ELECTRIC FIELD MODELING OF OUTDOOR INSULATOR FOR OPTIMIZED PERFORMANCE

MOHD HAYUMABDISSALAM BIN TALI @ RAZALI

A project report submitted in partial fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering University Tun Hussein Onn Malaysia

JANUARY 2014

ABSTRACT

This project presents the study of electric field stress along the surface of a 132 kV ceramic post insulator. Insulators are among the important devices of the electric power transmission systems. They are used to support and separate conductors at high voltage. Different insulator shapes have been obtained by varying several parameters, which defines the shape of the post insulator .For each insulator shape, the maximum electric field stress occurring on the insulator surface has been determined under clean and dry environment. The COMSOL Multiphysics software has been employed to investigate the electric field stress along the insulator's surface. The full detailed model of a dry and clean ceramic 132kV post insulator with 25 sheds has been developed for the base model calculation. The maximum value of electric field stress was found to be at the junction between the porcelain and the end fitting. End fittings with round edges tend to reduce the electric field stress along the insulator's surface. With smaller first shed's outer corner radius, the electric field stress slightly decreases. The electric field stress of the 25th shed near the top end fitting tends to reduce as the shed's inclination angle is increased. Furthermore, as the shed's diameter increases, the electric field stress increases except at the shed's outer corner where the electric field stress decreases. With greater distance between the first shed and the bottom end fitting, the electric field stress becomes lower. The end fittings design was found to be significantly affecting the electric field stress along the surface of the post insulator. A modified post insulator is proposed and proven to have a better performance in term of electric field stress.

ABSTRAK

Projek ini membentangkan tentang kajian tekanan medan electric di sepanjang permukaan sebuah penebat pos seramik 132kV. Penebat adalah salah satu alat penting dalam system penghantaran kuasa elektrik. Ia digunakan untuk menampung dan memisahkan konduktor pada voltan tinggi. Bentuk penebat yang berbeza telah dicapai dengan mempelbagaikan beberapa parameter yang mentakrifkan bentuk pos penebat. Untuk setiap bentuk penebat, tekanan medan elektrik maksimum yang terjadi di permukaan penebat telah ditentukan di dalam persekitaran yang bersih dan kering. Peisian COMSOL Multiphysics telah digunakan untuk menyiasat tekanan medan elektrik di sepanjang permukaan insulator. Sebuah model penebat pos seramik 132kV yang terperinci yang kering dan bersih telah dimajukan untuk kiraan model asas. Tekanan medan elektrik yang maksimum telah didapati berada di simpang antara porselin dan sambungan hujung. Sambungan hujung ang mempunyai bucu yang bulat cenderung untuk mengurangkan tekanan medan elektrik di permukaan penebat. Dengan jejari luar 'shed' pertama yang kecil, tekanan medan elektrik berkurangan sedikit. Tekanan medan elektrik 'shed' yang ke-25 berhampiran sambungan hujung atas cenderung untuk berkurang apabila sudut kecenderungan shed bertambah. Tambahan pula, apabila diameter 'shed' menaik, tekanan medan elektrik menaik kecuali di bahagian bucu luar 'shed' yang mana tekanan medan elektrik berkurang. Dengan jarak yang semakin jauh antara 'shed' yang pertama dan sambungan hujung bawah, tekanan medan elektrik berkurang. Rekabentuk sambungan hujung memberi kesan yang besar kepada tekanan medan elektrik di sepanjang permukaan penebat. Sebuah penabat pos yang telah dimodifikasi telah diuarkan dan telah terbukti mempunyai persembahan yang lebih mantap dari segi tekanan medan elektrik.

CONTENTS

TITLE	i
STUDENT'S DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xii
LIST OF APPENDICES	xiv
LIST OF SYMBOLS AND ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem statement	2
1.3	Objectives	3
1.4	Scope of the project	3

CHAPTER 2 REVIEW OF LITERATURE

2.1	Overview	4
2.2	Ceramic insulator	9
2.3	Electric field stress	10
2.4	Numerical electric field analysis methods	12

	2.4.1	Finite element method	14
2.5	Factors	influencing the electric field stress on	
	insulato	r	18
	2.5.1	Shape of insulator	18
	2.5.2	Corona ring application	20
	2.5.3	Permittivity of the material	22
	2.5.4	Potential difference	23
	2.5.5	External influences	23
2.6	Effect o	f electric field stress on insulator	24
	2.6.1	Corona discharge	24
	2.6.2	Flashover	25

CHAPTER 3 METHODOLOGY

ME	THODOLOGY	
3.1	Overview	27
3.2	Simulation process	29
	3.2.1 Phase 1	30
	3.2.2 Phase 2	30
	3.2.3 Phase 3	31

CHAPTER 4 RESULT AND DATA ANALYSIS

4.1	Overvie	W	32
4.2	Simulat	ion of 132kV post insulator	32
	4.2.1	Properties of materials	33
	4.2.2	Boundary condition	34
	4.2.3	Meshing	34
	4.2.4	Electric field simulation	35
4.3	Effects	of the distance between the first shed and	
	the bott	om end fitting	42

4.4	Effects of shed's diameter	48
4.5	Effects of shed's inclination angle	55
4.6	Effects of shed's outer corner radius	61
4.7	Effects of end fittings design	67
4.8	Effects of modification on first shed	71
4.9	Proposed model	75

CONCLUSION AND RECOMMENDATION CHAPTER 5

5.1	Overview	83
5.2	Conclusion	83
53	Recommendation and future works	85

86 BERPUSTAKAAN PERPUSTAKAAN

LIST OF FIGURES

2.1	Typical constructions of ceramic type suspension insulators	10
	a) Standard	10
	b) Open profile (self-cleaning)	10
	c) Anti-fog and for DC applications	10
2.2	Illustration of electric field	11
2.3	Triangular and tetrahedron shaped finite discrete elements.	16
2.4	a) Examples of the electric field distribution surrounding	
	the composite insulator end fitting of Design 1	20
	b) Examples of the electric field distribution surrounding	
	the composite insulator end fitting of Design 2	20
	c) Examples of the electric field distribution surrounding	
	the composite insulator end fitting of Design 3	20
2.5	a) Potential distributions on insulator with corona ring	21
	b) Potential distributions on insulator without corona ring	21
2.6	Corona discharge activities on insulator	25
3.1	Overall flowchart of the project	28
3.2	Flowchart of the simulation process	29
4.1	a) Drawn model of 132kV post insulator	33
	b) Actual model of 132kV post insulator	33

