, Y., D.R.J.Owen, Feng, Y. T., & Bere, A. T. (2005). *Experimental Testing and Finite Element Simulation of the Behaviour of Reinforced Concrete Beams Under Impact Loading.* Paper presented at the VIII International Conference on Computational Plasticity COMPLAS VIII, Barcelonna.
- Mujahid, A. Z. A., & Li, Q. M. (2009). Investigation on Penetrating Resistance of Foamed Concrete. *Structure and Building*, *162*, 77-85.
- Nambiar, E. K. K., & Ramamurthy, K. (2006a). Influence of filler type on the properties of foam concrete. *Cement and Concrete Composites*, 28(5), 475-480.
- Nambiar, E. K. K., & Ramamurthy, K. (2006b). Models relating mixture composition to the density and strength of foam concrete using response surface methodology. *Cement and Concrete Composites*, 28(9), 752-760.
- Nambiar, E. K. K., & Ramamurthy, K. (2007). Sorption characteristics of foam concrete. *Cement and Concrete Research*, 37(9), 1341-1347.
- Narayanan, N., & Ramamurthy, K. (2000). Structure and Properties of Aerated Concrete: A Review. *Cement and Concrete Composites*, 22, 321-329.
- NDRC. (1946). Effect of impact and Explosion. Summary Technical Report of Division 2, vol.1, National Defence Research Commitee, Washington, DC.
- Newman, J., & Owens, P. (2003). Properties of lightweight concrete. In Advanced Concrete Technology Set (pp. 3-29). Oxford: Butterworth-Heinemann.
- Nili, M., & Afroughsabet, V. (2009). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. *Construction and Building Materials*, 24(6), 927-933.
- Odler, I. (2000). Special Inorganic Cement (Vol. 8). New York: E & FN Spon.
- Oh, B.-H., Jang, S.-Y., & Hyum-Kyun, B. (1999). Prediction of Fracture Energy of Concrete. *KCI Concrete Journal* 11(3), 211-221.
- Papayianni, I., & Milud, I. A. (2005). *Production of Foamed Concrete With Heigh Calcium Fly Ash.* Paper presented at the Used of Foamed Concrete in Construction, University of Dundee, Scotland UK.
- Park, S. W., Xia, Q., & Zhou, M. (2001). Dynamic behavior of concrete at high strain rates and pressures: II. numerical simulation. *International Journal of Impact Engineering*, 25(9), 887-910.
- Pine, R. J., Coggan, J. S., Flynn, Z. N., & Elmo, D. (2006). The Development of New Numerical Moddeling Approach for Natureally Fractured Rock Masses *Rock Mechanics and Rock Engineering*, 39(5), 395-419.
- Piqué, E. J. (2002). Fracture process zone of quasi brittle materials: a model material approach. Technische Universiteit Eindhoven., Eindhoven.
- Ramamurthy, K., Nambiar, E. K., & Indu Siva Ranjani, G. (2009). A classification of studies on properties of foam concrete. *Cement and Concrete Composites*, 31(6), 388-396.
- Ramezaniapour, A. A., Mahdi Khani, M., & Ahmadibeni, G. (2009). The effect of Rice Husk Ash on Mechanical Properties and Durability of Suistainable Concretes. *International Journal of Civil Engineering*, 7, 83-91.
- Raphael, J. M. (1984). Tensile Strength of Concrete. Journal of the American Concrete Institute, 158-165.
- Riera, J. D. (1989). Penetration, scabbing and perforation of concrete structures hit by solid missiles. *Nuclear Engineering and Design*, 115(1), 121-131.

- Riera, J. D., & Iturrioz, I. (1998). Discrete elements model for evaluating impact and impulsive response of reinforced concrete plates and shells subjected to impulsive loading. *Nuclear Engineering and Design*, 179(2), 135-144.
- RodrÃ-guez de Sensale, G. (2006). Strength development of concrete with rice-husk ash. *Cement and Concrete Composites*, 28(2), 158-160.
- Serrano-Perez, J. C., Vaidya, U. K., & Uddin, N. (2007). Low velocity impact response of autoclaved aerated concrete/CFRP sandwich plates. *Composite Structures*, 80(4), 621-630.
- Shiu, W., Donzé, F. V., & Daudeville, L. (2008). Penetration prediction of missiles with different nose shapes by the discrete element numerical approach. *Computers & Structures*, 86(21-22), 2079-2086.
- Sliter, G. E. (1980). Assessment of Empirical Concrete Impact Formulas. ASCE J. Struct. Div., 106 (ST5), 1023-1045.
- Sukhla, A., Tekalur, S. A., Gardner, N., Jackson, M., & wang, E. (2009). Performance of Novel Composites and Sandwich Structures Under Blast Loading. In *Major Accomplishments in Composite Materials and Sandwich Structures* (pp. 503-540): Springer Netherlands.
- Sun, Z., & Xu, Q. (2009). Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete. *Materials Science and Engineering:* A, 527(1–2), 198-204.
- Tedesco, J. W., Powell, J. C., Ross, C. A., & Hughes, M. L. (1997). A strain-ratedependent concrete material model for ADINA. *Computers & Structures*, 64(5-6), 1053-1067.
- Teng, T.-L., Chu, Y.-A., Chang, F.-A., & Chin, H.-S. (2004). Simulation model of impact on reinforced concrete. *Cement and Concrete Research*, 34(11), 2067-2077.
- Tipler, P. A. (Ed.). (1991). *Physics for Scientist and Engineering* (third ed. Vol. 1): Worth Publisher, Inc.
- Toyota, K., Okubo, K., Fujii, T., Oguri, T., & Uenoya, T. (2006). Mechanical Properties of Plain-Woven CFRP Reinforced by Spread Fiber Tow During and After Drop-Weight Impact. *Structures Under Shock and Impact IX*, 455-463.
- Whiffen, P. (1943). UK Road Research Laboratory Note No. MOS/311.
- Wu, C.-Y., Li, L.-Y., & Thornton, C. (2005). Energy dissipation during normal impact of elastic and elastic–plastic spheres. *International Journal of Impact Engineering*, 32(1–4), 593-604.
- Yankelevsky, D. Z. (1997). Local response of concrete slabs to low velocity missile impact. *International Journal of Impact Engineering*, 19(4), 331-343.
- Yankelevsky, D. Z., & Avnon, I. (1998). Autoclaved aerated concrete behavior under explosive action. *Construction and Building Materials*, 12(6-7), 359-364.
- Zhang, M. H., Lastra, R., & Malhotra, V. M. (1996). Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. *Cement and Concrete Research*, 26(6), 963-977.
- Zhang, M. H., Shim, V. P. W., Lu, G., & Chew, C. W. (2005). Resistance of highstrength concrete to projectile impact. *International Journal of Impact Engineering*, 31(7), 825-841.
- Zielinski, A. J. (1984). Concrete Structures under impact loading Rates effect. Stevinweg 4: Delft University of Technology Department of Civil Engineering.

