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ABSTRACT 

This research work examined the interplay between three main methods: 

experimental works, analytical model and numerical simulation. The three methods 

employed slabs of foamed concrete and its modifications. The modifications of 

foamed concrete included foamed concrete substituting sand with Rice Husk Ash 

(RHA) and foamed concrete reinforced by Polypropylene fibre (PF). Experimental 

work produced properties data of density, compressive strength, tensile strength, 

modulus of elasticity and Poisson’s ratio of slab specimens. The experiment of 

impact was conducted by using falling-weight impact tower method to get the depth 

of penetration data. The depth of crater as product of impact is called penetration 

depth. The basic properties of materials were used to run the numerical simulation 

and analytical model. The simulation applied the FE/DE method, whilst the 

analytical model was conducted by applying various theories and all its support from 

previous researchers both in empirical and non-empirical. The slab target subjected 

to hemispherical impactor with 7.7, 8.9 and 9.9 m/s impact velocity produced the 

crater without spalling or scabbing. This impact phenomenon was due to effect of 

porosity in matrix of foamed concrete and its modifications as foam material. 

Foamed concrete modifications were stronger than foamed concrete, which gave the 

shallower penetration depth than penetration depth of foamed concrete. Resistance of 

slab specimens subjected to impact loading can be predicted by its penetration depth. 

It can be determined by the assumption, when impactor hit the slab target, the 

diameter of impactor shank entirely into target due to porosity. The dimensional of 

penetration depth was derived when the impactor had kinetic energy and target 

initiate gave a reaction by its compressive strength against the force of impact. The 

dimensional penetration depth can be used as a formula to predict penetration depth 

of foamed concrete and its modification slabs subjected to hemispherical impact 

loading. The numerical simulation results were validated by the experimental results. 

Those three of analyses methods showed a tendency the same results for penetration 

depth. 
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ABSTRAK 

Kajian ini dijalankan bagi mengkaji pengaruh antara tiga analisis utama: kerja-kerja 

kajian makmal, model analitik dan simulasi berangka. Perubahsuaian konkrit berbusa 

termasuklah konkrit berbusa dengan mengganti pasir dengan Abu Sekam Padi 

(RHA) dan konkrit berbusa diperkuat oleh Fiber Polipropelin (PF). Pengubahsuaian 

terhadap konkrit berbusa ini melibatkan tiga kaedah analisis. Kajian makmal 

menghasilkan sifat-sifat ketumpatan, kekuatan mampatan, kekuatan lenturan, 

modulus elastik dan nisbah Poisson konkrit berbusa dan pengubahsuaiannya. Ujikaji 

hentaman dilakukan dengan menggunakan kaedah berat jatuhan menara hentaman 

untuk mendapatkan data kedalaman penembusan. Sifat-sifat asas bahan digunakan 

bagi menjalankan simulasi berangka and model analitik. Simulasi tersebut 

mengaplikasikan kaedah FE/DE bagi teknik analisis untuk simulasi hentaman. Model 

analitik dilakukan dengan menggunakan pendekatan analisis pelbagai teori dan 

kesemuanya disokong oleh penyelidik-penyelidik terdahulu sama ada empirical atau 

bukan empirical. Hentaman terhadap konkrit berbusa dan pengubahsuaian oleh 

penghentak hemisfera dengan kelajuan hentaman 7.7, 8.9 dan 9.9 m/s menghasilkan 

kawah tanpa ‘spalling’ atau ‘scabbing’. Fenomena kesan hentaman disebabkan oleh 

keliangan konkrit berbusa. Perubahsuaian konkrit berbusa lebih kuat daripada 

konkrit berbusa dimana konkrit perubahsuaian mempunyai penembusan lebih 

dangkal daripada konkrit berbusa. Rintangan konkrit berbusa terhadap beban 

hentaman boleh diramalkan melalui penembusannya. Kedalaman kawah hasil 

hentaman dipanggil sebagai kedalaman penembusan. Ianya boleh ditentukan dengan 

anggapan apabila penghentak mengenai konkrit berbusa, keseluruhan diameter 

penghentak memasuki sasaran disebabkan oleh keliangan. Dimensi kedalaman 

penembusan diperolehi apabila penghentak mempunyai tenaga kinetik untuk 

menghentam sasaran dan konkrit berbusa memberi tindakbalas melalui kekuatan 

mampatannya bagi melawan daya yang dikenakan. Dimensi kedalaman penembusan 

boleh digunakan sebagai formula bagi meramalkan kedalaman penembusan konkrit 

berbusa dan pengubahsuaian oleh beban hentaman hemispera. Hasil simulasi 

berangka disahkan oleh hasil kajian makmal. Ketiga kaedah analisis menunjukkan 

kecenderungan mendapat keputusan yang sama bagi kedalaman penembusan.
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