4.2	a) Boundary condition of the base model insulator at	
	voltage terminal	34
	b) Boundary condition of the base model insulator at	
	ground terminal	34
4.3	Meshing of the insulator model	35
4.4	Electric field stress of 132kV post insulator	36
4.5	The line of measurement along the surface of porcelain of	
	132kV post insulator	36
4.6	Zone division of the 132 kV post insulator	37
4.7	Points of interest in Zone I	38
4.8	Points of interest in Zone II	38
4.9	Points of interest in Zone III	39
4.10	Electric field stress along the 132kV post insulator's	
	surface	39
4.11	Electric field stress in Zone I	40
4.12	Electric field stress in Zone II	40
4.13	Electric field stress in Zone III	41
4.14	Distance between the first shed to bottom end fitting	42
4.15	Electric field stress in Zone I with different first shed to	
	bottom end fitting distance	42
4.16	Electric field stress in Zone II with different first shed to	
	bottom end fitting distance	43
4.17	Electric field stress in Zone III with different first shed	
	to bottom end fitting distance	43
4.18	Changes in electric field in Zone I as the distance between	

xii

4.19	Changes in electric field in Zone II as the distance between	
	the first shed and bottom end fitting was varied	46
4.20	Changes in electric field stress in Zone III as the distance	
	between the first shed and bottom end fitting was varied	47
4.21	Shed's diameter of 132 kV post insulator	48
4.22	Electric field stress in Zone I with different shed's	
	diameter	49
4.23	Electric field stress in Zone II with different shed's	
	diameter	49
4.24	Electric field stress in Zone III with different shed's	
	diameter	50
4.25	Changes in electric field stress in Zone I as the shed's	
	diameter was varied	51
4.26	Changes in electric field stress in Zone II as the shed's	
	diameter was varied	53
4.27	Changes in electric field stress in Zone III as the shed's	
	diameter was varied	54
4.28	Inclination angle of 132 kV post insulator	55
4.29	Electric field stress in Zone I with different shed's	
	inclination angle	55
4.30	Electric field stress in Zone II with different shed's	
	inclination angle	56
4.31	Electric field stress in Zone III with different shed's	
	inclination angle	56
4.32	Changes in electric field stress in Zone I as inclination angle	
	was varied	57

xiii

4.33	Changes in electric field stress in Zone II as inclination	
	angle was varied	59
4.34	Changes in electric field stress in Zone III as inclination	
	angle was varied	60
4.35	Shed's outer corner radius of post insulator	61
4.36	Electric field stress in Zone I with different shed's outer	
	corner radius	61
4.37	Electric field stress in Zone II with different shed's outer	
	corner radius	62
4.38	Electric field stress in Zone III with different shed's	
	outer corner radius	62
4.39	Changes in electric field stress in Zone I as shed's outer	
	corner radius was varied	63
4.40	Changes in electric field stress in Zone II as shed's outer	
	corner radius was varied	65
4.41	Changes in electric field stress in Zone III as shed's outer	
	corner radius was varied	66
4.42	a) Bottom end fitting of base model	67
	b) Top end fitting of base model	67
4.43	a) Bottom end fitting Design A	67
	b) Top end fitting Design A	67
4.44	a) Bottom end fitting Design B	67
	b) Top end fitting Design B	67
4.45	a) Bottom end fitting Design C	68
	b) Top end fitting Design C	68
4.46	Electric field stress in Zone I with different end fittings	
	design	68

xiv

4.47	Electric field stress in Zone II with different end fittings	
	design	68
4.48	Electric field stress in Zone III with different end fittings	
	design	69
4.49	First shed Design A	72
4.50	First shed Design B (no shed).	72
4.51	Electric field stress in Zone I with different first shed	
	design	72
4.52	Electric field stress In Zone II with different first shed	
	design	73
4.53	Electric field stress In Zone III with different first shed	
	design	73
4.54	Proposed model of 132 kV post insulator	77
4.55	Electric field stress of base model of 132kV post	
	insulator	78
4.56	Electric field stress of proposed model of 132kV post	
	insulator	79
4.57	Electric field stress in Zone I	80
4.58	Electric field stress in Zone II	80
4.59	Electric field stress in Zone III	81

xv

LIST OF TABLES

2.1	Journals referred in doing the project	5
2.2	Brief explanation on the numerical method to calculate	
	electric field	12
2.3	Relative permittivity of material	22
4.1	Dimension of 132kV post insulator	33
4.2	Relative permittivity of the insulator's material	34
4.3	Electric field stress at points of interest for 1332kV post	
	insulator	41
4.4	Electric field stress at point A, B, C and D in Zone I	44
4.5	Electric field stress at point E, F, G and H in Zone II	45
4.6	Electric field stress at point I, J and K in Zone III	47
4.7	Electric field stress at point A, B, C and D in Zone I	50
4.8	Electric field stress at point E, F, G and H in Zone II	52
4.9	Electric field stress at point I, J and K in Zone III	54
4.10	Electric field stress at point A, B, C and D in Zone I	57
4.11	Electric field stress at point E, F, G and H in Zone II	58
4.12	Electric field stress at point I, J and K in Zone III	60
4.13	Electric field stress at point A, B, C and D in Zone I	63
4.14	Electric field stress at point E, F, G and H in Zone II	64
4.15	Electric field stress at point I, J and K in Zone III	66

4.16	Electric field stress at point A, B, C and D in Zone I	69
4.17	Electric field stress at point E, F, G and H in Zone II	70
4.18	Electric field stress at point I, J and K in Zone III	71
4.19	Electric field stress at point A, B, C and D in Zone I	74
4.20	Electric field stress at point E, F, G and H in Zone II	74
4.21	Electric field stress at point I, J and K in Zone III	74
4.22	Dimension of proposed 132kV post insulator	76
4.23	Electric field stress at point A, B, C and D in Zone I	81
4.24	Electric field stress at point E, F, G and H in Zone II	82
4.25	Electric field stress at point I, J and K in Zone III	82

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Base model of 132kV post insulator	90
BERF	Proposed model of 132kV post insulator	91

LIST OF SYMBOLS AND ABBREVIATIONS

- kV
- PERPUSTAKAAN TUNKU TUN AMINAH DC
- cm
- mm

CHAPTER 1

INTRODUCTION

1.1 Introduction

The reliability of the power networks and equipments is very important for the performance of an electric power system. High voltage power lines have been widely used to transmit the electric energy from the power stations to the consumers. Insulators are among the important devices of the electric power transmission systems. They are used to support and separate conductors at high voltage. The insulators need to withstand not only regular voltages and overvoltages, such as lightning and switching events, but also various environmental stresses such as rain, snow and pollution [1, 2]. Presently insulators adopted for transmission/distribution are made of ceramic, glass or polymeric type. Ceramic and glass insulators have been used for a long time and there is considerable experience in manufacturing, installation and their field performance is well known.

Discharge activity on the surface of a high voltage insulator is caused by the local electric field having a value higher than the ionization level of the ambient air. This high electric field is the result of the applied voltage and the environmental conditions such as rain, pollution etc. If the surface electric field can be calculated or measured, it will be helpful to improve the insulator design through proper electric field grading techniques. At higher voltages, electric fields can be high enough to

cause surface flashover on ceramic/glass insulator, in case of polymeric type insulator damage to the insulator sheath due to the corona discharge; hence grading devices need to be used to reduce the electric field to acceptable levels [3].

