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ABSTRACT 

A 1D-FDTD code was developed to support plane wave excitation in 3D-FDTD 

domain and the code was developed using C++ programming language. First-order 

Mur absorbing boundary condition (ABC) is applied to keep outgoing electric and 

magnetic fields from being reflected into the problem space. In this thesis, the 

performance of 1D-FDTD scheme is then evaluated on several medium including free 

space, lossless dielectric medium, lossy dielectric medium and good conductors. Sine-

Gaussian technique is used to excite field signal in the 1D-FDTD simulation domain 

and the simulation have been carried out to analyze the performance of the scheme. 

From the results, the 1D-FDTD scheme shows good expected results on all applied 

conditions. The integration of 1D-FDTD scheme into the 3D-FDTD solver is realized 

through the implementation of Total Field Scattered Field (TFSF) technique. The 

technique is used to excite plane wave into the 3D-FDTD domain and will be used for 

future wave propagation studies. All simulation results presented in this work were 

analyzed using OriginPro software.PTTA
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ABSTRAK 

Kod Finite Difference Time Domain (FDTD) pada satu dimensi telah dibangunkan 

untuk menghasilkan gelombang satah di dalam domain FDTD tiga dimensi di mana 

gelombang satah itu bergerak pada arah normal dengan paksi Y. Bahasa 

pengaturcaraan yang digunakan dalam membangunkan kod ini ialah C++. Seterusnya, 

kaedah sempadanan serapan jenis Mur digunakan sebagai penyerap sempadan kerana 

ia berkebolehan untuk memastikan medan elektrik dan medan magnet daripada 

terpantul semula ke ruang simulasi. Di dalam tesis ini, prestasi skim FDTD satu 

dimensi telah dinilai di dalam pelbagai keadaan. Antaranya ialah ruang kosong, ruang 

dielektrik tanpa kehilangan, ruang dielektrik dengan kehilangan dan akhir sekali ialah 

ruang konduktor yang baik. Teknik Sine-Gaussian telah digunakan sebagai pencetus 

isyarat di dalam ruang simulasi FDTD satu dimensi untuk menganalisa prestasinya. 

Daripada keputusan simulasi, skim FDTD satu dimensi menunjukkan keputusan yang 

baik seperti yang telah dijangkakan. Selepas itu, skim FDTD satu dimensi telah 

digabungkan ke dalam FDTD tiga dimensi yang sedia ada melalui pelaksanaan teknik 

Total Field Scattered Field (TFSF). Teknik itu adalah untuk mencetuskan gelombang 

satah ke dalam ruang domain FDTD tiga dimensi bagi kajian pergerakan gelombang 

satah. Semua keputusan simulasi dalam kajian ini dianalisis menggunakan perisian 

OriginPro. 
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

Over the past years, a number of numerical and analytical approaches to Maxwell's 

time-dependent curl equations were broadly used with the increases in computer 

memory capacity and relentless advances in computational imitating efficiency. 

Consequently, the demand for efficient field modelling tools in electromagnetic 

scattering problems is ceaselessly expanding. In general, computational 

electromagnetic techniques have been applied to vast areas including the study of the 

radiation, scattering and penetration of electromagnetic wave with 3-D objects, in 

problems related to telecommunication, electromagnetic compatibility (EMC), 

microwave devices, waveguide structures, medical diagnosis and many others [4]. 

Apparently, the finite-difference time domain (FDTD) method has become 

one of the most popular methods to calculate full-wave solutions to complex 

electromagnetic problems. This is because of the increase in computing power and 

decreasing cost of workstations. Computer memory capacities are increasing rapidly. 

While this trend positively influences all numerical techniques, it is of particular 

advantage to FDTD methods, which are founded on discretizing space over a 

volume, and therefore inherently require a large random access memory. The FDTD 

method is also very attractive since it is accurate, robust, easily includes simple and 

highly dispersive media, can easily model complex geometries, and can give 

broadband solutions from a single simulation using a fast Fourier transform (FFT) on 

post simulated data. The sources of error in FDTD calculations are well understood, 
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and can be bounded to permit accurate models for a very large variety of 

electromagnetic wave interaction problems [3]. 

Furthermore, the primary advantage of FDTD over other full-wave models is 

that, FDTD being a time domain method allows broadband analysis of the antenna by 

Gaussian pulse excitation. The antenna characteristics over a wide frequency range 

can be obtained by taking the Fourier transform of the FDTD simulation results 

obtained when a wideband Gaussian pulse is used as an excitation and most of 

widely used electromagnetic simulation software's use frequency domain methods 

like FEM [1]. 