1.2 Problem statement

Most of the insulators being used nowadays are of the ceramic and glass insulators considering their well known field performance. However, there is favorable improvement in the use of non-ceramic insulators which have shown advantages compared to ceramic and glass insulators such as low weight construction, good performance in contaminated environments and easy handling [4, 5]. Outdoor insulators are subject to electric stress and weather conditions such as rain, fog, heat and dew. The voltage and electric field near conductors is much higher than other area of the insulator, which may lead to corona discharge and even flashover. Therefore, study of electric field stress on a ceramic insulator when subject to a high voltage provides an important insight to improve the performance of the insulator. The design of a post insulator's plays an important role in the insulator's performance. The insulator's shed profile can affect the water collection on the insulator's surface and influence the electric field stress distribution along the insulator's surface. Moreover, the end fittings design is importance to ensure the occurrence of corona in the vicinity of end fitting on the insulator to be kept at minimum frequency as possible. A large number of electric field calculation software do exist that are based on different calculation methods, such as FDM (Finite Difference Method), FEM (Finite Element Method), BEM (Boundary Element Method), BIM (Boundary Integration Method) and CSM (Charge Simulation Method) [6-10]. In this project, the FEM (Finite Element Method) will be used to study the electric field surrounding the ceramic insulator when subject to high voltage. Optimized design of the insulator is needed to ensure the insulator can perform better and can provide longer service.

1.3 Objectives

The overall works of the project will stress on the study of the design of insulator. Several objectives are targeted from the work, such as:

- To investigate the electric field performance related to the insulator design.
- To propose an optimised design of insulator for controlling the electric field stress.

1.4 Scopes of the project

The 132kV post ceramic insulator will be modelled using finite element method (FEM) based software, COMSOL Multiphysics. In summary, several works have been identified such as:

- Literature review related to the work concept and the previous works by other researchers.
- Perform analytical study about the design of insulator.
- Simulation and analysis works on the existing and proposing optimised design model in term of electrical field stress performances.

CHAPTER 2

REVIEW OF LITERATURE

2.1 Overview

This chapter discussed about the overview of the studies on ceramic insulators, the electric field stress and the Finite Element Method (FEM). Past works and studies regarding to the design of insulator affecting the electric field strength are also reviewed.

Insulators are among the important devices of the electric power transmission system. Insulator is literally a very poor conductor. A true insulator is a material that does not respond to an electric field and completely resists the flow of electric charge. The function of the insulators can be seen from mechanical and electrical point of view. Their function is to support or separate electrical conductors without allowing current through themselves [11]. In this thesis, the insulator referred is of the ceramic post insulator type which has been used on electric power supply to support, separate or contain conductor at high voltage. Table 2.1 shows some of the project referred in completing this thesis along with their description.

Author	Title of Project	Description	
E. Akbari	Effects of Disc	In this paper several 230-kV insulator strings with	
et al.	Insulator Type and	different porcelain and glass units were simulated	
	Corona Ring on	using 3-D FEM based software, and their electric	
	Electric Field and	fields and voltage distributions were calculated and	
	Voltage	compared together, to investigate the effect of	
	Distribution over	insulator types on these quantities. Tower and	
	230-kV Insulator	conductors were included in all simulations and also	
	String by	the effect of corona ring on voltage and electric field	
	Numerical	distribution over insulator strings with different	
	Method[12]	insulator types was investigated. According to the	
		results, distribution of voltage and electric field over	
		insulator strings without corona ring and the degree	
		of improvement of voltage distribution using corona	
		ring depends on insulator material and profile, as	
		well as the corona ring configuration parameters.	H
		Also tower existence and conductor length can	NA'
		change potential and electric field distributions	
		extremely.	
Ivanov, V.	Enhancement Of	A commercially available software package is used	
et al.	Non-Ceramic	to model insulators under a variety of applied	
	Polymer Insulator	voltages and contamination levels to establish	
	Design Using	relative electrical stresses. These stresses can be	
	Electrical Fieild	compared with designs that have been laboratory	
	Plot Analysis[13]	tested to verify an electrical performance	
DEK		improvement. The program was used to evaluate	
		electrical stresses on insulators with different shed	
		placements and profiles. Salt fog testing was	
		conducted to determine the relationship between	
		electrical performance and shed placement. The	
		program was also used to evaluate electrical stress	
		on insulators with different corona ring designs.	
D. Cruz	Optimization of	Two electrical stress grading techniques for non-	
Dominguez	Electric Field	ceramic insulators are analyzed. In both techniques	
	Grading Systems	some parameters were optimized for a 115 kV non-	
	in	ceramic insulator. Electric field simulations were	
	Non-Ceramic	performed with finite element method while, for the	
	Insulators[14]	optimization process, different functions of the	
		MATLAB 2011 optimization toolbox were used. In	

Table 2.1	Journals	referred	in doing	the	project
1 auto 2.1	Journais	ICICICU	in uome	unc	project

			the first case the optimized parameters were the	
			relative permittivity of the material and the geometry	
			of insulator on the energized side. The simulations	
			were made under power frequency and under	
			normalized lightning impulse Modification of the	
			shape next to the energized side consists of changing	
			the inclination angle of the housing material	
			Furthermore the corona ring position is optimized	
			on the energized side of the non-ceramic insulator	
			for comparison with the aforementioned method	
			According to the results, it was found that there are	
			according to the results, it was found that there are	
			minimize the value for the maximum electric field	
			share the insulator surface	
	Vinaire	Calardatian of	along the insulator surface.	
		Calculation of	In this paper, the finite element method is used to	
	wu et al et	Electric-field	calculate the three-dimensional electric-field	
	ai	Distribution and	distribution of long-rod post porcelain insulators	INH.
		Research on	used in 1000kV system. The electric-field	Nr.
		Characteristics of	distribution is simulated in the condition of varied	
		Shielding Ring	position, varied major radius and varied section	
		along the Long-rod	dimension of the shielding ring. The effect of these	
		Post Porcelain	factors to the external insulation characteristics of	
		Insulators Used in	post porcelain insulators is analyzed. The electric-	
		1000kV System	field distribution at the line side and the grounding	
			flange can be effectively improved by proper	
		DUDI	distribution of shielding ring and the optimization of	
/	DEK		the shielding ring structure. This provide calculation	
			gist to improve the characteristics of shielding ring	
			used in 1000kV long-rod post porcelain insulators	
			and the reliability of safe operation in 1000kV	
			system.	
	Edward	Design and	The addition of a corona ring to a polymer insulator	
	Niedospial	Application of	will improve the insulators performance, but it must	
	et al	Corona and	be the right ring used for the right reasons to realize	
		Grading Rings for	the benefits. A corona ring should not be a quick fix	
		Composite	to a problem; it may only mask a bigger concern or	
		Insulators[16]	delay the inevitable. Selection of a corona ring is as	
			critical a decision as picking the appropriate dry arc,	
			leakage, or mechanical rating for the insulator.	
			Beyond selecting the appropriate size ring for a	

		specific voltage, other critical characteristics include	
		attachment type, mating feature, hot stick-able	
		design, ordering, and packaging	
Ayman H.	Effect of Insulator	The paper presents the results of the study on the	
El-Hag et	Profile on Aging	influence of insulator profile on the aging	
al.	Performance of	performance of silicone rubber (SIR) insulators in	
	Silicone Rubber	salt-fog. The work is also extended to include	
	Insulators in Salt-	commercial 15 kV class insulators with different	
	Fog [17]	profiles. Shed spacing, shed diameter, alternate shed	
		design and shed shape are the parameters	
		investigated in this study. The low frequency	
		harmonics of the leakage current, early aging period	
		(EAP), and equivalent salt deposit density (ESDD),	
		are used to evaluate the aging performance of	
		different designs. Insulator profile is shown to	
		greatly influence the aging performance of SIR	
		insulators. Shed shape proves to be the most	H
		important parameter to be considered in designing	JAN
		non-ceramic insulators profiles. Also, as the shed	
		spacing decreases, the performance of SIR insulators	
		improves. Simulation results using FEMLAB show	
		that the electric field on insulators is below the	
		corona onset at both dry and wet conditions. Dry	
		band arcing is therefore the main electrical cause for	
	CTAK	aging in distribution class insulators and it is	
	0121	possible to improve the pollution performance of	
DER	r u	SIR insulators using appropriate profiles as	
T F F		suggested in this work.	
B. Vancia	Electric Field	Electric field calculations are not common practice	
et al	Modeling of Non-	in the design and development of non-ceramic	
	Ceramic High	insulators for high voltage transmission applications.	
	Voltage Insulators	This paper applies a three-dimensional (3D) electric	
	[18]	field analysis program to calculate the field	
		distribution at the live-end of 275kV and 330 kV	
		non-ceramic insulators used in the Queensland	
		transmission system. At these voltages, fields can be	
		high enough to cause damage to the insulator sheath	
		due to corona discharge, and grading devices need to	
		be used to reduce the electric field to acceptable	
		levels. Of particular interest to this research was the	

			effect of end-fitting geometry and corona ring]
			geometry on the electric field at the live-end of high	
			voltage non-ceramic insulators. Three different non-	
			ceramic insulator types were compared and their	
			fields are shown. Also a number of different ring	
			needs are shown. Also a number of unferent fling	
			geometries were compared. The effect of changing	
			ring cross-sectional snape, diameter, and placement	
			along the insulator are shown. All of these were	
			found to influence the electric field at the live end.	
	Yang Qing	New Optimization	Due to the geometry configure of composite	
	et al	Method on Electric	insulator, the electric field strength near the two ends	
		Field Distribution	of composite insulator is always strong. The high	
		of Composite	electric field strength can cause the partial discharge	
		Insulator [19]	on the insulation material and the surface of the	
			metal electrodes, and bring premature aging of the	
			insulator. In this paper, a new optimization method	
			on the electric field distribution of composite	H
			insulator is put forward, which is the combined use	JAV
			of composite insulators and several units of glass	
			insulator. Based on the finite element method, a	
			three-dimensional electric field calculation model of	
			insulators in the transmission line is established.	
			Then the optimization conditions of surface potential	
			and electric field distribution of composite insulator	
		TAK	with glass insulator installed in the high voltage end	
		SISIA	of composite insulator at different levels of voltage	
	ER	909	is studied. The results show that by this method, the	
/	PEN		electric field distribution near the ends of composite	
			insulators is significantly reduced, which can prevent	
			the partial discharge and the aging of the composite	
			material.	
	W. Sima et	Optimization Of	The paper presents a method to optimize the location	
	al	Corona Ring	and the dimensions of the corona ring for	
		Design For Long-	transmission line composite insulators using finite	
		Rod Insulators	element based software. FEMLAB. The procedure	
		Using FEM Based	used to optimize the corona ring design which	
		Computational	handles more than one parameter has been verified	
		Analysis [20]	with examples that have an analytical solution or	
		·	known optimal values. In this work the optimization	
			is based on finding the maximum field along the	
			is based on mining the maximum netu along the	

		insulator surface, such that this maximum field is well below the corona inception level. The design parameters of the ring diameter, diameter of the ring tube, position of the ring in its vertical plane, and the maximum field that cannot exceed the corona inception level have been used in the optimization process.	
W. Sima et	Study On The	Based on complex charge simulations method, this	
al	Shape Of	paper presents three-dimensional electrostatic	
	Suspension	models of suspension insulator with clearing	
	Insulators	pollution dry belt and appearing local arc along	
	Influencing	insulator surface. By calculating the electric field of	
	Development Of	suspension insulator surface, analyze the shape of	
	Discharge[21]	suspension insulators influence to local arc	
		development. It is studied that the relation between	
		the shape of insulator and the development of local	
		arc. The process of local arc development, the edge	
		of suspension insulator influence greatly on the	
		development of local arc. The results can provide	
		theory basis for informing the shape of insulator.	
2.2 Ceramic insulator			

2.2 **Ceramic insulator**

Ceramic insulators are still widely used worldwide although they were the first type of insulator invented. They have proven to give excellent service history backed by years of manufacturing experience from reputable firms. Figure 2.1 shows the example of ceramic insulators. The basic components used to make the ceramic insulator are clay, fine sand quartz and feldspar. Ceramic insulators can be divided into two types namely porcelain and glass. Porcelain and glass give a little difference regarding to their cost and performance. Toughened glass has the advantage for overhead lines that upon impact the broken insulators tend to shatter completely and therefore are easily spotted during maintenance inspections. On the other hand, the glass insulators are rarely used in substation practice since they leave only some 15mm between the top metal cap and the pin upon shattering. Porcelain insulators which may be chipped or cracked, but not shattered are therefore preferred for substation use since access for replacement may require a busbar outage [22]. The design and manufacturing of the ceramic insulators are being researched and improved in order to carter the needs of today's power distribution and transmission system. However, limitations are given on their sheds design to meet the surface electrical leakage distance needed for higher voltage transmission. To smooth the surface of the insulator, glazing is used apart from increasing the mechanical strength and improving the surface's hydrophobicity.

Figure 2.1 Typical constructions of ceramic type suspension insulators. (a) Standard.(b) Open profile (self-cleaning). (c) Anti-fog and for DC applications [34]

2.3 Electric field stress

It is important to understand the electric field intensity in high voltage engineering to design an insulator that could provide long and satisfactory performance. Electric stress is the stresses upon the dielectric by electric field which is produced due to the potential on the dielectric. The electric field intensity is the parameter used to determine the magnitude of the electric field stress on the dielectric. The performance of a dielectric depends strongly on the electric field distribution and the electric field stress.