1.2 Problem Statement 

In many problems of electromagnetics the quantity of interest is the field scattered by 

a localized object in an otherwise uniform background, under harmonic plane wave 

illumination. Since FDTD is a near-field solver and only represents a finite portion of 

the space, it is impossible to create inside it a truly plane wave of infinite extent 

traveling in an arbitrary direction. Therefore, the development of the plane wave 

source condition allowed the earliest engineering applications of FDTD 

computational electromagnetics modeling. These applications were in the defense 

and bio electromagnetics areas, and involved the interaction of complex-shaped, 

inhomogeneous material structures with impinging pulsed or continuous-wave 

electromagnetic fields. Initially, many problems of these types located the material 

structure of interest far from the radiating antenna, where the incident illumination 

could be approximated by plane wave. 

The plane wave is a constant-frequency wave whose wave fronts (surfaces of 

constant phase) are infinite parallel planes of constant peak-to-peak amplitude 

normal to the phase velocity vector. It is not possible in practice to have a true plane 

wave; only a plane wave of infinite extent will propagate as a plane wave. However, 

many waves are approximately plane waves in a localized region of space. For 

example, a localized source such as an antenna produces a field that is approximately 

a plane wave far from the antenna in its far field region. Similarly, if the length scales 

are much longer than the wave’s wavelength, as is often the case for light in the field 
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of optics, one can treat the waves as light rays which correspond locally to plane 

waves. 

1.3 Project Objectives 

The objectives of the project are: 

(i) To develop a stand-alone 1D-FDTD scheme for electromagnetic wave study. 

(ii) To evaluate the performance of 1D-FDTD scheme on various materials and 

medium. 

(iii) To Implement TFSF decomposition into the existing 3D-FDTD scheme for 

plane wave excitation in 3D space. 

1.4 Scope of Project 

The scopes of the project are: 

(i) The 1D-FDTD scheme and the 3D-TFSF decomposition codes were 

developed using C++ programming language. 

(ii) Using OriginPro software for data post-processing purposes. 

(iii) Mur absorbing boundary condition was applied to truncate the 1D-FDTD 

simulation space to infinity. 

(iv) The performance of the 1D-FDTD scheme was evaluated on several medium 

and material conditions including free space, dielectric (lossy and lossless) 

and PEC. 

(v) Using the sine-gaussian technique to excite field signal in the 1D-FDTD 

simulation domain. 

(vi) The plane wave is only for normal incident propagation in 3D space. 

1.5 Outlines of the Thesis 

Chapter 1 covers the background of the project. The problem of the project were 

stated follows by the objectives and the scopes of the project. More details overview 

of FDTD is discuss in Chapter 2. 
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Chapter 2 unfolds the theoretical concept of FDTD principles including the 

derivation of the magnetic and electric field update equations, parameters that control 

the stability and accuracy. The advantages of using FDTD, excitation source, 

absorbing boundary condition (ABC) and total field scattered field (TFSF) were 

discuss in general. 

Chapter 3 comprises the methodology or approaches in order to achieve the 

objectives of the project. It shows work flow used in completion of this project. The 

derivation of electric field and magnetic field for Total/Scattered Field formulation in 

3D were shown. 

Chapter 4 discuss the results and analysis data which are addressed through 

the simulation of the 1D-FDTD evaluation in a various medium and plane wave 

implementation to the currently available FDTD code. Graphs of simulation output 

and comparison of results in time steps are explained in this chapter. 

Chapter 5 summarize all the simulation results and the main conclusion will 

be concluded including the recommendations for future work are dealt with in this 

chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Over the past few years, finite-difference time-domain (FDTD) method [1] have 

become increasingly prevalent in the computational electromagnetic problems due to 

its simplicity, efficiency, robustness and versatility scheme for highly complex 

configuration in the computational domain. Generally, FDTD technique is the most 

well-known numerical method for the solution of problems in electromagnetic 

simulation ranging from RF to optical frequencies. It is considered to be one of the 

most powerful numerical techniques for solving partial differential equations of any 

kind. In addition, it can be utilized to solve the spatial as well as the temporal 

distributions of electric and magnetic fields in various media. 