The electric field intensity or known the electric field strength is defined as the electrostatic force, F per unit positive test charge, q placed at a particular point p in a dielectric [22]. It is denoted by E, and expressed in the unit "Newton per Coulumb", that is, the force per unit charge. Since the potential is expressed in "Joules per Coulumb (J/C)", or "Newton-meter per Coulumb (Nm/C)", which is defined as "Volt", the

electric field intensity is measured in its more common practical units of "Volt per meter" (V/m or kV/cm). The electric field intensity is often called as the electric field stress experienced by a dielectric.

Figure 2.2 Illustration of electric field

In Figure 2.2, the potential difference U_{ab} between two points a and b having scalar potential ϕ_a and ϕ_b in an electric field, \vec{E} , is defined as the work done by an external source in moving a unit positive charge from **b** to **a**.

$$U_{ab} = -\int_{b}^{a} \left| \overrightarrow{E} \right| \, dx = (\phi_a - \phi_b) \tag{2.1}$$

The magnitude of electric field intensity is given by the rate of change of potential with distance. The maximum magnitude of the field intensity is obtained when the direction of \vec{E} is opposite to the direction in which the potential is increasing most rapidly,

$$\frac{dU_{ab}}{dx}\Big|_{max} = -\left|\vec{E}\right|_{max} \tag{2.2}$$

Equation (2.2) provides a physical interpretation of the process of finding electric field intensity from the scalar potential ϕ . The operator on ϕ by which \vec{E} is obtained is thus known as the gradient. The relationship between ϕ and \vec{E} is written as,

$$\vec{E} = -\nabla \phi \tag{2.3}$$

2.4 Numerical electric field analysis methods

A comprehensive reference book related to numerical electric field analysis methods is authored by Zhou [23]. There are several numerical analysis methods that are often used for the calculation of the electric field strength distribution along insulators. They are:

- charge simulation method (CSM)
- boundary element method (BEM)
- finite element method (FEM)
- finite difference method (FDM).

The numerical electric field analysis methods can be divided into two categories: the boundary methods and the domain methods. The boundary methods include the CSM and the BEM. The domain methods include the FEM and the FDM. Table 2.2 shows a brief explanation of each numerical method used to approximate the electric field strength distribution.

Method	Description
	The basic concept of the CSM is to replace the distributed charge of
	conductors and the polarization charges on the dielectric interfaces by a
DER	large number of fictitious discrete charges. The magnitudes of these
T P	charges have to be calculated so that their integrated effect satisfies the
	boundary conditions. The potential due to unknown surface charges can
	be approximated by three forms of concentrated fictitious charge
CSM	arrangements - line, ring and point charges [24]. These charges can be
	placed at appropriate positions, which are usually inside the conductor
	surfaces. An adequate combination of the three forms of charges can be
	made to simulate almost any practical electrode system. The CSM
	method can be used to solve open boundary problems and is easily
	applied for three-dimensional electric field problems without axial
	symmetry. A major problem of CSM is the difficult and subjective

Table 2.2 Brief explanation on the numerical method to calculate electric field

	placement of simulation charges. The other disadvantage is that it is	
	difficult or impossible to calculate the electric field strength near very	
	thin electrodes because the fictitious charges approximating the field	
	must be usually inside the electrodes.	
	The BEM is based on the boundary integral equation and the principle	
	of weighted residuals, where the fundamental solution is chosen as the	
	weighting function. There are two kinds of BEM. One is called indirect	
	BEM, the other is called direct BEM. In the indirect BEM, the potential	
BEM	is not solved directly. An equivalent source, which would sustain the	
	field, is found by forcing it to satisfy prescribed boundary conditions	
	under a free space Green function that relates the location and effect of	
	the source to any point on the boundary. Once the source is determined,	
	the potential or derivatives of the potential can be calculated at any point	
	The FEM is a numerical method of solving Maxwell's equations in the	
	differential form. The basic feature of the FEM is to divide the entire	
	problem space, including the surrounding region, into a number of non-	
	separated, non-overlapping subregions, called "finite elements". This	
	process is called meshing. These finite elements can take a number of	
	shapes, but generally triangles are used for 2-D analysis and tetrahedron	
	for 3-D analysis. Each element geometry is expressed by polynomials	
DER	with nodal values as coefficients. The electric potential within each	
FEM	element is a linear interpolation of the potentials at its vertices. By using	
	the weighted residual approach, the partial differential equations are	
	reduced to a sparse, symmetric and positive definite matrix equation.	
	Since the shape and the size of the elements are arbitrary, it is a flexible	
	method that is well suited to problems with complicated geometry. The	
	FEM analysis is effective for small problems that are closed bounded. If	
	the problems are too large a large number of finite elements are	
	required and the calculation becomes intensive	
	The EDM is an approximate method for caloing partial differential	
FDM	The FDW is an approximate method for solving partial differential	
	equations. It replaces a continuous field problem by a discretized field	

with finite regular node. This method utilizes a truncated Taylor series expansion in each coordinate direction, and applied at a set of finite discretization points to approximate the partial derivatives of the unknown function. The partial differential equations are transformed into a set of algebraic equations. The FDM is suitable for obtaining an approximate solution within a regular domain. If a region contains different materials and complex shapes, the FEM is better than the FDM.

2.4.1 Finite element method

Finite Element Method (FEM) [25] in general is based on transforming the differential equations in integral form and then using an approximation. One way to transform these equations is to find a function that minimizes an energy integral. An easy way to calculate the electric field distribution is to calculate electric potential distribution initially and then calculate field distribution by subtracting gradient of electric potential distribution from it [26]. From equation (2.3),

$$\vec{E} = -\nabla \phi$$

From Maxwell's equation,

$$\nabla \vec{E} = \frac{\rho}{\varepsilon} \tag{2.4}$$

where ρ is the volume charge density, ε is the permittivity of dielectric material ($\varepsilon = \varepsilon_0 \varepsilon_r$), ε_0 is vacuum permittivity, (8.854 x 10⁻¹²) and ε_r is the relative permittivity of dielectric material. The Poisson's equation can be obtained by substituting equation (2.4) into equation (2.3)

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon} \tag{2.5}$$

14

The Laplace's equation can be obtained by making space charge $\rho = 0$,

$$\nabla^2 \phi = 0 \tag{2.6}$$

The basic approach of FEM for electric field estimation involves the factual characteristics of an electrostatic field that the total energy enclosed in the whole field region acquires a minimum value. In other words, the potential, ϕ , under given conditions of electrode surface, should make the enclosed energy function to be at a minimum for a given dielectric volume "V", therefore:

$$W = \int_{V} \frac{1}{2} \mathcal{E} \left(\nabla \phi \right)^{2} dV \to \text{minimum}$$
 (2.7)

which is obtained by solving the basic potential equation (2.3). *W* is the electrical energy stored in the volume of dielectric under consideration.

Hence, in this method the field between the electrodes under consideration is subdivided into finite number of discrete sized elements. The behavior of these elements is specified by a number of parameters, for example, the potential. The number of nodal points and elements established within the mesh are assigned identifying integer numbers. The shape of these discrete elements is suitably chosen to triangular to for two dimensional representations. For three dimensional field configurations, "tetrahedron", a pyramid-like solid structure with four plane triangular faces, shown in Figure 2.3, is used.

The size and the orientation of the triangles, as well as the tetrahedrons, irregularly distributed over the generated mesh in the field region depending upon the magnitude of the potential gradient. At the locations where higher field intensity or electric-stress exists, discrete elements of smaller size cover the region.

Figure 2.3 Triangular and tetrahedron shaped finite discrete elements.

Consider an electrostatic field, undistorted by any space charge concentration, in a single isotropic dielectric between two electrodes. Then the potential ϕ would be determined by the boundaries, that is, the metal electrode surfaces. The above equation (2.7) for electrical energy W, stored within the whole region of such a Laplacian field is given in Cartesian coordinates as follows,

$$W = \iiint_{V} \left[\frac{1}{2} \varepsilon \left\{ \left(\frac{\delta \phi}{\delta x} \right)^{2} + \left(\frac{\delta \phi}{\delta y} \right)^{2} + \left(\frac{\delta \phi}{\delta z} \right)^{2} \right\} \right] dx \, dy \, dz \tag{2.8}$$

For a small volume element $dV = (dx \, dy \, dz)$, the expressions $(1/2 \epsilon \Delta^2 \phi)$ within equation (2.8) represent the energy densities per unit volume in a particular direction.

For two dimensional case, it is assumed that the potential distribution does not change in the z direction. Then, the total energy W_A stored within the area A per unit length located between the two electrodes boundaries can be given by the equation (2.7)

$$W_A = \int_A \frac{1}{2} \mathcal{E} \left(\boldsymbol{\nabla} \phi \right)^2 dA$$

And according to equation (2.8) in this case by,

$$W = z \iint_{A} \left[\frac{1}{2} \varepsilon \left\{ \left(\frac{\delta \phi}{\delta x} \right)^{2} + \left(\frac{\delta \phi}{\delta y} \right)^{2} \right\} \right] dx \, dy \tag{2.9}$$

where z is a constant. W/z gives the energy densities per elementary area dA. Inside each sub-domain, a linear dependency of ϕ on x and y is assumed, which gives rise to the first order approximation,

$$\phi(x, y) = \phi = a_{e1} + a_{e2}x + a_{e3}y \tag{2.10}$$

Where ϕ is the electrical potential of any arbitrary point inside each sub-domain, a_{e1} , a_{e2} , a_{e3} are the computational coefficients for a triangle element e, and m is the total number of triangle elements. Equation (2.10) implies that within the element the potential are linearly distributed and the field intensity is constant.

In order to minimize the energy within the field region under consideration, only derivatives of the energies with respect to the potential distribution in each element are of particular interest. For element under consideration, We is the energy enclosed within the element, then the energy per unit length W_e/z in the direction z, denoted by $W_{\Delta e}$ can PERPUSTAKAAN be given as follows,

$$W_{\Delta e} = \frac{W}{z} = \frac{1}{2} \Delta_e \, \mathcal{E} \left[\left(\frac{\delta \phi}{\delta x} \right)^2 \, + \, \left(\frac{\delta \phi}{\delta y} \right)^2 \right] \tag{2.11}$$

The symbol Δ_e represents the area of the discrete triangular element under consideration. If we denote the total energy in the whole field of given elements by W_{Δ} , the relation for minimizing the energy within the complete system can be given as,

$$\frac{\partial W\Delta}{\partial \{\phi\}} = 0 \tag{2.12}$$

where $\{\phi\}$ is the total potential vector for all the nodes within a given system. The final matrix expression is

$$\frac{\partial W\Delta}{\partial \{\phi\}} = 0 = [H]\{\phi\}$$
(2.13)

18

where the matrix [H] is known as the "stiffness matrix". The above matrix is solved by iterative methods.

2.5 Factors influencing the electric field stress on insulator.

Previous studies proved that other design parameters than the creepage distance may be critical for the short and long term performance of insulators. This section provides brief UNKU TUN AMINAH explanation on the factors that affect the electric field stress on insulator.

2.5.1 Shape of insulator

The shape of the insulator plays a significant role in determining the electric field stress along the insulator. A good design of insulator must provide electrical field stress below ionization threshold. Weather shed profile and the end fitting design are the aspect of interest to control the electric field stress on insulator.

a) Weather shed profile

The shed profile is a parameter that needs to be studied. The shed profile should be aerodynamic in shape. Based on the previous studies, the electric field strength is significantly higher in the sheath/shed transition area than in adjacent areas. The influence of the rounding radius of the sheath/shed transition area on the electric field distribution along the insulators is of interest.

Chakravorti and Steinbigler [32] studied the relationship between the shape of a porcelain post-type insulator and the maximum electric field strength around it with or without pollution. The position of the maximum electric field strength is near the top triple junction region. The parameters studied in their work are the slope angle of the insulator weather shed, the shed radius, the core radius, the axial height, and the electrode radius. Their findings were as follows:

- The higher slope angle does not yield notable reduction in the maximum electric field strength.
- Increasing the shed radius from 6 cm to 10 cm significantly lowers the maximum electric field strength.
- The increase of the core radius has little effect on the maximum electric field strength reduction.
- The higher the axial height, the lower the maximum electric field strength.
- For a given insulator shape, increasing the electrode radius increases the maximum electric field strength in clean conditions but reduces the maximum electric field strength in the presence of surface pollution. KAAN TUN

b) **End fitting design**

End-fitting geometry was also found to have a significant influence on the electric fields around the energized end. In [28], simulations were carried out on three insulator fitting types, without the presence of a corona ring in the model. Large end fitting with rounded edges tend to reduce the peak magnitude of the electric field strength values in close proximity of the end fitting. Furthermore, the end fitting with bigger diameter was found to have better electric field stress distribution in the vicinity of the end fitting. Figure 2.4 shows the three different fittings and the contour maps associated with each fitting.

LUNKU TUNAMANA Figure 2.4 Examples of the electric field distribution surrounding the composite insulator end fitting of (a) Design 1 (b) Design 2 and (c) Design 3[28]

2.5.2 Corona ring application

The function of the corona ring is to grade or disperse the electric field gradient, thus reducing the voltage stress on the rubber housing near the line end fitting. The corona ring can be attached to the composite insulator directly or as part of the hardware. When applied as part of the hardware, the grading device is commonly referred to as a Corona Shield. Corona rings are typically used to prevent inception of corona on hardware. Figure 2.5 shows the difference of the electric field distribution with the application of corona ring.