In principle, FDTD is a method that divides the solution domain into finite 

discrete points and then replaces the partial differential equation with a set of 

difference equations. It has successfully been applied to many problems of 

propagation, radiation and scattering of electromagnetic waves such as antenna, radar, 

wireless communication system, high speed electronic, photonic, radiography, x-ray 

crystallography, bio-electromagnetic and geophysical imaging. A good measure of its 

success lies in the fact that many of papers on the subject have been published in 

journals and international symposium, apart from the books and tutorials devoted to it. 

Moreover, much specific and general purpose commercial software is available on the 

market which further extends its appeal globally. The books used as the main 

references in this project is written by Taflove and Hagness [1]. 
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2.2 Rise of FDTD Methods 

The FDTD method, introduced by Yee in 1966 [1], was the first technique in this class, 

and has remained the subject of continuous development. Since 1990, when engineers 

in the general electromagnetics community became aware of the modeling capabilities 

afforded by FDTD and related techniques, the interest in this area has expanded well 

beyond defense technology. 

There are seven primary reasons for the expansions of interest in FDTD and 

related computational solution approaches for Maxwell’s equations: 

(i) FDTD uses no linear algebra: 

Being a fully explicit computation, FDTD avoids the difficulties with linear 

algebra that limit the size of frequency-domain integral-equation and finite-

element electromagnetics models to generally fewer than 106 electromagnetic 

field unknowns. FDTD models with as many as 109 field unknowns have been 

run; there is no intrinsic upper bound to this number [4]. 

(ii) FDTD is accurate and robust: 

The sources of error in FDTD calculations are well understood, and can be 

bounded to permit accurate models for a very large variety of electromagnetic 

wave interaction problems [4]. 

(iii) FDTD treats impulsive behavior naturally: 

Being a time-domain technique, FDTD directly calculates the impulse 

response of an electromagnetic system. Therefore, a single FDTD simulation 

can provide either ultra wideband temporal waveforms or the sinusoidal 

steady-state response at any frequency within the excitation spectrum [4]. 

(iv) FDTD treats nonlinear behavior naturally: 

Being a time-domain technique, FDTD directly calculates the nonlinear 

response of an electromagnetic system. 

(v) FDTD is a systematic approach: 

With FDTD, specifying a new structure to be modeled is reduced to a problem 

of mesh generation rather than the potentially complex reformulation of an 

integral equation. For example, FDTD requires no calculation of structure-

dependent Green functions [4].  
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(vi) Computer memory capacities are increasing rapidly: 

While this trend positively influences all numerical techniques, it is of 

particular advantage to FDTD methods, which are founded on discretizing 

space over a volume, and therefore inherently require a large random access 

memory. 

(vii) Computer visualization capabilities are increasing rapidly: 

While this trend positively influences all numerical techniques, it is of 

particular advantage to FDTD methods, which generate time-marched arrays 

of field quantities suitable for use in color videos to illustrate the field 

dynamics. 

 

Generally, the algorithm used by Yee was described by the electric field 

component which was spatially and temporally offset from the magnetic field 

component to acquire the update equations. These equations were used in a leapfrog 

manner to propagate the electric and magnetic fields ahead in time. The equations 

provide the present fields in terms of the past fields all over the computational domain. 

After Yee’s publication, the approach was widely used with different endeavor [2-6]. 

The boundaries of the computational domain in FDTD need to be carefully treated 

when simulating problems in open regions. Spurious reflections will generally occur 

from the termination of the grid. 

The problem can be solved by means of the well-known method called the 

absorbing boundary condition (ABC). It is generally meant to absorb any outgoing 

propagating waves without ideally producing spurious reflections. The ABCs was first 

proposed in 1971 by Merewether [7] to solve the open region difficulties. The 

development chronicle to magnify the practicability study of the technique was 

continued in the literature by [8-12] which were based of nonmaterial type. In contrast, 

Berenger presented a new idea in 1994 called the perfectly matched layer (PML) ABC 

which was based on material category [13]. The state of the art of Berenger’s PML 

contributes to notably better precision when compared to the other ABCs in the written 

works [14-15] for broad assortment of applications. 

The main handicap of FDTD lies in the truth that only consistent grids can be 

used. Accordingly, the geometry resemblance in FDTD is restricted to staircase-

shaped boundaries which lead to a large number of computer memory requirements 

and the CPU time particularly when dealing with curvature geometries with fine 
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features [16]. The total number of cells in the computational domain grows 

significantly due to a global fine mesh. Another FDTD weakness is the presence of 

error due to numerical dispersion [17-18].  

2.3 Finite Difference Time Domain Method in 1D 

The finite-difference time-domain (FDTD) method is arguably the simplest, both 

conceptually and in terms of implementation, of the full-wave techniques used to solve 

problems in electromagnetics. It can accurately tackle a wide range of problems. 