Figure 2.5 Potential distributions on insulator (a) with corona ring and (b) without corona ring [27]

Suat İlhan and Aydoğan Özdemir [27] studied the effect of corona ring application to the electric field stress and potential distribution along insulator. They found that the usage of corona ring in an insulator string will significantly decrease the voltage percentage on the lowermost insulators and will slightly increase the voltage sharing on the uppermost insulators. That is, potential distribution will be more uniform with the help of corona ring. Furthermore, the maximum electric field strengths on the live end side will importantly decrease with the usage of corona ring. The value of this field strength depends on the corona tube settings. On the basis of vertical position of corona ring, electric field on the live end gets its minimum value. Moreover, the electric field on the corona ring surface can also change with the design parameters. Maximum electric field is on the outer radius of the ring. However, minimum electric field is on the inner radius of the ring.

Zhao and Comber [31] studied the electric field and potential distribution along non-ceramic insulators. The Coulomb electric field analysis software was used. The insulator, tower and conductors were considered in the calculation model. Results showed that the conductor length has significant "shielding" effect on the insulators; the maximum electric field strength decreases when the length of the conductor increases; and the tower structure in the vicinity of the insulator and the diameter and the location

of the grading ring are important in determining the maximum electric field strength along an insulator.

2.5.3 Permittivity of the material

Permittivity (ε) is a measure of how an electric field affects, and is affected by, a dielectric medium. The permittivity of a medium describes how much electric field, or more correctly, fluxes, is generated per unit charge. Less flux exists in a medium with a high permittivity due to polarization effects. Permittivity is directly related to electric susceptibility, which is a measure of how easily a dielectric polarizes in response to an electric field.

Kaana-Nkusi, Alexander and Hackam [29] calculated the voltage and electric field distribution along a post-type insulator shed. The system was modeled with 146 ring charges, with 30 charges modeling each electrode. Several criteria were applied in order to evaluate the quality of the calculation results, which included the potential error, the potential discrepancy, the normal electric flux density and the tangential electric field strength discrepancies. The calculation results showed that the maximum values of the electric field strength along the surface increased with higher dielectric permittivity of the insulating material. Decreasing the radius of curvature of the insulator shed increased both the normal and tangential components of the electric field strength. Table 2.3 shows some example of permittivity of material.

Table 2.3 Relative permittivity of material [36]

2.5.4 Potential difference

The potential difference applied on an insulator also affects the electric field stress on the insulator. The electric field is a measure of force per unit charge and the electric potential is a measure of energy per unit charge. Let say a work done in moving a unit test charge from point *a* to point *b* is the electric potential difference between the two points and is denoted by ΔV and Δd is the distance needed to move the charge. Therefore, the relation between potential difference and field strength can be given as

$$\vec{E} = -\frac{\Delta V}{\Delta d}$$

The negative sign indicates that the potential decreases in the direction of electric field.

2.5.5 External influences

High voltage insulators often work outdoors, which are affected by adverse environmental and atmospheric factors, such as dust, fog, dew, rain, snow and other industrial pollution. When the air humidity is lower, the existence of these contaminations will not affect the normal work of the insulator. But when the air humidity is higher, the contamination layers on the surface of the insulators will be wet, and the soluble salt of the contaminations will be dissolved in water. The conductive water film is formed which leads to the higher conductance of the insulator surface. Then the leakage current increases sharply, and the flashover voltage of the insulators reduces greatly. Because of this, the flashover can occur in the operating voltage. Many researches about the insulator surface electric field under contamination distribution indicate that the distribution of the contaminations on the insulator surface affects the insulator surface electric field greatly, and the occurrence of flashover is closely related to the distribution of the electric field and potential.

2.6 Effect of electric field stress on insulator

This section will describe about the effect of high electric field stress on insulator. Specifically, the event of corona discharge, flashover and discharge activity on the insulator will be discussed.

2.6.1 Corona discharge

AMINA Corona discharges occur on the surface when electric field intensity exceeds the breakdown strength of air, which are around 15 kV/cm. Atmospheric conditions which effect corona generation are air density and humidity. The geometry of insulator itself has a role in the initiation of corona activity. The corona generates ultraviolet light, heat, and gaseous by products (ozone, NO2). The corona discharges subject the insulator to severe electrical strains and chemical degradation. Continued degradation may render the ceramic insulator ultimately unusable. When corona generation occurs on a wet surface, this results in 'wetting corona activity'. Wetting corona activity is the outcome of a non-uniform wetting causing high electric field. This activity depends on the type and magnitude of wetting as well as on the intensity of surface electric field. The magnitude of wetting depends on the surface characteristics (hydrophobic or hydrophilic) and on the type of wetting whether it is produced by rain, mist, fog or condensation. Magnitude of surface electric field depends upon the dimension of grading ring, its position and end fittings.

Wetting corona activity occurs mainly at live and ground terminals. Lower hydrophobicity makes discharge activity more likely. Besides the undesirable effect

REFERENCES

- [1] Andy Schwalm, "Insulators 101", *IEEE/PES 2010 Transmission and Distribution Conference and Exposition*, 2010.
- [2] Subba Reddy, B.; Ravishankar, K.V.; Sultan, N. A. et al, "Simulation of Potential and Electric Field for High Voltage Ceramic Disc Insulators", 2010 5th International Conference on Industrial and Information Systems, (ICIIS 2010), pp. 526 – 531, 2010.
- Kojimi, S.; Oyama, M.; Yamashita, M., "Potential Distribution Of Metal Oxide Surge Arresters Under Various Environmental Conditions," *IEEE Trans. on Power Delivery*, Vol. 3, No.3, pp 984-989, 1988.
- [4] Phillips, A., "Electric Field Distribution And Their Impact On Transmission Line Composite Insulators", *IEEE Power Eng. Soc. (PES) Transmission and Distribution Conf. and Exposition (T&D)*, Charlotte, NC, pp. 1-3, 2012.
- [5] Gorur, R. S.; Cherney, E. A.; Burnham, J. T., *Outdoor Insulators*: Ravi S. Gorur, Inc., ISBN 0967761107, 1999.
- [6] Cigre working group 22.03, "Comparative Electric Field Calculations and Measurements on High Voltage Insulators", Electra No. 141, pp. 6977, April 1992.
- [7] Chakravorti, S.; Mukerjee, P. K., "Power Frequency And Impulse Field Calculations Around A HV Insulator With Uniform Or Non-Uniform Surface Pollution", *IEEE Trans on Dielectrics and Electrical insulation*, Vol. 28, No.1, pp 43-53, Feb 1993.
- [8] Chakravorti, S.; Steinbigler, H., "Capacitive resistive field calculation on HV bushing using the boundary element method", *IEEE Trans. On Dielectrics and Electrical Insulation*, Vol. 5, No.2, pp 237-244, April 1998.

- [9] Andersen, O. W., "Finite element solution of complex electric fields", *IEEE Trans. on PAS*, Vol. 96, No.4, pp 1156-1160, 1977.
- [10] El Kishky, H.; Gorur, R. S., "Electric potential and field computation along ac HV insulators", *IEEE Trans. on Dielectrics ad Electrical Insulation*, Vol.1, No.6, pp 982-990, Dec 1994.
- [11] Cotton, H., *The Transmission and Distribution of Electrical Energy*: Hodder and Stoughton, ISBN 0340147717, 1978.
- [12] E. Akbari et al, "Effects of Disc Insulator Type and Corona Ring on Electric Field and Voltage Distribution over 230-kV Insulator String by Numerical Method", *Iranian Journal of Electrical & Electronic Engineering*, Vol. 9, No. 1, March 2013.
- [13] Ivanov, V. et al, "Enhancement Of Non-Ceramic Polymer Insulator Design Using Electrical Field Plot Analysis", *Electrical Electronics Insulation Conference*, pp. 437-441, Sep 1995.
- [14] Dominguez, D.C.; Espino-Cortes, F.P.; Gomez, P., "Optimization of Electric Field Grading Systems in Non-Ceramic Insulators", *Electrical Insulation Conference (EIC)*, pp. 231-234, June 2011.
- [15] Xinqiao Wu; Zongren Peng; Peng Liu; Zhong Yu, "Calculation of Electric-field Distribution and Research on Characteristics of Shielding Ring along the Long-rod Post Porcelain Insulators Used in 1000kv System" *Properties and applications of Dielectric Materials, 8th International Conference*, pp. 603-606, June 2006.
- [16] Niedospial, E., "Design and Application of Corona and Grading Rings for Composite Insulators", *Transmission and Distribution Conference and Exposition (T&D), IEEE PES*, pp. 1-3, May 2012.
- [17] El-Hag, A.H.; Jayaram, S.H.; Cherney, E.A., "Effect of Insulator Profile on Aging Performance of Silicone Rubber Insulators in Salt-Fog", *Dielectrics and Electrical Insulation, IEEE Transactions*, Vol 14, No. 2, pp. 352 – 359, April 2007.
- [18] Saha, T. K.; Eleperuma, K.; Gillespie, T., "Electric Field Modeling of Non-Ceramic High Voltage Insulators", University of Queensland & Powerlink.
- [19] Yang Qing; Wenxia Sima; Deng Jiazhuo; Yuan Tao; Chen Lin, "New Optimization Method on Electric Field Distribution of Composite Insulator",

Electrical Insulation and Dielectric Phenomena (CEIDP) Annual Report Conference, pp. 1-4, Oct 2010.

- [20] Sima, W.; Espino-Cortes, F.P.; Cherney, E.A.; Jayaram, S.H., "Optimization of Corona Ring Design for Long-Rod Insulators Using FEM Based Computational Analysis", *Conference Record of the 2004 IEEE International Symposium on Electrical Insulation*, pp. 480-483, Sept 2004.
- [21] Wenxia Sima; Caixin Sun; Leguan Gu; Xinliang Jiang; Mingying Chen, " Study On The Shape Of Suspension Insulators Influencing Development Of Discharge", *International Symposium on Electrical Insulating Materials* (ISEIM), pp. 290-292, Nov 2001.
- Bayliss, C.; Hardy, B., *Transmission and Distribution Electrical Engineering* 4th edition: Elsevier, ISBN 0080969135, 2011.
- [23] Zhou P. B., Numerical Analysis of Electromagnetic Fields. Spinger-Verlag, Berlin, ISBN 0387547223,1993.
- [24] Khan, M. J.; Alexander, P. H., "Charge Simulation Modeling of Practical Insulator Geometries," *IEEE Transactions on Electrical Insulation*, Vol. EI-17, No. 4, August 1982, pp. 325-332.
- [25] Arora, R.; Mosch, W., High Voltage and Electrical Insulation Engineering Volume 69 of IEEE Press Series on Power Engineering: John Wiley & Sons, ISBN 1118008960, 2011.
- [26] Muniraj, C.; Chandrasekar, S., "Finite Element Modeling For Electrical Field And Voltage Distribution Along The Polluted Polymeric Insulator", *World Journal of Modelling and Simulation*, Vol. 8, No. 4, pp. 310-320, March 2012.
- [27] Suat Ilhan; Aydogan Özdemir, "Effect of Corona Ring Design on Electric Field Intensity and Potential Distribution Along an Insulator String," *IEEE ELECO*, 2007.
- [28] Phillips, A. J. et al, "Electric Field on AC Composite Line Insulators", *IEEE Transactions On Power Delivery*, Vol. 23, No. 2, pp. 823-830, April 2008.
- [29] Kaana-Nkusi, S.; Alexander, P. H.; Hackam, R., "Potential and Electric Field Distributions at a High Voltage Insulator Shed," *IEEE Transactions on Dielectrics and Electrical Insulation*, Vol. 23, No. 2, pp. 307-318, April 1988.

- [30] Gutfleisch, F.; Singer, H.; Forger K.; Gomollon, J. A., "Calculation of High Voltage Fields by Means of the Boundary Element Method", *IEEE Transactions on Power Delivery*, Vol. 9, No. 2, pp. 743-749, April 1994.
- [31] Zhao, T.; Comber, M. G., "Calculation of Electric Field and Potential Distribution Along Non-Ceramic Insulators Considering the Effects of Conductors and Transmission Towers," *IEEE Transactions on Power Delivery*, Vol. 15, No. 1, pp. 313-318, January 2000.
- [32] Chakravorti, S.; Steinbigler, H., "Boundary-Element Studies on Insulator Shape and Electric Field around HV Insulators with or without Pollution", *IEEE Transactions on Dielectrics and Electrical Insulation*, Vol. 7, No. 2, pp. 169-176, April 2000.
- [33] COMSOL, "Introduction to COMSOL Multiphysics", May 2013.
- [34] Edmund Kuffel, Walter S. Zaengl, John Kuffel, *High Voltage Engineering Fundamentals*: Butterworth-Heinemann, ISBN 0750636343, 2000.
- [35] Schumann, U. et al, "FEM Calculation and Measurement of the Electrical Field Distribution of HV Composite Insulator Arrangements", 39th CIGRE Session, August 2002.
- [36] Clipper Controls, "Dielectric Constant Value," [Online] Available from: http://www.clippercontrols.com/pages/Dielectric-Constant-Values.html#V [Accessed 26 Septemner 2013].
- [37] Powerline Patrol Services, "UV Corona," [Online] Available from: http://www.powerlinepatrol.com/patrol-services/our-technology/uv-corona/ [Accessed 6 March 2013].