However, as with all numerical methods, it does have its share of artifacts and the 

accuracy is contingent upon the implementation. The FDTD method can solve 

complicated problems, but it is generally computationally expensive. Solutions may 

require a large amount of memory and computation time. The FDTD method loosely 

fits into the category of “resonance region” techniques, in example, ones in which the 

characteristic dimensions of the domain of interest are somewhere on the order of a 

wavelength in size. If an object is very small compared to a wavelength, quasi-static 

approximations generally provide more efficient solutions. Alternatively, if the 

wavelength is exceedingly small compared to the physical features of interest, ray-

based methods or other techniques may provide a much more efficient way to solve 

the problem. 

The FDTD method employs finite differences as approximations to both the 

spatial and temporal derivatives that appear in Maxwell’s equations (specifically 

Ampere’s and Faraday’s laws). Consider the Taylor series expansions of the function 

𝑓(𝑥) expanded about the point 𝑥0 with an offset of ±𝛿/2: 

 

𝑓 (𝑥0 +
𝛿

2
) = 𝑓(𝑥0) +

𝛿

2
𝑓′(𝑥0) +

1

2!
(
𝛿

2
)
2

𝑓′′(𝑥0) +
1

3!
(
𝛿

2
)
3

𝑓′′′(𝑥0) + ⋯ (2.1) 

𝑓 (𝑥0 −
𝛿

2
) = 𝑓(𝑥0) −

𝛿

2
𝑓′(𝑥0) +

1

2!
(
𝛿

2
)
2

𝑓′′(𝑥0) −
1

3!
(
𝛿

2
)
3

𝑓′′′(𝑥0) + ⋯ (2.2) 

 

where the primes indicate differentiation. Subtracting the second equation from the 

first yields: 

 

𝑓 (𝑥0 +
𝛿

2
) − 𝑓 (𝑥0 −

𝛿

2
) = 𝛿𝑓′(𝑥0) +

2

3!
(
𝛿

2
)
3

𝑓′′′(𝑥0) + ⋯   (2.3) 
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Dividing by 𝛿 produces: 

 

𝑓(𝑥0+
𝛿

2
)−𝑓(𝑥0−

𝛿

2
)

𝛿
= 𝑓′(𝑥0) +

1

3!

𝛿2

22
𝑓′′′(𝑥0) + ⋯    (2.4) 

 

Thus the term on the left is equal to the derivative of the function at the point 𝑥0 plus 

a term which depends on 𝛿2 plus an infinite number of other terms which are not 

shown. For the terms which are not shown, the next would depend on 𝛿4 and all 

subsequent terms would depend on even higher powers of 𝛿. Rearranging slightly, this 

relationship is often stated as: 

 

𝑑𝑓(𝑥)

𝑑𝑥
|
𝑥=𝑥0

=
𝑓(𝑥0+

𝛿

2
)−𝑓(𝑥0−

𝛿

2
)

𝛿
= 𝑂(𝛿2).     (2.5) 

 

The “O” term represents all the terms that are not explicitly shown and the value in 

parentheses, in example., 𝛿2, indicates the lowest order of 𝛿 in these hidden terms. If 

𝛿 is sufficiently small, a reasonable approximation to the derivative may be obtained 

by simply neglecting all the terms represented by the “O” term. Thus, the central-

difference approximation is given by: 

 

𝑑𝑓(𝑥)

𝑑𝑥
|
𝑥=𝑥0

=
𝑓(𝑥0+

𝛿

2
)−𝑓(𝑥0−

𝛿

2
)

𝛿
.       (2.6) 

 

Note that the central difference provides an approximation of the derivative of the 

function at 𝑥0, but the function is not actually sampled there. Instead, the function is 

sampled at the neighboring points 𝑥0 + 𝛿/2 and 𝑥0 − 𝛿/2. Since the lowest power of 

𝛿 being ignored is second order, the central difference is said to have second-order 

accuracy or second-order behavior. This implies that if 𝛿 is reduced by a factor of 10, 

the error in the approximation should be reduced by a factor of 100 (at least 

approximately). In the limit as 𝛿 goes to zero, the approximation becomes exact.  

One can construct higher-order central differences. In order to get higher-order 

behavior, more terms, in example, more sample points, must be used. The use of 

higher-order central differences in FDTD schemes is certainly possible, but there are 

some complications which arise because of the increased “stencil” of the difference 
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